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Handbook of Psychology Preface

Psychology at the beginning of the twenty-first century has
become a highly diverse field of scientific study and applied
technology. Psychologists commonly regard their discipline
as the science of behavior, and the American Psychological
Association has formally designated 2000 to 2010 as the
“Decade of Behavior.” The pursuits of behavioral scientists
range from the natural sciences to the social sciences and em-
brace a wide variety of objects of investigation. Some psy-
chologists have more in common with biologists than with
most other psychologists, and some have more in common
with sociologists than with most of their psychological col-
leagues. Some psychologists are interested primarily in the be-
havior of animals, some in the behavior of people, and others
in the behavior of organizations. These and other dimensions
of difference among psychological scientists are matched by
equal if not greater heterogeneity among psychological practi-
tioners, who currently apply a vast array of methods in many
different settings to achieve highly varied purposes.

Psychology has been rich in comprehensive encyclope-
dias and in handbooks devoted to specific topics in the field.
However, there has not previously been any single handbook
designed to cover the broad scope of psychological science
and practice. The present 12-volume Handbook of Psychol-
ogy was conceived to occupy this place in the literature.
Leading national and international scholars and practitioners
have collaborated to produce 297 authoritative and detailed
chapters covering all fundamental facets of the discipline,
and the Handbook has been organized to capture the breadth
and diversity of psychology and to encompass interests and
concerns shared by psychologists in all branches of the field. 

Two unifying threads run through the science of behavior.
The first is a common history rooted in conceptual and em-
pirical approaches to understanding the nature of behavior.
The specific histories of all specialty areas in psychology
trace their origins to the formulations of the classical philoso-
phers and the methodology of the early experimentalists, and
appreciation for the historical evolution of psychology in all
of its variations transcends individual identities as being one
kind of psychologist or another. Accordingly, Volume 1 in
the Handbook is devoted to the history of psychology as
it emerged in many areas of scientific study and applied
technology. 

A second unifying thread in psychology is a commitment
to the development and utilization of research methods
suitable for collecting and analyzing behavioral data. With
attention both to specific procedures and their application
in particular settings, Volume 2 addresses research methods
in psychology.

Volumes 3 through 7 of the Handbook present the sub-
stantive content of psychological knowledge in five broad
areas of study: biological psychology (Volume 3), experi-
mental psychology (Volume 4), personality and social psy-
chology (Volume 5), developmental psychology (Volume 6),
and educational psychology (Volume 7). Volumes 8 through
12 address the application of psychological knowledge in
five broad areas of professional practice: clinical psychology
(Volume 8), health psychology (Volume 9), assessment psy-
chology (Volume 10), forensic psychology (Volume 11), and
industrial and organizational psychology (Volume 12). Each
of these volumes reviews what is currently known in these
areas of study and application and identifies pertinent sources
of information in the literature. Each discusses unresolved is-
sues and unanswered questions and proposes future direc-
tions in conceptualization, research, and practice. Each of the
volumes also reflects the investment of scientific psycholo-
gists in practical applications of their findings and the atten-
tion of applied psychologists to the scientific basis of their
methods.

The Handbook of Psychology was prepared for the pur-
pose of educating and informing readers about the present
state of psychological knowledge and about anticipated ad-
vances in behavioral science research and practice. With this
purpose in mind, the individual Handbook volumes address
the needs and interests of three groups. First, for graduate stu-
dents in behavioral science, the volumes provide advanced
instruction in the basic concepts and methods that define the
fields they cover, together with a review of current knowl-
edge, core literature, and likely future developments. Second,
in addition to serving as graduate textbooks, the volumes
offer professional psychologists an opportunity to read and
contemplate the views of distinguished colleagues concern-
ing the central thrusts of research and leading edges of prac-
tice in their respective fields. Third, for psychologists seeking
to become conversant with fields outside their own specialty

ix
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x Handbook of Psychology Preface

and for persons outside of psychology seeking informa-
tion about psychological matters, the Handbook volumes
serve as a reference source for expanding their knowledge
and directing them to additional sources in the literature. 

The preparation of this Handbook was made possible by
the diligence and scholarly sophistication of the 25 volume
editors and co-editors who constituted the Editorial Board.
As Editor-in-Chief, I want to thank each of them for the plea-
sure of their collaboration in this project. I compliment them
for having recruited an outstanding cast of contributors to
their volumes and then working closely with these authors to
achieve chapters that will stand each in their own right as

valuable contributions to the literature. I would like finally to
express my appreciation to the editorial staff of John Wiley
and Sons for the opportunity to share in the development of
this project and its pursuit to fruition, most particularly to
Jennifer Simon, Senior Editor, and her two assistants, Mary
Porterfield and Isabel Pratt. Without Jennifer’s vision of the
Handbook and her keen judgment and unflagging support in
producing it, the occasion to write this preface would not
have arrived.

IRVING B. WEINER

Tampa, Florida
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xi

A scientific discipline is defined in many ways by the re-
search methods it employs. These methods can be said to rep-
resent the common language of the discipline’s researchers.
Consistent with the evolution of a lexicon, new research
methods frequently arise from the development of new
content areas. By every available measure—number of re-
searchers, number of publications, number of journals, num-
ber of new subdisciplines—psychology has undergone a
tremendous growth over the last half-century. This growth is
reflected in a parallel increase in the number of new research
methods available.

As we were planning and editing this volume, we dis-
cussed on many occasions the extent to which psychology
and the available research methods have become increasing
complex over the course of our careers. When our generation
of researchers began their careers in the late 1960s and early
1970s, experimental design was largely limited to simple
between-group designs, and data analysis was dominated by
a single method, the analysis of variance. A few other ap-
proaches were employed, but by a limited number of re-
searchers. Multivariate statistics had been developed, but
multiple regression analysis was the only method that was
applied with any frequency. Factor analysis was used almost
exclusively as a method in scale development. Classical test
theory was the basis of most psychological and educational
measures. Analysis of data from studies that did not meet
either the design or measurement assumptions required for an
analysis of variance was covered for most researchers by a
single book on nonparametric statistics by Siegel (1956). As
a review of the contents of this volume illustrates, the choice
of experimental and analytic methods available to the
present-day researcher is much broader. It would be fair to
say that the researcher in the 1960s had to formulate research
questions to fit the available methods. Currently, there are re-
search methods available to address most research questions. 

In the history of science, an explosion of knowledge is
usually the result of an advance in technology, new theoreti-
cal models, or unexpected empirical findings. Advances in
research methods have occurred as the result of all three fac-
tors, typically in an interactive manner. Some of the specific
factors include advances in instrumentation and measure-
ment technology, the availability of inexpensive desktop

computers to perform complex methods of data analysis, in-
creased computer capacity allowing for more intense analysis
of larger datasets, computer simulations that permit the eval-
uation of procedures across a wide variety of situations, new
approaches to data analysis and statistical control, and ad-
vances in companion sciences that opened pathways to the
exploration of behavior and created new areas of research
specialization and collaboration.

Consider the advances since the publication of the
first edition of Kirk’s (1968) text on experimental design.
At that time most studies were relatively small N experiments
that were conducted in psychology laboratories. Research ac-
tivity has subsequently exploded in applied and clinical
areas, with a proliferation of new journals largely dedicated
to quasi-experimental studies and studies in the natural envi-
ronment (e.g., in neuropsychology and health psychology).
Techniques such as polymerase chain reaction allow psychol-
ogists to test specific genes as risk candidates for behavioral
disorders. These studies rely on statistical procedures that are
still largely ignored by many researchers (e.g., logistic re-
gression, structural equation modeling). Brain imaging
procedures such as magnetic resonance imaging, magnetoen-
cephalography, and positron-emission tomography provide
cognitive psychologists and neuropsychologists the opportu-
nity to study cortical activity on-line. Clinical trials involving
behavioral interventions applied to large, representative sam-
ples are commonplace in health psychology. Research em-
ploying each of these procedures requires not only highly
specific and rigorous research methods, but also special
methods for handling and analyzing extremely large volumes
of data. Even in more traditional areas of research that con-
tinue to rely on group experimental designs, issues of mea-
suring practical significance, determination of sample size
and power, and procedures for handling nuisance variables
are now important concerns. Not surprisingly, the third edi-
tion of Kirk’s (1995) text has grown in page length by 60%.

Our review of these trends leads to several conclusions,
which are reflected in the selection of topics covered by the
chapters in this volume. Six features appear to characterize
the evolution in research methodology in psychology. 

First, there has been a focus on the development of proce-
dures that employ statistical control rather than experimental

schi_fm.qxd  9/6/02  11:48 AM  Page xi



xii Volume Preface

control. Because most of the recent growth involves research
in areas that preclude direct control of independent variables,
multivariate statistics and the development of methods such
as path analysis and structural equation modeling have been
critical developments. The use of statistical control has al-
lowed psychology to move from the carefully controlled con-
fines of the laboratory to the natural environment. 

Second, there has been an increasing focus on construct-
driven, or latent-variable, research. A construct is defined by
multiple observed variables. Constructs can be viewed as
more reliable and more generalizable than a single observed
variable. Constructs serve to organize a large set of observed
variables, resulting in parsimony. Constructs are also theoret-
ically based. This theory-based approach serves to guide
study design, the choice of variables, the data analysis, and
the data interpretation. 

Third, there has been an increasing emphasis on the de-
velopment of new measures and new measurement models.
This is not a new trend but an acceleration of an old trend.
The behavioral sciences have always placed the most empha-
sis on the issue of measurement. With the movement of the
field out of the laboratory combined with advances in tech-
nology, the repertoire of measures, the quality of the mea-
sures, and the sophistication of the measurement models have
all increased dramatically. 

Fourth, there is increasing recognition of the importance of
the temporal dimension in understanding a broad range of psy-
chological phenomena. We have become a more intervention-
oriented science, recognizing not only the complexity of
treatment effects but also the importance of the change in pat-
terns of the effects over time. The effects of an intervention
may be very different at different points in time. New statisti-
cal models for modeling temporal data have resulted.

Fifth, new methods of analysis have been developed
that no longer require the assumption of a continuous, equal-
interval, normally distributed variable. Previously, re-
searchers had the choice between very simple but limited
methods of data analysis that corresponded to the properties
of the measure or more complex sophisticated methods of
analysis that assumed, often inappropriately, that the measure
met very rigid assumptions. New methods have been devel-
oped for categorical, ordinal, or simply nonnormal variables
that can perform an equally sophisticated analysis.

Sixth, the importance of individual differences is increas-
ingly emphasized in intervention studies. Psychology has
always been interested in individual differences, but meth-
ods of data analysis have focused almost entirely on the rela-
tionships between variables. Individuals were studied as
members of groups, and individual differences served only to
inflate the error variance. New techniques permit researchers

to focus on the individual and model individual differences.
This becomes increasingly important as we recognize that in-
terventions do not affect everyone in exactly the same ways
and that interventions become more and more tailored to the
individual.

The text is organized into four parts. The first part, titled
“Foundations of Research,” addresses issues that are funda-
mental to all behavioral science research. The focus is on
study design, data management, data reduction, and data syn-
thesis. The first chapter, “Experimental Design” by Roger E.
Kirk, provides an overview of the basic considerations that
go into the design of a study. Once, a chapter on this topic
would have had to devote a great deal of attention to compu-
tational procedures. The availability of computers permits a
shift in focus to the conceptual rather than the computational
issues. The second chapter, “Exploratory Data Analysis” by
John T. Behrens and Chong-ho Yu, reminds us of the funda-
mental importance of looking at data in the most basic ways
as a first step in any data analysis. In some ways this repre-
sents a “back to the future” chapter. Advances in computer-
based graphical methods have brought a great deal of sophis-
tication to this very basic first step.

The third chapter, “Power: Basics, Practical Problems,
and Possible Solutions” by Rand R. Wilcox, reflects the crit-
ical change in focus for psychological research. Originally,
the central focus of a test of significance was on controlling
Type I error rates. The late Jacob Cohen emphasized that re-
searchers should be equally concerned by Type II errors.
This resulted in an emphasis on the careful planning of a
study and a concern with effect size and selecting the appro-
priate sample size. Wilcox updates and extends these con-
cepts. Chapter 4, “Methods for Handling Missing Data” by
John W. Graham, Patricio E. Cumsille, and Elvira Elek-Fisk,
describes the impressive statistical advances in addressing
the common practical problem of missing observations.
Previously, researchers had relied on a series of ad hoc pro-
cedures, often resulting in very inaccurate estimates. The new
statistical procedures allow the researcher to articulate the
assumptions about the reason the data is missing and make
very sophisticated estimates of the missing value based on all
the available information. This topic has taken on even more
importance with the increasing emphasis on longitudinal
studies and the inevitable problem of attrition. 

The fifth chapter, “Preparatory Data Analysis” by Linda S.
Fidell and Barbara G. Tabachnick, describes methods of pre-
processing data before the application of other methods of
statistical analysis. Extreme values can distort the results of
the data analysis if not addressed. Diagnostic methods can
preprocess the data so that complex procedures are not un-
duly affected by a limited number of cases that often are the
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result of some type of error. The last two chapters in this part,
“Factor Analysis” by Richard L. Gorsuch and “Clustering
and Classification Methods” by Glenn W. Milligan and
Stephen C. Hirtle, describe two widely employed parsimony
methods. Factor analysis operates in the variable domain and
attempts to reduce a set of p observed variables to a smaller
set of m factors. These factors, or latent variables, are more
easily interpreted and thus facilitate interpretation. Cluster
analysis operates in the person domain and attempts to reduce
a set of N individuals to a set of k clusters. Cluster analysis
serves to explore the relationships among individuals and or-
ganize the set of individuals into a limited number of sub-
types that share essential features. These methods are basic to
the development of construct-driven methods and the focus
on individual differences.

The second part, “Research Methods in Specific Content
Areas,” addresses research methods and issues as they apply
to specific content areas. Content areas were chosen in part to
parallel the other volumes of the Handbook. More important,
however, we attempted to sample content areas from a broad
spectrum of specialization with the hope that these chapters
would provide insights into methodological concerns and
solutions that would generalize to other areas. Chapter 8,
“Clinical Forensic Psychology” by Kevin S. Douglas, Randy
K. Otto, and Randy Borum, addresses research methods and
issues that occur in assessment and treatment contexts. For
each task that is unique to clinical forensic psychology
research, they provide examples of the clinical challenges
confronting the psychologist, identify problems faced when
researching the issues or constructs, and describe not only re-
search strategies that have been employed but also their
strengths and limitations. In Chapter 9, “Psychotherapy Out-
come Research,” Evelyn S. Behar and Thomas D. Borkovec
address the methodological issues that need to be considered
for investigators to draw the strongest and most specific
cause-and-effect conclusions about the active components of
treatments, human behavior, and the effectiveness of thera-
peutic interventions.

The field of health psychology is largely defined by three
topics: the role of behavior (e.g., smoking) in the develop-
ment and prevention of disease, the role of stress and emotion
as psychobiological influences on disease, and psychological
aspects of acute and chronic illness and medical care. Insight
into the methodological issues and solutions for research in
each of these topical areas is provided by Timothy W. Smith
in Chapter 10, “Health Psychology.”

At one time, most behavioral experimentation was con-
ducted by individuals whose training focused heavily on ani-
mal research. Now many neuroscientists, trained in various
fields, conduct research in animal learning and publish

findings that are of interest to psychologists in many fields.
The major goal of Chapter 11, “Animal Learning” by Russell
M. Church, is to transfer what is fairly common knowledge in
experimental animal psychology to investigators with limited
exposure to this area of research. In Chapter 12, “Neuropsy-
chology,” Russell M. Bauer, Elizabeth C. Leritz, and Dawn
Bowers provide a discussion of neuropsychological inference,
an overview of major approaches to neuropsychological re-
search, and a review of newer techniques, including functional
neuroimaging, electrophysiology, magnetoencephalography,
and reversible lesion methods. In each section, they describe
the conceptual basis of the technique, outline its strengths and
weaknesses, and cite examples of how it has been used in
addressing conceptual problems in neuropsychology.

Whatever their specialty area, when psychologists evalu-
ate a program or policy, the question of impact is often at cen-
ter stage. The last chapter in this part, “Program Evaluation”
by Melvin M. Mark, focuses on key methods for estimating
the effects of policies and programs in the context of evalua-
tion. Additionally, Mark addresses several noncausal forms
of program evaluation research that are infrequently ad-
dressed in methodological treatises.

The third part is titled “Measurement Issues.” Advances in
measurement typically combine innovation in technology
and progress in theory. As our measures become more so-
phisticated, the areas of application also increase.

Mood emerged as a seminal concept within psychology
during the 1980s, and its prominence has continued unabated
ever since. In Chapter 14, “Mood Measurement: Current
Status and Future Directions,” David Watson and Jatin Vaidya
examine current research regarding the underlying structure
of mood, describe and evaluate many of the most important
mood measures, and discuss several issues related to the
reliability and construct validity of mood measurement. In
Chapter 15, “Measuring Personality and Psychopathology,”
Leslie C. Morey uses objective self-report methods of mea-
surement to illustrate contemporary procedures for scale
development and validation, addressing issues critical to all
measurement methods such as theoretical articulation, situa-
tional context, and the need for discriminant validity.

The appeal of circular models lies in the combination of a
circle’s aesthetic (organizational) simplicity and its powerful
potential to describe data in uniquely compelling substantive
and geometric ways, as has been demonstrated in describ-
ing interpersonal behavior and occupational interests. In
Chapter 16, “The Circumplex Model: Methods and Research
Applications,” Michael B. Gurtman and Aaron L. Pincus dis-
cuss the application of the circumplex model to the descrip-
tions of individuals, comparisons of groups, and evaluations
of constructs and their measures.
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Chapter 17, “Item Response Theory and Measuring Abili-
ties” by Karen M. Schmidt and Susan E. Embretson, de-
scribes the types of formal models that have been designed to
guide measure development. For many years, most tests of
ability and achievement have relied on classical test theory as
a framework to guide both measure development and mea-
sure evaluation. Item response theory updates this model in
many important ways, permitting the development of a new
generation of measures of abilities and achievement that are
particularly appropriate for a more interactive model of as-
sessment. The last chapter of this part, “Growth Curve Analy-
sis in Contemporary Psychological Research” by John J.
McArdle and John R. Nesselroade, describes new quantita-
tive methods for the study of change in development psy-
chology. The methods permit the researcher to model a wide
variety of different patterns of developmental change over
time.

The final part, “Data Analysis Methods,” addresses statis-
tical procedures that have been developed recently and are
still not widely employed by many researchers. They are typ-
ically dependent on the availability of high-speed computers
and permit researchers to investigate novel and complex re-
search questions. Chapter 19, “Multiple Linear Regression”
by Leona Aiken, Stephen G. West, and Steven C. Pitts, de-
scribes the advances in multiple linear regression that permit
applications of this very basic method to the analysis of com-
plex data sets and the incorporation of conceptual models to
guide the analysis. The testing of theoretical predictions and
the identification of implementation problems are the two
major foci of this chapter. Chapter 20, “Logistic Regression”
by Alfred DeMaris, describes a parallel method to multiple
regression analysis for categorical variables. The procedure
has been developed primarily outside of psychology and is
now being used much more frequently to address psycholog-
ical questions. Chapter 21, “Meta-Analysis” by Frank L.
Schmidt and John E. Hunter, describes procedures that have
been developed for the quantitative integration of research
findings across multiple studies. Previously, research findings
were integrated in narrative form and were subject to the bi-
ases of the reviewer. The method also focuses attention on the
importance of effect size estimation. 

Chapter 22, “Survival Analysis” by Judith D. Singer and
John B. Willett, describes a recently developed method for
analyzing longitudinal data. One approach is to code whether
an event has occurred at a given occasion. By switching the
focus on the time to the occurrence of the event, a much more
powerful and sophisticated analysis can be performed. Again,
the development of this procedure has occurred largely out-
side psychology but is being employed much more fre-
quently. In Chapter 23, “Time Series Analysis,” Wayne

Velicer and Joseph L. Fava describe a method for studying
the change in a single individual over time. Instead of a sin-
gle observation on many subjects, this method relies on many
observations on a single subject. In many ways, this method
is the prime exemplar of longitudinal research methods. 

Chapter 24, “Structural Equation Modeling” by Jodie B.
Ullman and Peter M. Bentler, describes a very general
method that combines three key themes: constructs or latent
variables, statistical control, and theory to guide data analy-
sis. First employed as an analytic method little more than
20 years ago, the method is now widely disseminated in the
behavioral sciences. Chapter 25, “Ordinal Analysis of Behav-
ioral Data” by Jeffrey D. Long, Du Feng, and Norman Cliff,
discusses the assumptions that underlie many of the widely
used statistical methods and describes a parallel series of
methods of analysis that only assume that the measure pro-
vides ordinal information. The last chapter, “Latent Class and
Latent Transition Analysis” by Stephanie L. Lanza, Brian P.
Flaherty, and Linda M. Collins, describes a new method for
analyzing change over time. It is particularly appropriate
when the change process can be conceptualized as a series of
discrete states. 

In completing this project, we realized that we were very
fortunate in several ways. Irving Weiner’s performance as
editor-in-chief was simply wonderful. He applied just the right
mix of obsessive concern and responsive support to keep things
on schedule. His comments on issues of emphasis, perspective,
and quality were insightful and inevitably on target.

We continue to be impressed with the professionalism of
the authors that we were able to recruit into this effort.
Consistent with their reputations, these individuals deliv-
ered chapters of exceptional quality, making our burden
pale in comparison to other editorial experiences. Because of
the length of the project, we shared many contributors’
experiences-marriages, births, illnesses, family crises. A def-
inite plus for us has been the formation of new friendships
and professional liaisons.

Our editorial tasks were also aided greatly by the generous
assistance of our reviewers, most of whom will be quickly
recognized by our readers for their own expertise in research
methodology. We are pleased to thank James Algina, Phipps
Arabie, Patti Barrows, Betsy Jane Becker, Lisa M. Brown,
Barbara M. Byrne, William F. Chaplin, Pat Cohen, Patrick J.
Curren, Glenn Curtiss, Richard B. Darlington, Susan
Duncan, Brian Everitt, Kerry Evers, Ron Gironda, Lisa
Harlow, Michael R. Harwell, Don Hedeker, David Charles
Howell, Lawrence J. Hubert, Bradley E. Huitema, Beth
Jenkins, Herbert W. Marsh, Rosemarie A. Martin, Scott E.
Maxwell, Kevin R. Murphy, Gregory Norman, Daniel J.
Ozer, Melanie Page, Mark D. Reckase, Charles S. Reichardt,
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Steven Reise, Joseph L. Rogers, Joseph Rossi, James
Rounds, Shlomo S. Sawilowsky, Ian Spence, James H.
Steiger, Xiaowu Sun, Randall C. Swaim, David Thissen,
Bruce Thompson, Terence J. G. Tracey, Rod Vanderploeg,
Paul F. Velleman, Howard Wainer, Douglas Williams, and
several anonymous reviewers for their thorough work and
good counsel. 

We finish this preface with a caveat. Readers will in-
evitably discover several contradictions or disagreements
across the chapter offerings. Inevitably, researchers in differ-
ent areas solve similar methodological problems in different
ways. These differences are reflected in the offerings of this
text, and we have not attempted to mediate these differing
viewpoints. Rather, we believe that the serious researcher
will welcome the opportunity to review solutions suggested

or supported by differing approaches. For flaws in the text,
however, the usual rule applies: We assume all responsibility.

JOHN A. SCHINKA

WAYNE F. VELICER
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SOME BASIC EXPERIMENTAL
DESIGN CONCEPTS

Experimental design is concerned with the skillful interroga-
tion of nature. Unfortunately, nature is reluctant to reveal
her secrets. Joan Fisher Box (1978) observed in her autobiog-
raphy of her father, Ronald A. Fisher, “Far from behaving
consistently, however, Nature appears vacillating, coy, and
ambiguous in her answers” (p. 140). Her most effective
tool for confusing researchers is variability—in particular,
variability among participants or experimental units. But
two can play the variability game. By comparing the variabil-
ity among participants treated differently to the variability
among participants treated alike, researchers can make in-
formed choices between competing hypotheses in science
and technology.

We must never underestimate nature—she is a formidable
foe. Carefully designed and executed experiments are re-
quired to learn her secrets. An experimental design is a plan
for assigning participants to experimental conditions and the
statistical analysis associated with the plan (Kirk, 1995, p. 1).
The design of an experiment involves a number of inter-
related activities:

1. Formulation of statistical hypotheses that are germane to the
scientific hypothesis. A statistical hypothesis is a statement

about (a) one or more parameters of a population or (b) the
functional form of a population. Statistical hypotheses
are rarely identical to scientific hypotheses—they are
testable formulations of scientific hypotheses.

2. Determination of the experimental conditions (independent
variable) to be manipulated, the measurement (dependent
variable) to be recorded, and the extraneous conditions
(nuisance variables) that must be controlled.

3. Specification of the number of participants required and
the population from which they will be sampled.

4. Specification of the procedure for assigning the partici-
pants to the experimental conditions. 

5. Determination of the statistical analysis that will be
performed.

In short, an experimental design identifies the independent,
dependent, and nuisance variables and indicates the way in
which the randomization and statistical aspects of an experi-
ment are to be carried out. 

Analysis of Variance

Analysis of variance (ANOVA) is a useful tool for under-
standing the variability in designed experiments. The seminal
ideas for both ANOVA and experimental design can be traced
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4 Experimental Design

to Ronald A. Fisher, a statistician who worked at the Rotham-
sted Experimental Station. According to Box (1978, p. 100),
Fisher developed the basic ideas ofANOVAbetween 1919 and
1925. The first hint of what was to come appeared in a 1918
paper in which Fisher partitioned the total variance of a human
attribute into portions attributed to heredity, environment, and
other factors. The analysis of variance table for a two-treat-
ment factorial design appeared in a 1923 paper published with
M.A. Mackenzie (Fisher & Mackenzie, 1923). Fisher referred
to the table as a convenient way of arranging the arithmetic. In
1924 Fisher (1925) introduced the Latin square design in con-
nection with a forest nursery experiment. The publication in
1925 of his classic textbook Statistical Methods for Research
Workers and a short paper the following year (Fisher, 1926)
presented all the essential ideas of analysis of variance. The
textbook (Fisher, 1925, pp. 244–249) included a table of the
critical values of the ANOVA test statistic in terms of a func-
tion called z, where z = 1

2 (ln �̂2
Treatment − ln �̂2

Error). The statis-
tics �̂2

Treatment and �̂2
Error denote, respectively, treatment and

error variance. A more convenient form of Fisher’s z table that
did not require looking up log values was developed by
George Snedecor (1934). His critical values are expressed in
terms of the function F = �̂2

Treatment/�̂2
Error that is obtained

directly from theANOVAcalculations. He named it F in honor
of Fisher. Fisher’s field of experimentation—agriculture—
was a fortunate choice because results had immediate applica-
tion with assessable economic value, because simplifying
assumptions such as normality and independence of errors
were usually tenable, and because the cost of conducting
experiments was modest.

Three Principles of Good Experimental Design

The publication of Fisher’s Statistical Methods for Research
Workers and his 1935 The Design of Experiments gradually
led to the acceptance of what today is considered to be the
cornerstone of good experimental design: randomization.
It is hard to imagine the hostility that greeted the suggestion
that participants or experimental units should be randomly
assigned to treatment levels. Before Fisher’s work, most
researchers used systematic schemes, not subject to the laws
of chance, to assign participants. According to Fisher, ran-
dom assignment has several purposes. It helps to distribute
the idiosyncratic characteristics of participants over the treat-
ment levels so that they do not selectively bias the outcome of
the experiment. Also, random assignment permits the com-
putation of an unbiased estimate of error effects—those
effects not attributable to the manipulation of the independent
variable—and it helps to ensure that the error effects are
statistically independent.

Fisher popularized two other principles of good experi-
mentation: replication and local control or blocking. Replica-
tion is the observation of two or more participants under
identical experimental conditions. Fisher observed that repli-
cation enables a researcher to estimate error effects and
obtain a more precise estimate of treatment effects. Blocking,
on the other hand, is an experimental procedure for isolating
variation attributable to a nuisance variable. As the name
suggests, nuisance variables are undesired sources of varia-
tion that can affect the dependent variable. There are many
sources of nuisance variation. Differences among partici-
pants comprise one source. Other sources include variation
in the presentation of instructions to participants, changes in
environmental conditions, and the effects of fatigue and
learning when participants are observed several times. Three
experimental approaches are used to deal with nuisance
variables:

1. Holding the variable constant.

2. Assigning participants randomly to the treatment levels so
that known and unsuspected sources of variation among
the participants are distributed over the entire experiment
and do not affect just one or a limited number of treatment
levels.

3. Including the nuisance variable as one of the factors in the
experiment.

The last experimental approach uses local control or blocking
to isolate variation attributable to the nuisance variable so
that it does not appear in estimates of treatment and error
effects. A statistical approach also can be used to deal with
nuisance variables. The approach is called analysis of covari-
ance and is described in the last section of this chapter.
The three principles that Fisher vigorously championed—
randomization, replication, and local control—remain the
cornerstones of good experimental design. 

THREE BUILDING BLOCK DESIGNS

Completely Randomized Design

One of the simplest experimental designs is the randomization
and analysis plan that is used with a t statistic for independent
samples. Consider an experiment to compare the effectiveness
of two diets for obese teenagers. The independent variable is
the two kinds of diets; the dependent variable is the amount of
weight loss two months after going on a diet. For notational
convenience, the two diets are called treatment A. The levels
of treatment A corresponding to the specific diets are denoted
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Three Building Block Designs 5

by the lowercase letter a and a subscript: a1 denotes one diet
and a2 denotes the other. A particular but unspecified level of
treatment A is denoted by aj, where j ranges over the values 1
and 2. The amount of weight loss in pounds 2 months after
participant i went on diet j is denoted by Yij.

The null and alternative hypotheses for the weight-loss
experiment are, respectively,

H0: �1 − �2 = 0

H1: �1 − �2 �= 0,

where �1 and �2 denote the mean weight loss of the respec-
tive populations. Assume that 30 girls who want to lose
weight are available to participate in the experiment. The
researcher assigns n = 15 girls to each of the p = 2 diets so
that each of the (np)!/(n!)p = 155,117,520 possible assign-
ments has the same probability. This is accomplished by
numbering the girls from 1 to 30 and drawing numbers from
a random numbers table. The first 15 numbers drawn between
1 and 30 are assigned to treatment level a1; the remaining 15
numbers are assigned to a2. The layout for this experiment is
shown in Figure 1.1. The girls who were assigned to treat-
ment level a1 are called Group1; those assigned to treatment
level a2 are called Group2. The mean weight losses of the two
groups of girls are denoted by Y ·1 and Y ·2.

The t independent-samples design involves randomly
assigning participants to two levels of a treatment. A com-
pletely randomized design, which is described next, extends
this design strategy to two or more treatment levels. The com-
pletely randomized design is denoted by the letters CR-p,
where CR stands for “completely randomized” and p is the
number of levels of the treatment.

Again, consider the weight-loss experiment and suppose
that the researcher wants to evaluate the effectiveness of

three diets. The null and alternative hypotheses for the
experiment are, respectively,

H0: �1 = �2 = �3

H1: �j �= �j ′ for some j and j ′.

Assume that 45 girls who want to lose weight are available to
participate in the experiment. The girls are randomly as-
signed to the three diets with the restriction that 15 girls are
assigned to each diet. The layout for the experiment is shown
in Figure 1.2. A comparison of the layout in this figure with
that in Figure 1.1 for a t independent-samples design reveals
that they are the same except that the completely randomized
design has three treatment levels. The t independent-samples
design can be thought of as a special case of a completely
randomized design. When p is equal to two, the layouts and
randomization plans for the designs are identical. 

Thus far I have identified the null hypothesis that the
researcher wants to test, �1 = �2 = �3, and described the
manner in which the participants are assigned to the three
treatment levels. In the following paragraphs I discuss the com-
posite nature of an observation, describe the classical model
equation for a CR-p design, and examine the meaning of the
terms treatment effect and error effect.

An observation, which is a measure of the dependent vari-
able, can be thought of as a composite that reflects the
effects of the (a) independent variable, (b) individual charac-
teristics of the participant or experimental unit, (c) chance
fluctuations in the participant’s performance, (d) measure-
ment and recording errors that occur during data collection,

Figure 1.1 Layout for a t independent-samples design. Thirty girls are ran-
domly assigned to two levels of treatment A with the restriction that 15 girls
are assigned to each level. The mean weight loss in pounds for the girls in
treatment levels a1 and a2 is denoted by Y ·1 and Y ·2, respectively. 

Figure 1.2 Layout for a completely randomized design (CR-3 design).
Forty-five girls are randomly assigned to three levels of treatment A with the
restriction that 15 girls are assigned to each level. The mean weight loss in
pounds for the girls in treatment levels a1, a2, and a3 is denoted by Y ·1, Y ·2,
and Y ·3, respectively. 
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6 Experimental Design

and (e) any other nuisance variables such as environmental
conditions that have not been controlled. Consider the weight
loss of the fifth participant in treatment level a2. Suppose that
two months after beginning the diet this participant has lost
13 pounds (Y52 = 13). What factors have affected the value of
Y52? One factor is the effectiveness of the diet. Other factors
are her weight prior to starting the diet, the degree to which
she stayed on the diet, and the amount she exercised during
the two-month trial, to mention only a few. In summary, Y52 is
a composite that reflects (a) the effects of treatment level a2,
(b) effects unique to the participant, (c) effects attributable to
chance fluctuations in the participant’s behavior, (d) errors in
measuring and recording the participant’s weight loss, and
(e) any other effects that have not been controlled. Our con-
jectures about Y52 or any of the other 44 observations can be
expressed more formally by a model equation. The classical
model equation for the weight-loss experiment is

Yi j = � + �j + �i( j) (i = 1, . . . , n; j = 1, . . . , p),

where

Yi j is the weight loss for participant i in treatment
level aj.

� is the grand mean of the three weight-loss popula-
tion means.

�j is the treatment effect for population j and is equal to
�j − �. It reflects the effects of diet aj.

�i( j) is the within-groups error effect associated with Yi j

and is equal to Yi j − � − �j . It reflects all effects
not attributable to treatment level aj. The notation
i( j) indicates that the ith participant appears only in
treatment level j. Participant i is said to be nested
within the jth treatment level. Nesting is discussed
in the section titled “Hierarchical Designs.”

According to the equation for this completely randomized
design, each observation is the sum of three parameters
�, �j , and �i( j). The values of the parameters in the equation
are unknown but can be estimated from sample data.

The meanings of the terms grand mean, �, and treatment
effect, �j , in the model equation seem fairly clear; the mean-
ing of error effect, �i( j), requires a bit more explanation. Why
do observations, Yi js, in the same treatment level vary from
one participant to the next? This variation must be due to dif-
ferences among the participants and to other uncontrolled
variables because the parameters � and �j in the model equa-
tion are constants for all participants in the same treatment
level. To put it another way, observations in the same treatment

level are different because the error effects, �i( j)s, for the
observations are different. Recall that error effects reflect idio-
syncratic characteristics of the participants—those character-
istics that differ from one participant to another—and any
other variables that have not been controlled. Researchers at-
tempt to minimize the size of error effects by holding sources
of variation that might contribute to the error effects constant
and by the judicial choice of an experimental design. Designs
that are described next permit a researcher to isolate and re-
move some sources of variation that would ordinarily be in-
cluded in the error effects.

Randomized Block Design

The two designs just described use independent samples. Two
samples are independent if, for example, a researcher ran-
domly samples from two populations or randomly assigns par-
ticipants to p groups. Dependent samples, on the other hand,
can be obtained by any of the following procedures.

1. Observe each participant under each treatment level in
the experiment—that is, obtain repeated measures on the
participants.

2. Form sets of participants who are similar with respect to
a variable that is correlated with the dependent variable.
This procedure is called participant matching.

3. Obtain sets of identical twins or littermates in which case
the participants have similar genetic characteristics.

4. Obtain participants who are matched by mutual selection,
for example, husband and wife pairs or business partners.

In the behavioral and social sciences, the participants are
often people whose aptitudes and experiences differ markedly.
Individual differences are inevitable, but it is often possible
to isolate or partition out a portion of these effects so that
they do not appear in estimates of the error effects. One design
for accomplishing this is the design used with a t statistic for
dependent samples. As the name suggests, the design uses
dependent samples. A t dependent-samples design also uses a
more complex randomization and analysis plan than does a t
independent-samples design. However, the added complexity
is often accompanied by greater power—a point that I will de-
velop later in connection with a randomized block design.

Let’s reconsider the weight-loss experiment. It is reason-
able to assume that ease of losing weight is related to the
amount by which a girl is overweight. The design of the exper-
iment can be improved by isolating this nuisance variable.
Suppose that instead of randomly assigning 30 participants to
the treatment levels, the researcher formed pairs of participants
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Three Building Block Designs 7

Figure 1.3 Layout for a t dependent-samples design. Each block contains
two girls who are overweight by about the same amount. The two girls in a
block are randomly assigned to the treatment levels. The mean weight loss in
pounds for the girls in treatment levels a1 and a2 is denoted by Y ·1 and Y ·2,
respectively.

so that prior to going on a diet the participants in each pair are
overweight by about the same amount. The participants in each
pair constitute a block or set of matched participants. A simple
way to form blocks of matched participants is to rank them
from least to most overweight. The participants ranked 1 and 2
are assigned to block one, those ranked 3 and 4 are assigned to
block two, and so on. In this example, 15 blocks of dependent
samples can be formed from the 30 participants.After all of the
blocks have been formed, the two participants in each block
are randomly assigned to the two diets. The layout for this ex-
periment is shown in Figure 1.3. If the researcher’s hunch is
correct that ease in losing weight is related to the amount by
which a girl is overweight, this design should result in a more
powerful test of the null hypothesis, �·1 − �·2 = 0, than would
a t test for independent samples. As we will see, the increased
power results from isolating the nuisance variable (the amount
by which the girls are overweight) so that it does not appear in
the estimate of the error effects.

Earlier we saw that the layout and randomization proce-
dures for a t independent-samples design and a completely
randomized design are the same except that a completely ran-
domized design can have more than two treatment levels.
The same comparison can be drawn between a t dependent-
samples design and a randomized block design. A random-
ized block design is denoted by the letters RB-p, where RB
stands for “randomized block” and p is the number of levels
of the treatment. The four procedures for obtaining depen-
dent samples that were described earlier can be used to form
the blocks in a randomized block design. The procedure that
is used does not affect the computation of significance tests,
but the procedure does affect the interpretation of the results.
The results of an experiment with repeated measures general-
ize to a population of participants who have been exposed to
all of the treatment levels. However, the results of an experi-
ment with matched participants generalize to a population of

participants who have been exposed to only one treatment
level. Some writers reserve the designation randomized
block design for this latter case. They refer to a design with
repeated measurements in which the order of administration
of the treatment levels is randomized independently for each
participant as a subjects-by-treatments design. A design with
repeated measurements in which the order of administration
of the treatment levels is the same for all participants is
referred to as a subject-by-trials design. I use the designation
randomized block design for all three cases.

Of the four ways of obtaining dependent samples, the use
of repeated measures on the participants typically results in
the greatest homogeneity within the blocks. However, if re-
peated measures are used, the effects of one treatment level
should dissipate before the participant is observed under an-
other treatment level. Otherwise the subsequent observations
will reflect the cumulative effects of the preceding treatment
levels. There is no such restriction, of course, if carryover ef-
fects such as learning or fatigue are the researcher’s principal
interest. If blocks are composed of identical twins or litter-
mates, it is assumed that the performance of participants hav-
ing identical or similar heredities will be more homogeneous
than the performance of participants having dissimilar hered-
ities. If blocks are composed of participants who are matched
by mutual selection (e.g., husband and wife pairs or business
partners), a researcher should ascertain that the participants
in a block are in fact more homogeneous with respect to the
dependent variable than are unmatched participants. A hus-
band and wife often have similar political attitudes; the cou-
ple is less likely to have similar mechanical aptitudes. 

Suppose that in the weight-loss experiment the researcher
wants to evaluate the effectiveness of three diets, denoted
by a1, a2, and a3. The researcher suspects that ease of losing
weight is related to the amount by which a girl is overweight.
If a sample of 45 girls is available, the blocking procedure
described in connection with a t dependent-samples design
can be used to form 15 blocks of participants. The three par-
ticipants in a block are matched with respect to the nuisance
variable, the amount by which a girl is overweight. The lay-
out for this experiment is shown in Figure 1.4. A comparison
of the layout in this figure with that in Figure 1.3 for a t
dependent-samples design reveals that they are the same ex-
cept that the randomized block design has p = 3 treatment
levels. When p = 2, the layouts and randomization plans for
the designs are identical. In this and later examples, I assume
that all of the treatment levels and blocks of interest are rep-
resented in the experiment. In other words, the treatment lev-
els and blocks represent fixed effects. A discussion of the case
in which either the treatment levels or blocks or both are ran-
domly sampled from a population of levels, the mixed and
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8 Experimental Design

random effects cases, is beyond the scope of this chapter. The
reader is referred to Kirk (1995, pp. 256–257, 265–268).

A randomized block design enables a researcher to test
two null hypotheses.

H0: �·1 = �·2 = �·3
(Treatment population means are equal.)

H0: �1· = �2· = · · · = �15·
(Block population means are equal.)

The second hypothesis, which is usually of little interest,
states that the population weight-loss means for the 15 levels
of the nuisance variable are equal. The researcher expects a
test of this null hypothesis to be significant. If the nuisance
variable represented by the blocks does not account for an ap-
preciable proportion of the total variation in the experiment,
little has been gained by isolating the effects of the variable.
Before exploring this point, I describe the model equation for
an RB-p design.

The classical model equation for the weight-loss experi-
ment is

Yi j = � + �j + �i + �i j (i = 1, . . . , n; j = 1, . . . , p),

where

Yi j is the weight loss for the participant in Blocki and
treatment level aj.

� is the grand mean of the three weight-loss popula-
tion means.

�j is the treatment effect for population j and is equal to
�· j − �. It reflects the effect of diet aj.

�i is the block effect for population i and is equal to
�i · − �. It reflects the effect of the nuisance variable
in Blocki.

�i j is the residual error effect associated with Yi j and is
equal to Yi j − � − �j − �i . It reflects all effects not
attributable to treatment level aj and Blocki.

According to the model equation for this randomized block
design, each observation is the sum of four parameters:
�,�j , �i , and �i j . A residual error effect is that portion of an
observation that remains after the grand mean, treatment
effect, and block effect have been subtracted from it; that
is, �i j = Yi j − � − �j − �i . The sum of the squared error
effects for this randomized block design,∑∑

�2
i j =

∑∑
(Yi j − � − �j − �i )

2,

will be smaller than the sum for the completely randomized
design, ∑∑

�2
i( j) =

∑∑
(Yi j − � − �j )

2,

if �2
i is not equal to zero for one or more blocks. This idea is

illustrated in Figure 1.5, where the total sum of squares and
degrees of freedom for the two designs are partitioned. The F
statistic that is used to test the null hypothesis can be thought
of as a ratio of error and treatment effects,

F = f (error effects) + f (treatment effects)

f (error effects)

where f ( ) denotes a function of the effects in parentheses. It
is apparent from an examination of this ratio that the smaller
the sum of the squared error effects, the larger the F statistic
and, hence, the greater the probability of rejecting a false null

SSRES

(n � 1)(p � 1) � 28

SSWG

p(n � 1) � 42

Figure 1.5 Partition of the total sum of squares (SSTOTAL) and degrees of
freedom (np − 1 = 44) for CR-3 and RB-3 designs. The treatment and
within-groups sums of squares are denoted by, respectively, SSA and SSWG.
The block and residual sums of squares are denoted by, respectively, SSBL
and SSRES. The shaded rectangles indicate the sums of squares that are used
to compute the error variance for each design: MSWG = SSWG/p(n − 1)

and MSRES = SSRES/(n − 1)(p − 1). If the nuisance variable (SSBL) in the
randomized block design accounts for an appreciable portion of the total sum
of squares, the design will have a smaller error variance and, hence, greater
power than the completely randomized design.

Figure 1.4 Layout for a randomized block design (RB-3 design). Each
block contains three girls who are overweight by about the same amount.
The three girls in a block are randomly assigned to the treatment levels. The
mean weight loss in pounds for the girls in treatment levels a1, a2, and a3 is
denoted by Y ·1, Y ·2, and Y ·3, respectively. The mean weight loss for the
girls in Block1, Block2, . . . , Block15 is denoted by Y 1·, Y 2·, . . . , Y 15·,
respectively.
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Three Building Block Designs 9

hypothesis. Thus, by isolating a nuisance variable that ac-
counts for an appreciable portion of the total variation in a
randomized block design, a researcher is rewarded with a
more powerful test of a false null hypothesis.

As we have seen, blocking with respect to the nuisance
variable (the amount by which the girls are overweight)
enables the researcher to isolate this variable and remove it
from the error effects. But what if the nuisance variable
doesn’t account for any of the variation in the experiment? In
other words, what if all of the block effects in the experiment
are equal to zero? In this unlikely case, the sum of the squared
error effects for the randomized block and completely ran-
domized designs will be equal. In this case, the randomized
block design will be less powerful than the completely ran-
domized design because its error variance, the denominator
of the F statistic, has n − 1 fewer degrees of freedom than
the error variance for the completely randomized design. It
should be obvious that the nuisance variable should be se-
lected with care. The larger the correlation between the nui-
sance variable and the dependent variable, the more likely it
is that the block effects will account for an appreciable
proportion of the total variation in the experiment.

Latin Square Design

The Latin square design described in this section derives its
name from an ancient puzzle that was concerned with the
number of different ways that Latin letters can be arranged in
a square matrix so that each letter appears once in each row
and once in each column. An example of a 3 × 3 Latin square
is shown in Figure 1.6. In this figure I have used the letter a
with subscripts in place of Latin letters. The Latin square de-
sign is denoted by the letters LS-p, where LS stands for
“Latin square” and p is the number of levels of the treatment.
A Latin square design enables a researcher to isolate the ef-
fects of not one but two nuisance variables. The levels of one
nuisance variable are assigned to the rows of the square; the
levels of the other nuisance variable are assigned to the
columns. The levels of the treatment are assigned to the cells
of the square.

Let’s return to the weight-loss experiment. With a Latin
square design the researcher can isolate the effects of the
amount by which girls are overweight and the effects of a sec-
ond nuisance variable, for example, genetic predisposition to
be overweight. A rough measure of the second nuisance vari-
able can be obtained by asking a girl’s parents whether they
were overweight as teenagers: c1 denotes neither parent over-
weight, c2 denotes one parent overweight, and c3 denotes both
parents overweight. This nuisance variable can be assigned to
the columns of the Latin square. Three levels of the amount by
which girls are overweight can be assigned to the rows of the

Latin square: b1 is less than 15 pounds, b2 is 15 to 25 pounds,
and b3 is more than 25 pounds. The advantage of being able to
isolate two nuisance variables comes at a price. The ran-
domization procedures for a Latin square design are more
complex than those for a randomized block design. Also, the
number of rows and columns of a Latin square must each
equal the number of treatment levels, which is three in the ex-
ample. This requirement can be very restrictive. For example,
it was necessary to restrict the continuous variable of the
amount by which girls are overweight to only three levels.
The layout of the LS-3 design is shown in Figure 1.7.

Figure 1.6 Three-by-three Latin square, where aj denotes one of the
j = 1, . . . , p levels of treatment A; bk denotes one of the k = 1, . . . , p levels
of nuisance variable B; and cl denotes one of the l = 1, . . . , p levels of nui-
sance variable C. Each level of treatment A appears once in each row and
once in each column as required for a Latin square. 

Figure 1.7 Layout for a Latin square design (LS-3 design) that is based on
the Latin square in Figure 1.6. Treatment A represents three kinds of diets;
nuisance variable B represents amount by which the girls are overweight;
and nuisance variable C represents genetic predisposition to be overweight.
The girls in Group1, for example, received diet a1, were less than fifteen
pounds overweight (b1), and neither parent had been overweight as a
teenager (c1). The mean weight loss in pounds for the girls in the nine groups
is denoted by Y ·111, Y ·123, . . . , Y ·331.
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10 Experimental Design

The design in Figure 1.7 enables the researcher to test
three null hypotheses:

H0: �1·· = �2·· = �3··
(Treatment population means are equal.)

H0: �·1· = �·2· = �·3·
(Row population means are equal.)

H0: �··1 = �··2 = �··3
(Column population means are equal.)

The first hypothesis states that the population means for the
three diets are equal. The second and third hypotheses make
similar assertions about the population means for the two
nuisance variables. Tests of these nuisance variables are ex-
pected to be significant. As discussed earlier, if the nuisance
variables do not account for an appreciable proportion of the
total variation in the experiment, little has been gained by iso-
lating the effects of the variables.

The classical model equation for this version of the
weight-loss experiment is

Yi jkl = � + �j + �k + 	l + �jkl + �i( jkl)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , p; l = 1, . . . , p),

where

Yi jkl
is the weight loss for the ith participant in treat-
ment level aj, row bk, and column cl.

�j is the treatment effect for population j and is equal
to �j ·· − �. It reflects the effect of diet aj.

�k is the row effect for population k and is equal
to �·k· − �. It reflects the effect of nuisance vari-
able bk.

	l is the column effect for population l and is equal
to �··l − �. It reflects the effects of nuisance vari-
able cl.

�jkl is the residual effect that is equal to �jkl − �j ··−
�·k· − �··l + 2�.

�i( jkl) is the within-cell error effect associated with Yijkl

and is equal to Yi jkl − � − �j − �k − 	l − �jkl .

According to the model equation for this Latin square design,
each observation is the sum of six parameters: �, �j , �k,

	l, �jkl, and �i( jkl). The sum of the squared within-cell error
effects for the Latin square design, ∑∑

�2
i( jkl) =

∑∑
(Yi jkl − � − �j −�k − 	l − �jkl)

2,

will be smaller than the sum for the randomized block design, ∑∑
�2

i j =
∑∑

(Yi j − � − �j − �i )
2,

if the combined effects of 
∑

�2
k,

∑
	2

l , and
∑

�2
jkl are

greater than 
∑

�2
i . The benefits of isolating two nuisance

variables are a smaller error variance and increased power. 
Thus far I have described three of the simplest experimen-

tal designs: the completely randomized design, randomized
block design, and Latin square design. The three designs are
called building block designs because complex experimental
designs can be constructed by combining two or more of these
simple designs (Kirk, 1995, p. 40). Furthermore, the random-
ization procedures, data analysis, and model assumptions for
complex designs represent extensions of those for the three
building block designs. The three designs provide the organi-
zational structure for the design nomenclature and classifica-
tion scheme that is described next.

CLASSIFICATION OF EXPERIMENTAL DESIGNS

A classification scheme for experimental designs is given in
Table 1.1. The designs in the category systematic designs do
not use random assignment of participants or experimental
units and are of historical interest only. According to Leonard
and Clark (1939), agricultural field research employing sys-
tematic designs on a practical scale dates back to 1834. Over
the last 80 years systematic designs have fallen into disuse be-
cause designs employing random assignment are more likely
to provide valid estimates of treatment and error effects and
can be analyzed using the powerful tools of statistical infer-
ence such as analysis of variance. Experimental designs using
random assignment are called randomized designs. The ran-
domized designs in Table 1.1 are subdivided into categories
based on (a) the number of treatments, (b) whether participants
are assigned to relatively homogeneous blocks prior to random
assignment, (c) presence or absence of confounding, (d) use of
crossed or nested treatments, and (e) use of a covariate.

The letters p and q in the abbreviated designations denote
the number of levels of treatments A and B, respectively. If a
design includes a third and fourth treatment, say treatments C
and D, the number of their levels is denoted by r and t,
respectively. In general, the designation for designs with two
or more treatments includes the letters CR, RB, or LS to
indicate the building block design. The letter F or H is added
to the designation to indicate that the design is, respectively, a
factorial design or a hierarchical design. For example, the F in
the designation CRF-pq indicates that it is a factorial design;
the CR and pq indicate that the design was constructed by
combining two completely randomized designs with p and q
treatment levels. The letters CF, PF, FF, and AC are added to
the designation if the design is, respectively, a confounded
factorial design, partially confounded factorial design, frac-
tional factorial design, or analysis of covariance design.
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TABLE 1.1 Classification of Experimental Designs

Abbreviated
Experimental Design Designationa

I. Systematic Designs (selected examples).
1. Beavan’s chessboard design.
2. Beavan’s half-drill strip design.
3. Diagonal square design.
4. Knut Vik square design.

II. Randomized Designs With One Treatment.
A. Experimental units randomly assigned to 

treatment levels.
1. Completely randomized design. CR-p

B. Experimental units assigned to relatively 
homogeneous blocks or groups prior to
random assignment.
1. Balanced incomplete block design. BIB-p
2. Cross-over design. CO-p
3. Generalized randomized block design. GRB-p
4. Graeco-Latin square design. GLS-p
5. Hyper-Graeco-Latin square design. HGLS-p
6. Latin square design. LS-p
7. Lattice balanced incomplete block design. LBIB-p
8. Lattice partially balanced incomplete LPBIB-p

block design.
9. Lattice unbalanced incomplete block design. LUBIB-p

10. Partially balanced incomplete block design. PBIB-p
11. Randomized block design. RB-p
12. Youden square design. YBIB-p

III. Randomized Designs With Two or More Treatments.
A. Factorial designs: designs in which all treatments 

are crossed.
1. Designs without confounding.

a. Completely randomized factorial design. CRF-pq
b. Generalized randomized block factorial design. GRBF-pq
c. Randomized block factorial design. RBF-pq

2. Design with group-treatment confounding.
a. Split-plot factorial design. SPF-p ·q

3. Designs with group-interaction confounding.
a. Latin square confounded factorial design. LSCF-pk

aThe abbreviated designations are discussed later. 

Abbreviated
Experimental Design Designationa

b. Randomized block completely confounded RBCF-pk

factorial design.
c. Randomized block partially confounded RBPF-pk

factorial design.
4. Designs with treatment-interaction confounding.

a. Completely randomized fractional CRFF-pk−i

factorial design.
b. Graeco-Latin square fractional factorial design. GLSFF-pk

c. Latin square fractional factorial design. LSFF-pk

d. Randomized block fractional factorial design. RBFF-pk−i

B. Hierarchical designs: designs in which one or 
more treatments are nested.
1. Designs with complete nesting.

a. Completely randomized hierarchical design. CRH-pq(A)
b. Randomized block hierarchical design. RBH-pq(A)

2. Designs with partial nesting.
a. Completely randomized partial CRPH-pq(A)r

hierarchical design.
b. Randomized block partial hierarchical design. RBPH-pq(A)r
c. Split-plot partial hierarchical design. SPH-p ·qr(B)

IV. Randomized Designs With One or More Covariates.
A. Designs that include a covariate have 

the letters AC added to the abbreviated
designation as in the following examples.
1. Completely randomized analysis of covariance CRAC-p

design.
2. Completely randomized factorial analysis CRFAC-pq

of covariance design.
3. Latin square analysis of covariance design. LSAC-p
4. Randomized block analysis of covariance design. RBAC-p
5. Split-plot factorial analysis of covariance design. SPFAC-p ·q

V. Miscellaneous Designs (select examples).
1. Solomon four-group design.
2. Interrupted time-series design.

choose. Because of the wide variety of designs available, it is
important to identify them clearly in research reports. One
often sees statements such as “a two-treatment factorial de-
sign was used.” It should be evident that a more precise
description is required. This description could refer to 10 of
the 11 factorial designs in Table 1.1.

Thus far, the discussion has been limited to designs with
one treatment and one or two nuisance variables. In the fol-
lowing sections I describe designs with two or more treat-
ments that are constructed by combining several building
block designs.

FACTORIAL DESIGNS 

Completely Randomized Factorial Design

Factorial designs differ from those described previously in
that two or more treatments can be evaluated simultaneously

Three of these designs are described later. Because of space
limitations, I cannot describe all of the designs in Table 1.1.
I will focus on those designs that are potentially the most
useful in the behavioral and social sciences.

It is apparent from Table 1.1 that a wide array of designs
is available to researchers. Unfortunately, there is no univer-
sally accepted designation for the various designs—some
designs have as many as five different names. For example,
the completely randomized design has been called a one-way
classification design, single-factor design, randomized group
design, simple randomized design, and single variable exper-
iment. Also, a variety of design classification schemes have
been proposed. The classification scheme in Table 1.1 owes
much to Cochran and Cox (1957, chaps. 4–13) and Federer
(1955, pp. 11–12).

A quick perusal of Table 1.1 reveals why researchers
sometimes have difficulty selecting an appropriate experi-
mental design—there are a lot of designs from which to
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Figure 1.8 Layout for a two-treatment completely randomized factorial
design (CRF-32 design). Thirty girls are randomly assigned to six combina-
tions of treatments A and B with the restriction that five girls are assigned to
each combination. The mean weight loss in pounds for girls in the six groups
is denoted by Y ·11, Y ·12, . . . , Y ·32.

in an experiment. The simplest factorial design from the
standpoint of randomization, data analysis, and model as-
sumptions is based on a completely randomized design and,
hence, is called a completely randomized factorial design. A
two-treatment completely randomized factorial design is de-
noted by the letters CRF-pq, where p and q denote the num-
ber of levels, respectively, of treatments A and B.

In the weight-loss experiment, a researcher might be inter-
ested in knowing also whether walking on a treadmill for
20 minutes a day would contribute to losing weight, as well
as whether the difference between the effects of walking or
not walking on the treadmill would be the same for each of
the three diets. To answer these additional questions, a re-
searcher can use a two-treatment completely randomized fac-
torial design. Let treatment A consist of the three diets (a1, a2,
and a3) and treatment B consist of no exercise on the tread-
mill (b1) and exercise for 20 minutes a day on the treadmill
(b2). This design is a CRF-32 design, where 3 is the number
of levels of treatment A and 2 is the number of levels of treat-
ment B. The layout for the design is obtained by combining
the treatment levels of a CR-3 design with those of a CR-2
design so that each treatment level of the CR-3 design ap-
pears once with each level of the CR-2 design and vice versa.
The resulting design has 3 × 2 = 6 treatment combinations
as follows: a1b1, a1b2, a2b1, a2b2, a3b1, a3b2. When treatment
levels are combined in this way, the treatments are said to be
crossed. The use of crossed treatments is a characteristic of
all factorial designs. The layout of the design with 30 girls
randomly assigned to the six treatment combinations is
shown in Figure 1.8.

The classical model equation for the weight-loss experi-
ment is

Yi jk = � + �j + �k + (��)jk + �i( jk)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),

where

Yi jk is the weight loss for participant i in treatment
combination ajbk.

� is the grand mean of the six weight-loss popula-
tion means.

�j is the treatment effect for population aj and is
equal to �j · − �. It reflects the effect of diet aj.

�k is the treatment effect for population bk and is
equal to �·k − �. It reflects the effects of exercise
condition bk.

(��)jk is the interaction effect for populations aj and bk

and is equal to �jk − �j · − �·k − �. Interaction
effects are discussed later.

�i( jk) is the within-cell error effect associated with Yi jk

and is equal to Yi jk − � − �j − �k − (��)jk . It
reflects all effects not attributable to treatment
level aj, treatment level bk, and the interaction of aj

and bk.

The CRF-32 design enables a researcher to test three null
hypotheses:

H0: �1· = �2· = �3·
(Treatment A population means are equal.)

H0: �·1 = �·2
(Treatment B population means are equal.)

H0: �jk − �jk ′ − �j ′k + �j ′k ′ = 0 for all j and k
(All A × B interaction effects equal zero.)

The last hypothesis is unique to factorial designs. It states that
the joint effects (interaction) of treatments A and B are equal
to zero for all combinations of the two treatments. Two treat-
ments are said to interact if any difference in the dependent
variable for one treatment is different at two or more levels of
the other treatment.

Thirty girls are available to participate in the weight-loss ex-
periment and have been randomly assigned to the six treatment
combinations with the restriction that five girls are assigned to
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TABLE 1.2 Weight-Loss Data for the Diet (aj) and Exercise
Conditions (bk)

a1b1 a1b2 a2b1 a2b2 a3b1 a3b2

7 7 9 10 15 13
13 14 4 5 10 16
9 11 7 7 12 20
5 4 14 15 5 19
1 9 11 13 8 12

TABLE 1.3 Descriptive Summary of the Weight-Loss Data: Means
(Y) and Standard Deviations (S)

Mean
Standard

Diet a1 Diet a2 Diet a3 Deviation

No treadmill Y ·11 = 7.0 Y ·21 = 9.0 Y ·31 = 10.0 Y ··1 = 8.7
exercise (b1) S·11 = 4.0 S·21 = 3.4 S·31 = 3.4 S··1 = 3.8

Treadmill Y ·12 = 9.0 Y ·22 = 10.0 Y ·32 = 16.0 Y ··2 = 11.7
exercise (b2) S·12 = 3.4 S·22 = 3.7 S·32 = 3.2 S··2 = 4.6

Y ·1· = 8.0 Y ·2· = 9.5 Y ·3· = 13.0
S·1· = 3.8 S·2· = 3.6 S·3· = 4.4

TABLE 1.4 Analysis of Variance for the Weight-Loss Data

Source SS df MS F p

Treatment A (Diet) 131.6667 2 65.8334 4.25 .026
Treatment B (Exercise) 67.5000 1 67.5000 4.35 .048
A × B 35.0000 2 17.5000 1.13 .340
Within cell 372.0000 24 15.5000

Total 606.1667 29

each combination. The data, weight loss for each girl, are given
in Table 1.2. A descriptive summary of the data—sample
means and standard deviations—is given in Table 1.3.

An examination of Table 1.3 suggests that diet a3 resulted
in more weight loss than did the other diets and 20 minutes a
day on the treadmill was beneficial. The analysis of variance
for the weight-loss data is summarized in Table 1.4, which
shows that the null hypotheses for treatments A and B can be
rejected. We know that at least one contrast or difference
among the diet population means is not equal to zero. Also,
from Tables 1.3 and 1.4 we know that 20 minutes a day on
the treadmill resulted in greater weight loss than did the
no-exercise condition. The A × B interaction test is not
significant. When two treatments interact, a graph in which
treatment-combination population means are connected by
lines will always reveal at least two nonparallel lines for one
or more segments of the lines. The nonsignificant interac-
tion test in Table 1.4 tells us that there is no reason for be-
lieving that the population difference in weight loss between
the treadmill and no-treadmill conditions is different for the
three diets. If the interaction had been significant, our interest
would have shifted from interpreting the tests of treatments A
and B to understanding the nature of the interaction. Proce-
dures for interpreting interactions are described by Kirk
(1995, pp. 370–372, 377–389).

Statistical Significance Versus Practical Significance

The rejection of the null hypotheses for the diet and exercise
treatments is not very informative. We know in advance that

the hypotheses are false. As John Tukey (1991) wrote, “the
effects of A and B are always different—in some decimal
place—for any A and B. Thus asking ‘Are the effects differ-
ent?’ is foolish” (p. 100). Furthermore, rejection of a null
hypothesis tells us nothing about the size of the treatment
effects or whether they are important or large enough to be
useful—that is, their practical significance. In spite of numer-
ous criticisms of null hypothesis significance testing, re-
searchers continue to focus on null hypotheses and p values.
The focus should be on the data and on what the data tell the
researcher about the scientific hypothesis. This is not a new
idea. It was originally touched on by Karl Pearson in 1901
and more explicitly by Fisher in 1925. Fisher (1925) pro-
posed that researchers supplement null hypothesis signifi-
cance tests with measures of strength of association. Since
then over 40 supplementary measures of effect magnitude
have been proposed (Kirk, 1996). The majority of the mea-
sures fall into one of two categories: measures of strength of
association and measures of effect size (typically, standard-
ized mean differences). Hays (1963) introduced a measure
of strength of association that can assist a researcher in as-
sessing the importance or usefulness of a treatment: omega
squared, 
̂2

. Omega squared estimates the proportion of the
population variance in the dependent variable accounted
for by a treatment. For experiments with several treatments,
as in the weight-loss experiment, partial omega squared is
computed. For example, the proportion of variance in the
dependent variable, Y, accounted for by treatment A eliminat-
ing treatment B and the A × B interaction is denoted by

̂2

Y |A·B, AB . Similarly, 
̂2
Y |B·A, AB denotes the proportion of the

variance accounted for by treatment B eliminating treatment
A and the A × B interaction. For the weight-loss experiment,
the partial omega squareds for treatments A and B are,
respectively,


̂2
Y |A·B, AB = (p − 1)(FA − 1)

(p − 1)(FA − 1) + npq

= (3 − 1)(4.247 − 1)

(3 − 1)(4.247 − 1) + (5)(3)(2)
= 0.18
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̂2
Y |B·A, AB = (q − 1)(FB − 1)

(q − 1)(FB − 1) + npq

= (2 − 1)(4.376 − 1)

(2 − 1)(4.376 − 1) + (5)(3)(2)
= 0.10.

Following Cohen’s (1988, pp. 284–288) guidelines for inter-
preting omega squared, 

.010 is a small association

.059 is a medium association

.138 is a large association, 

we conclude that the diets accounted for a large proportion
of the population variance in weight loss. This is consistent
with our perception of the differences between the weight-
loss means for the three diets: girls on diet a3 lost five more
pounds than did those on a1. Certainly, any girl who is anx-
ious to lose weight would want to be on diet a3. Likewise, the
medium association between the exercise conditions and
weight loss is practically significant: Walking on the tread-
mill resulted in a mean weight loss of 3 pounds. Based on
Tukey’s HSD statistic, 95% confidence intervals for the three
pairwise contrasts among the diet means are

−5.9 < �·1 − �·2 < 2.9

−9.4 < �·1 − �·3 < −0.6

−7.9 < �·2 − �·3 < 0.9.

Because the confidence interval for �·1 − �·3 does not con-
tain 0, we can be confident that diet a3 is superior to diet a1.
Hedges’s (1981) effect size for the difference between diets
a1 and a3 is

g =
∣∣Y ··1 − Y ··2

∣∣
σ̂Pooled

= |8.0 − 13.0|
3.937

= 1.27,

a large effect.
Unfortunately, there is no statistic that measures practical

significance. The determination of whether results are impor-
tant or useful must be made by the researcher. However, con-
fidence intervals and measures of effect magnitude can help
the researcher make this decision. If our discipline is to
progress as it should, researchers must look beyond signifi-
cance tests and p values and focus on what their data tell them
about the phenomenon under investigation. For a fuller
discussion of this point, see Kirk (2001).

Alternative Models

Thus far, I have described the classical model equation for
several experimental designs. This model and associated

procedures for computing sums of squares assume that all
cell ns in multitreatment experiments are equal. If the cell ns
are not equal, some researchers use one of the following pro-
cedures to obtain approximate tests of null hypotheses: (a) es-
timate the missing observations under the assumption that the
treatments do not interact, (b) randomly set aside data to re-
duce all cell ns to the same size, and (c) use an unweighted-
means analysis. The latter approach consists of performing
an ANOVA on the cell means and then multiplying the sums
of squares by the harmonic mean of the cell ns. None of these
procedures is entirely satisfactory. Fortunately, exact solu-
tions to the unequal cell n problem exist. Two solutions that
are described next are based on a regression model and a cell
means model. Unlike the classical model approach, the
regression and cell means model approaches require a com-
puter and software for manipulating matrices. 

Suppose that halfway through the weight-loss experiment
the third participant in treatment combination a2b2 (Y322 = 7)

moved to another area of the country and dropped out of the
experiment. The loss of this participant resulted in unequal
cell ns. Cell a2b2 has four participants; the other cells have five
participants. The analysis of the weight-loss data using the
regression model is described next.

Regression Model

A qualitative regression model equation with h − 1 =
(p − 1) + (q − 1) + (p − 1)(q − 1) = 5 independent vari-
ables (Xi1, Xi2, . . . , Xi2 Xi3) and h = 6 parameters (�0, �1, . . . ,

�5),

Yi = �0 +
A effects︷ ︸︸ ︷

�1 Xi 1 + �2 Xi 2 +
B effects︷ ︸︸ ︷
�3 Xi 3 +

A×B effects︷ ︸︸ ︷
�4 Xi 1 Xi 3 + �5 Xi 2 Xi 3 + ei ,

can be formulated so that tests of selected parameters of the
regression model provide tests of null hypotheses for A, B,
and A × B in the weight-loss experiment. Tests of the fol-
lowing null hypotheses for this regression model are of par-
ticular interest:

H0: �1 = �2 = 0

H0: �3 = 0

H0: �4 = �5 = 0

In order for tests of these null hypotheses to provide tests
of ANOVA null hypotheses, it is necessary to establish a
correspondence between the five independent variables of
the regression model equation and (p − 1) + (q − 1) +
(p − 1)(q − 1) = 5 treatment and interaction effects of the
CRF-32 design. One way to establish this correspondence is
to code the independent variables of the regression model as
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TABLE 1.5 Data Vector, y, and X Matrix for the Regression Model

y
29×1

X
29×6

A B A×B

x0 x1 x2 x3 x1x3 x2x3

7 1 1 0 1 1 0

a1b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 1 1 0 1 1 0

7 1 1 0 −1 −1 0

a1b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9 1 1 0 −1 −1 0

9 1 0 1 1 0 1

a2b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

11 1 0 1 1 0 1

10 1 0 1 −1 0 −1

a2b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

13 1 0 1 −1 0 −1

15 1 −1 −1 1 −1 −1

a3b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

8 1 −1 −1 1 −1 −1

13 1 −1 −1 −1 1 1

a3b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

12 1 −1 −1 −1 1 1

�

� � �

�
�
�
�
�

follows:

Xi1 =
{ 1, if an observation is in a1

−1, if an observation is in a3

0, otherwise

Xi2 =
{ 1, if an observation is in a2

−1, if an observation is in a3

0, otherwise

Xi3 =
{

1, if an observation is in b1

−1, if an observation is in b2

Xi1 Xi3 =
{

product of coded values
associated with a1 and b1

Xi2 Xi3 =
{

product of coded values
associated with a2 and b1

This coding scheme, which is called effect coding, produced
the X matrix in Table 1.5. The y vector in Table 1.5 contains
weight-loss observations for the six treatment combinations.
The first column vector, x0, in the X matrix contains ones; the
second through the sixth column vectors contain coded
values for Xi1, Xi2, . . . , Xi2Xi3. To save space, only a portion
of the 29 rows of X and y are shown. As mentioned earlier,
observation Y322 is missing. Hence, each of the treatment
combinations contains five observations except for a2b2,
which contains four.

F statistics for testing hypotheses for selected regression
parameters are obtained by dividing a regression mean square,
MSR, by an error mean square, MSE, where MSR = SSR/dfreg

and MSE = SSE/dferror. The regression sum of squares, SSR,
that reflects the contribution of independent variables X1 and
X2 over and above the contribution of X3, X1X3, and X2X3 is
given by the difference between two error sums of squares,
SSE, as follows:

SSR(

A︷ ︸︸ ︷
X1 X2 |

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= SSE(

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3) – SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

An error sum of squares is given by 

SSE( ) = y′y − [(X′
i Xi )

−1(X′
i y)]′(X′

i y),

where the Xi matrix contains the first column, x0, of X and
the columns corresponding the independent variables con-
tained in SSE( ). For example, the X matrix used in comput-
ing SSE(X3 X1X3 X2X3) contains four columns: x0, x3, x1x3,
and x2x3. The regression sum of squares corresponding to
SSA in ANOVA is 

SSR(

A︷ ︸︸ ︷
X1 X2 |

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= SSE(

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3) – SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= 488.1538 − 360.7500 = 127.4038

with p − 1 = 2 degrees of freedom. This sum of squares
is used in testing the regression null hypothesis H0: �1 =
�2 = 0. Because of the correspondence between the regres-
sion and ANOVA parameters, a test of this regression null
hypothesis is equivalent to testing the ANOVA null hypothe-
sis for treatment A.

The regression sum of squares corresponding to SSB in
ANOVA is 

SSR(

B︷︸︸︷
X3 |

A︷ ︸︸ ︷
X1 X2

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= SSE(

A︷ ︸︸ ︷
X1 X2

A×B︷ ︸︸ ︷
X1 X3 X2 X3) – SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= 436.8000 − 360.7500 = 76.0500

with q − 1 = 1 degree of freedom.

schi_ch01.qxd  8/7/02  12:12 PM  Page 15



16 Experimental Design

The regression sum of squares corresponding to SSA × B
in ANOVA is

SSR(

A×B︷ ︸︸ ︷
X1 X3 X2 X3 |

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3)

= SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3) − SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3)

= 388.5385 − 360.7500 = 27.7885

with (p − 1)(q − 1) = 2 degrees of freedom.
The regression error sum of squares corresponding to

SSWCELL in ANOVA is

SSE(

A︷ ︸︸ ︷
X1 X2

B︷︸︸︷
X3

A×B︷ ︸︸ ︷
X1 X3 X2 X3) = 360.7500

with N − h = 29 − 6 = 23 degrees of freedom. 
The total sum of squares is

SSTO = y′y − y′JyN−1 = 595.7931,

where J is a 29 × 29 matrix of ones and N = 29, the number
of weight-loss observations. The total sum of squares has
N − 1 = 28 degrees of freedom. The analysis of the weight-
loss data is summarized in Table 1.6. The null hypotheses
�1 = �2 = 0 and �3 = 0 can be rejected. Hence, indepen-
dent variables X1 or X2 as well as X3 contribute to predicting
the dependent variable. As we see in the next section, the
F statistics in Table 1.6 are identical to the ANOVA F statis-
tics for the cell means model.

Cell Means Model

The classical model equation for a CRF-pq design,

Yi jk = � + �j + �k + (��)jk + �i( jk)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),

focuses on the grand mean, treatment effects, and interaction
effects. The cell means model equation for the CRF-pq design,

Yi jk = �jk + �i( jk)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),

focuses on cell means, where �jk denotes the mean in cell aj

and bk. Although I described the classical model first, this is
not the order in which the models evolved historically.
According to Urquhart, Weeks, and Henderson (1973),
Fisher’s early development of ANOVA was conceptualized
by his colleagues in terms of cell means. It was not until later
that cell means were given a linear structure in terms of the
grand mean and model effects, that is, �jk = � + �j + �k +
(��)jk . The classical model equation for a CRF-pq design
uses four parameters, � + �j + �k + (��)jk, to represent
one parameter, �jk . Because of this structure, the classical
model is overparameterized. For example, the expectation of
the classical model equation for the weight-loss experiment
contains 12 parameters: �, �1, �2, �3, �1, �2, (��)11, (��)12,
(��)21, (��)22, (��)31, (��)32. However, there are only six
cells means from which to estimate the 12 parameters. When
there are missing cells in multitreatment designs, a researcher
is faced with the question of which parameters or parametric
functions are estimable. For a discussion of this and other
problems, see Hocking (1985), Hocking and Speed (1975),
Searle (1987), and Timm (1975).

The cell means model avoids the problems associated with
overparameterization. A population mean can be estimated
for each cell that contains one or more observations. Thus,
the model is fully parameterized. Unlike the classical model,
the cell means model does not impose a structure on the
analysis of data. Consequently, the model can be used to test
hypotheses about any linear combination of population cell
means. It is up to the researcher to decide which tests are
meaningful or useful based on the original research hypothe-
ses, the way the experiment was conducted, and the data that
are available.

I will use the weight-loss data in Table 1.2 to illustrate the
computational procedures for the cell means model. Again,

TABLE 1.6 Analysis of Variance for the Weight-Loss Data (Observation Y322 is missing)

Source SS df MS F p

X1 X2 | X3 X1X3 X2X3 127.4038 p − 1 = 2 63.7019 4.06 .031
X3 | X1 X2 X1X3 X2X3 76.0500 q − 1 = 1 76.0500 4.85 .038
X1X3 X2X3 | X1 X2 X3 27.7885 (p − 1)(q − 1) = 2 13.8943 0.89 .426
Error 360.7500 N − h = 23 15.6848

Total 595.7931 N − 1 = 28
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we will assume that observation Y322 is missing. The null
hypothesis for treatment A is

H0: �1· = �2· = �3·.

An equivalent null hypothesis that is used with the cell means
model is

H0: �1· − �2· = 0
(1.1)

�2· − �3· = 0.

In terms of cell means, this hypothesis can be expressed as 

H0:
�11 + �12

2
− �21 + �22

2
= 0

(1.2)
�21 + �22

2
− �31 + �32

2
= 0,

where �1· = (�11 + �12)/2, �2· = (�21 + �22)/2, and so
on. In matrix notation, the null hypothesis is

C′
A

(p−1)× h
�

h×1
0

(p−1)×1

H0:
1

2

[
1 1 −1 −1 0 0
0 0 1 1 −1 −1

]



�11
�12
�21
�22
�31
�32


 =

[
0
0

]
,

where p is the number of levels of treatment A and h is the
number of cell means. In order for the null hypothesis
C′

A� = 0 to be testable, the C′
A matrix must be of full row

rank. This means that each row of C′
A must be linearly

independent of every other row. The maximum number of
such rows is p − 1, which is why it is necessary to express the
null hypothesis as Equation 1.1 or 1.2.An estimator of the null
hypothesis, C′

A� − 0, is incorporated in the formula for com-
puting a sum of squares. For example, the estimator appears
as C′

A�̂ − 0 in the formula for the treatment A sum of squares

SSA = (C′
A�̂ − 0)′[C′

A(X′X)−1CA]−1(C′
A�̂ − 0), (1.3)

where �̂ is a vector of sample cell means. Equation 1.3 sim-
plifies to

SSA = (C′
A�̂)′[C′

A(X′X)−1CA]−1(C′
A�̂)

because 0 is a vector of zeros. In the formula, C′
A is a

coefficient matrix that defines the null hypothesis, �̂ =
[(X′X)−1(X′y)] = [Y ·11, Y ·12 · · · Y ·23]′, and X is a struc-
tural matrix. The structural matrix for the weight-loss

experiment is given in Table 1.7. The structural matrix is
coded as follows:

x1 =
{

1, if an observation is in a1b1

0, otherwise

x2 =
{

1, if an observation is in a1b2

0, otherwise

x3 =
{

1, if an observation is in a2b1

0, otherwise

...

x6 =
{

1, if an observation is in a3b2

0, otherwise

For the weight-loss data, the sum of squares for treatment
A is

SSA = (C′
A�̂)′[C′

A(X′X)−1CA]−1(C′
A�̂) = 127.4038

with p − 1 = 2 degrees of freedom.
The null hypothesis for treatment B is

H0: �·1 = �·2.

TABLE 1.7 Data Vector, y, and X Matrix for the Cell Means Model

y
29×1

X
29×6

x1 x2 x3 x4 x5 x6

7 1 0 0 0 0 0

a1b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

1 1 0 0 0 0 0

7 0 1 0 0 0 0

a1b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

9 0 1 0 0 0 0

9 0 0 1 0 0 0

a2b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

11 0 0 1 0 0 0

10 0 0 0 1 0 0

a2b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

13 0 0 0 1 0 0

15 0 0 0 0 1 0

a3b1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

8 0 0 0 0 1 0

13 0 0 0 0 0 1

a3b2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

12 0 0 0 0 0 1

�
�
�
�
�
�
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Figure 1.9 Two interaction terms of the form �jk − �jk′− �j ′k + �j ′k′ are
obtained from the crossed lines by subtracting the two �ijs connected by a
dashed line from the two �ijs connected by a solid line. 

An equivalent null hypothesis that is used with the cell means
model is

H0: �·1 − �·2 = 0.

In terms of cell means, this hypothesis is expressed as 

H0:
�11 + �21 + �31

3
− �12 + �22 + �32

3
= 0.

In matrix notation, the null hypothesis is

C′
B

(q−1)×h
�

h×1
0

(q−1)×1

H0:
1

3
[ 1 −1 1 −1 1 −1 ]




�11
�12
�21
�22
�31
�32


= [0],

where q is the number of levels of treatment B and h is the
number of cell means. The sum of squares for treatment
B is

SSB = (C′
B�̂)′[C′

B(X′X)−1CB]−1(C′
B�̂) = 76.0500

with q − 1 = 1 degree of freedom.
The null hypothesis for the A × B interaction is 

H0: �jk − �jk ′ − �j ′k + �j ′k ′ = 0 for all j and k.

For the weight-loss data, the interaction null hypothesis is 

H0: �11 − �12 − �21 + �22 = 0

�21 − �22 − �31 + �32 = 0

The two rows of the null hypothesis correspond to the two
sets of means connected by crossed lines in Figure 1.9. In
matrix notation, the null hypothesis is 

C′
A×B

(p−1)(q−1)×h
�

h×1
0

(p−1)(q−1)×1

H0 :

[
1 −1 −1 1 0 0
0 0 1 −1 −1 1

]



�11
�12
�21
�22
�31
�32


 =

[
0
0

]
.

The sum of squares for the A × B interaction is

SSA × B = (C′
A×B�̂)′[C′

A′×B(X′X)−1CA×B]−1(C′
A×B�̂)

= 27.7885

with (p − 1)(q − 1) = 2 degrees of freedom. 
The within-cell sum of squares is 

SSWCELL = y′y − �̂′
(X′y) = 360.7500,

where y′ is the vector of weight-loss observations:
[7 13 9 . . . 12]. The within-cell sum of squares has N − h =
29 − 6 = 23 degrees of freedom.

The total sum of squares is 

SSTO = y′y − y′JyN−1 = 595.7931,

where J is a 29 × 29 matrix of ones and N = 29, the number
of weight-loss observations. The total sum of squares has
N − 1 = 28 degrees of freedom.

The analysis of the weight-loss data is summarized in
Table 1.8. The F statistics in Table 1.8 are identical to those
in Table 1.6, where the regression model was used.

The cell means model is extremely versatile. It can be
used when observations are missing and when entire cells
are missing. It allows a researcher to test hypotheses about
any linear combination of population cell means. It has an
important advantage over the regression model. With the cell
means model, there is never any ambiguity about the hypoth-
esis that is tested because an estimator of the null hypothesis,
C′�̂ − 0, appears in the formula for a sum of squares. Lack of
space prevents a discussion of the many other advantages of
the model; the reader is referred to Kirk (1995, pp. 289–301,
413–431). However, before leaving the subject, the model
will be used to test a null hypothesis for weighted means.

Occasionally, researchers collect data in which the sample
sizes are proportional to the population sizes. This might
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TABLE 1.8 Analysis of Variance for the Weight-Loss Data (Observation Y322 is missing)

Source SS df MS F p

Treatment A (Diet) 127.4038 p − 1 = 2 63.7019 4.06 .031
Treatment B (Exercise) 76.0500 q − 1 = 1 76.0500 4.85 .038
A × B 27.7885 (p − 1)(q − 1) = 2 13.8943 0.89 .426
Within cell 360.7500 N − h = 23 15.6848

Total 595.7931 N − 1 = 28

occur, for example, in survey research. When cell ns are
unequal, a researcher has a choice between computing un-
weighted means or weighted means. Unweighted means are
simple averages of cell means. These are the means that were
used in the previous analyses. Weighted means are weighted
averages of cell means in which the weights are the sample
cell sizes, njk . Consider again the weight-loss data in which
observation Y322 is missing. Unweighted and weighted sam-
ple means for treatment level a2 where observation Y322 is
missing are, respectively, 

�̂2· = �̂21 + �̂22

q
= 9.00 + 10.75

2
= 9.88

�̂2· = n21�̂21 + n22�̂22

nj ·
= 5(9.00) + 4(10.75)

9
= 9.78;

nj. is the number of observations in the jth level of treatment
A. The null hypothesis using weighted cell means for treat-
ment A is

H0:
n11�11 + n12�12

n1·
− n21�21 + n22�22

n2·
= 0

n21�21 + n22�22

n2·
− n31�31 + n32�32

n3·
= 0.

The coefficient matrix for computing SSA is

C′
A =

[ 5
10

5
10 − 5

9 − 4
9 0 0

0 0 5
9

4
9 − 5

10 − 5
10

]
,

where the entries in C′
A are ±njk/nj. and zero. The sum of

squares and mean square for treatment A are, respectively, 

SSA = (C′
A�̂)′[C′

A(X′X)−1CA]−1(C′
A�̂) = 128.2375

MSA = SSA/(p − 1) = 146.3556/(3 − 1) = 64.1188.

The F statistic and p value for treatment A are

F = MSA

MSWCELL
= 64.1188

15.6848
= 4.09 p = .030,

where MSWCELL is obtained from Table 1.8. The null hy-
pothesis is rejected. This is another example of the versatility
of the cell means model. A researcher can test hypotheses
about any linear combination of population cell means. 

In most research situations, sample sizes are not propor-
tional to population sizes. Unless a researcher has a com-
pelling reason to weight the sample means proportional to the
sample sizes, unweighted means should be used.

Randomized Block Factorial Design

Next I describe a factorial design that is constructed from two
randomized block designs. The design is called a randomized
block factorial design and is denoted by RBF-pq. The RBF-pq
design is obtained by combining the levels of an RB-p design
with those of an RB-q design so that each level of the RB-p
design appears once with each level of the RB-q design and
vice versa. The design uses the blocking technique described
in connection with an RB-p design to isolate variation attrib-
utable to a nuisance variable while simultaneously evaluating
two or more treatments and associated interactions.

In discussing the weight-loss experiment, I hypothesized
that ease of losing weight is related to the amount by which a
girl is overweight. If the hypothesis is correct, a researcher
can improve on the CRF-32 design by isolating this nuisance
variable. Suppose that instead of randomly assigning 30 girls
to the six treatment combinations in the diet experiment, the
researcher formed blocks of six girls such that the girls in a
block are overweight by about the same amount. One way to
form the blocks is to rank the girls from the least to the most
overweight. The six least overweight girls are assigned to
block 1. The next six girls are assigned to block 2 and so on.
In this example, five blocks of dependent samples can be
formed from the 30 participants. Once the girls have been
assigned to the blocks, the girls in each block are randomly
assigned to the six treatment combinations. The layout for
this experiment is shown in Figure 1.10.

The classical model equation for the experiment is

Yi jk = � + �i + �j + �k + (��)jk + (���)jki

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),
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20 Experimental Design

Figure 1.10 Layout for a two-treatment randomized block factorial design (RBF-32 design). Each block contains six girls who are overweight by
about the same amount. The girls in a block are randomly assigned to the six treatment combinations.

where

Yi jk is the weight loss for the participant in Blocki

and treatment combination ajbk.

� is the grand mean of the six weight-loss popula-
tion means. 

�i is the block effect for population i and is equal
to �i ·· − �. It reflects the effect of the nuisance
variable in Blocki.

�j is the treatment effect for population aj and is
equal to �· j · − �. It reflects the effect of diet aj.

�k is the treatment effect for population bk and is
equal to �··k − �. It reflects the effects of exer-
cise condition bk.

(��)jk is the interaction effect for populations aj and bk

and is equal to �· jk − �· j · − �··k − �.

(���)jki
is the residual error effect for treatment combi-
nation ajbk and Blocki.

The design enables a researcher to test four null hypotheses:

H0: �1·· = �2·· = · · · = �5··
(Block population means are equal.)

H0: �·1· = �·2· = �·3·
(Treatment A population means are equal.)

H0: �··1 = �··2
(Treatment B population means are equal.)

H0: �· jk − �· jk ′ − �· j ′k + �· j ′k ′ = 0 for all j and k
(All A × B interaction effects equal zero.)

The hypothesis that the block population means are equal
is of little interest because the blocks represent different
amounts by which the girls are overweight.

The data for the RBF-32 design are shown in Table 1.9.
The same data were analyzed earlier using a CRF-32
design. Each block in Table 1.9 contains six girls who at
the beginning of the experiment were overweight by about
the same amount. The ANOVA for these data is given in
Table 1.10. A comparison of Table 1.10 with Table 1.4 re-
veals that the RBF-32 design is more powerful than the
CRF-32 design. Consider, for example, treatment A. The
F statistic for the randomized block factorial design is
F(2, 20) = 8.09, p = .003; the F for the completely random-
ized factorial design is F(2, 24) = 4.25, p = .026. The ran-
domized block factorial design is more powerful because
the nuisance variable—the amount by which participants
are overweight— has been removed from the residual error
variance. A schematic partition of the total sum of squares
and degrees of freedom for the two designs is shown in
Figure 1.11. It is apparent from Figure 1.11 that the
SSRESIDUAL will always be smaller than the SSWCELL if

TABLE 1.9 Weight-Loss Data for the Diet (aj) and Exercise
Conditions (bk)

a1b1 a1b2 a2b1 a2b2 a3b1 a3b2

Block1 5 4 7 5 8 13
Block2 7 7 4 7 5 16
Block3 1 14 9 13 10 12
Block4 9 9 11 15 12 20
Block5 13 11 14 10 15 19

TABLE 1.10 Analysis of Variance for the Weight-Loss Data

Source SS df MS F p

Blocks 209.3333 4 52.3333 6.43 .002
Treatments 234.1667 5

Treatment A (Diet) 131.6667 2 65.8334 8.09 .003
Treatment B (Exercise) 67.5000 1 67.5000 8.30 .009
A × B 35.0000 2 17.5000 2.15 .142

Residual 162.6667 20 8.1333

Total 606.1667 29
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the SSBLOCKS is greater than zero. The larger the SS-
BLOCKS in a randomized block factorial design are, the
greater the reduction in the SSRESIDUAL.

FACTORIAL DESIGNS WITH CONFOUNDING

Split-Plot Factorial Design

As we have just seen, an important advantage of a random-
ized block factorial design relative to a completely random-
ized factorial design is greater power. However, if either p or
q in a two-treatment randomized block factorial design is
moderately large, the number of treatment combinations in
each block can be prohibitively large. For example, an RBF-
45 design has blocks of size 4 × 5 = 20. Obtaining blocks
with 20 matched participants or observing each participant
20 times is generally not feasible. In the late 1920s Ronald
A. Fisher and Frank Yates addressed the problem of prohib-
itively large block sizes by developing confounding schemes
in which only a portion of the treatment combinations in an
experiment are assigned to each block. Their work was
extended in the 1940s by David J. Finney (1945, 1946) and
Oscar Kempthorne (1947). One design that achieves a re-
duction in block size is the two-treatment split-plot factorial
design. The term split-plot comes from agricultural experi-

mentation in which the levels of, say, treatment A are
applied to relatively large plots of land—the whole plots.
The whole plots are then split or subdivided, and the levels
of treatment B are applied to the subplots within each whole
plot.

A two-treatment split-plot factorial design is constructed
by combining two building block designs: a completely ran-
domized design having p levels of treatment A and a random-
ized block design having q levels of treatment B. The assign-
ment of participants to the treatment combinations is carried
out in two stages. Consider the weight-loss experiment again.
Suppose that we ranked the 30 participants from least to most
overweight. The participants ranked 1 and 2 are assigned to
block 1, those ranked 3 and 4 are assigned to block 2, and
so on. This procedure produces 15 blocks each containing two
girls who are similar with respect to being overweight. In the
first stage of randomization the 15 blocks of girls are randomly
assigned to the three levels of treatment A with five blocks in
each level. In the second stage of randomization the two girls
in each block are randomly assigned to the two levels of treat-
ment B.An exception to this randomization procedure must be
made when treatment B is a temporal variable such as succes-
sive learning trials or periods of time. Trial 2, for example, can-
not occur before Trial 1.

The layout for a split-plot factorial design with three
levels of treatment A and two levels of treatment B is

SSWCELL � 372.0

pq(n � 1) � 24

SSWCELL � 372.0

pq(n � 1) � 24

SSRES � 162.7

(n � 1)(pq � 1) � 20

Figure 1.11 Schematic partition of the total sum of squares and degrees of freedom for CRF-32 and RBF-32 designs.
The shaded rectangles indicate the sums of squares that are used to compute the error variance for each design:
MSWCELL = SSWCELL/pq(n − 1) and MSRES = SSRES/(n − 1)(pq − 1). If the nuisance variable (SSBL) in the
RBF-32 design accounts for an appreciable portion of the total sum of squares, the design will have a smaller error vari-
ance and, hence, greater power than the CRF-32 design.
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Figure 1.12 Layout for a two-treatment split-plot factorial design (SPF-3·2 design). The 3n
blocks are randomly assigned to the p = 3 levels of treatment A with the restriction that n
blocks are assigned to each level of A. The n blocks assigned to each level of treatment A con-
stitute a group of blocks. In the second stage of randomization, the two matched participants
in a block are randomly assigned to the q = 2 levels of treatment B.

shown in Figure 1.12. Treatment A is called a between-blocks
treatment; B is a within-blocks treatment. The designation
for a two-treatment split-plot factorial design is SPF-p ·q .
The p preceding the dot denotes the number of levels of the
between-blocks treatment; the q after the dot denotes the
number of levels of the within-blocks treatment. Hence,
the design in Figure 1.12 is an SPF-3·2 design.

An RBF-32 design contains 3 × 2 = 6 treatment combi-
nations and has blocks of size six. The SPF-3·2 design in
Figure 1.12 contains the same six treatment combinations,
but the block size is only two. The advantage of the split-
plot factorial—smaller block size—is achieved by con-
founding groups of blocks with treatment A. Consider the
sample means Y ·1· , Y ·2· , and Y ·3· in Figure 1.12. The differ-
ences among the means reflect the differences among the
three groups as well as the differences among the three
levels of treatment A. To put it another way, we cannot tell
how much of the differences among the three sample means
is attributable to the differences among Group1, Group2, and
Group3 and how much is attributable to the differences
among treatments levels a1, a2, and a3. For this reason, the
three groups and treatment A are said to be completely
confounded.

The use of confounding to reduce the block size in an
SPF-p ·q design involves a tradeoff that needs to be made
explicit. The RBF-32 design uses the same error variance,
MSRESIDUAL, to test hypotheses for treatments A and B
and the A × B interaction. The two-treatment split-plot
factorial design, however, uses two error variances.
MSBLOCKS within A, denoted by MSBL(A), is used to test

treatment A; a different and usually much smaller error
variance, MSRESIDUAL, is used to test treatment B and the
A × B interaction. As a result, the power of the tests for B
and the A × B interaction is greater than that for A. Hence,
a split-plot factorial design is a good design choice if a
researcher is more interested in treatment B and the A × B
interaction than in treatment A. When both treatments and
the A × B interaction are of equal interest, a randomized
block factorial design is a better choice if the larger block
size is acceptable. If a large block size is not acceptable and
the researcher is primarily interested in treatments A and B,
an alternative design choice is the confounded factorial
design. This design, which is described later, achieves a
reduction in block size by confounding groups of blocks
with the A × B interaction. As a result, tests of treatments
A and B are more powerful than the test of the A × B
interaction.

Earlier, an RBF-32 design was used for the weight-loss
experiment because the researcher was interested in tests of
treatments A and B and the A × B interaction. For purposes
of comparison, I analyze the same weight-loss data as if
an SPF-3·2 design had been used even though, as we will
see, this is not a good design choice. But first I describe the
classical model equation for a two-treatment split-plot facto-
rial design.

The classical model equation for the weight-loss experi-
ment is

Yi jk = � + �j + �i( j) + �k + (��)jk + (��)ki( j)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),
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TABLE 1.11 Weight-Loss Data for the Diet (aj) and
Exercise Conditions (bk)

Treatment Treatment
Level b1 Level b2

Block1 5 4
Block2 7 7

Group1 a1 Block3 1 14
Block4 9 9
Block5 13 11

Block6 7 5
Block7 4 7

Group2 a2 Block8 9 13
Block9 11 15
Block10 14 10

Block11 8 13
Block12 5 16

Group3 a3 Block13 10 12
Block14 12 20
Block15 15 19

�
�
�

TABLE 1.12 Analysis of Variance for the Weight-Loss Data

Source SS df MS F p

1. Between blocks 373.6667 14
2. Treatment A (Diet) 131.6667 2 65.8334 [2�3]a 3.26 .074
3. Blocks within A 242.0000 12 20.1667
4. Within blocks 232.5000 15
5. Treatment B 67.5000 1 67.5000 [5�7] 6.23 .028

(Exercise)
6. A × B 35.0000 2 17.5000 [6�7] 1.62 .239
7. Residual 130.0000 12 10.8333

8. Total 606.1667 29

aThe fraction [2�3] indicates that the F statistic was obtained by dividing the
mean square in row two by the mean square in row three.

where

Yi jk is the weight loss for the participant in Blocki( j)

and treatment combination ajbk.

� is the grand mean of the six weight-loss popula-
tion means.

�j is the treatment effect for population aj and is
equal to �· j · − �. It reflects the effect of diet aj.

�i( j) is the block effect for population i and is equal to
�i j · − �· j ·. The block effect is nested within aj.

�k is the treatment effect for population bk and is
equal to �··k − �. It reflects the effects of exer-
cise condition bk.

(��)jk is the interaction effect for populations aj and bk

and is equal to �· jk − �· j · − �··k + �.

(��)ki( j)
is the residual error effect for treatment level bk

and Blocki( j) and is equal to Yi jk − � − �j −
�i( j) − �k − (��)jk .

The design enables a researcher to test three null hypotheses:

H0: �·1· = �·2· = �·3·
(Treatment A population means are equal.)

H0: �··1 = �··2
(Treatment B population means are equal.)

H0: �· jk − �· jk ′ − �· j ′k + �· j ′k ′ = 0 for all j and k
(All A × B interaction effects equal zero.)

The weight-loss data from Tables 1.2 and 1.9 are recasts in
the form of an SPF-3·2 design in Table 1.11. The ANOVA
for these data is given in Table 1.12. The null hypothesis for
treatment B can be rejected. However, the null hypothesis
for treatment A and the A × B interaction cannot be rejected.
The denominator of the F statistic for treatment A
[MSBL(A) = 20.1667] is almost twice as large as the de-
nominator for the tests of B and A × B (MSRES = 10.8333).

A feeling for the relative power of the test of treatment A for
the SPF-3·2, CRF-32, and RBF-32 designs can be obtained
by comparing their F statistics and p values:

Treatment A

SPF-3·2 design F = 131.6667/2

242.0000/12
= 65.8334

20.1667
= 3.26 p = .074

CRF-32 design F = 131.6667/2

372.0000/24
= 65.8334

15.5000
= 4.25 p = .026

RBF-32 design F = 131.6667/2

162.6667/20
= 65.8334

8.1333
= 8.09 p = .003

For testing treatment A, the SPF-3·2 design is the least
powerful. Clearly, if one’s primary interest is in the

effectiveness of the three diets, the SPF-3·2 design is a poor
choice. However, the SPF-3·2 design fares somewhat better
if one’s primary interests are in treatment B and the A × B
interaction:

Treatment B

SPF-3·2 design F = 67.5000/1

130.0000/12
= 67.5000

10.8333
= 6.23 p = .028

CRF-32 design F = 67.5000/1

372.0000/24
= 67.5000

15.5000
= 4.35 p = .048

RBF-32 design F = 67.5000/1

162.6667/20
= 67.5000

8.1333
= 8.30 p = .009

A × B interaction

SPF-3·2 design F = 35.0000/2

130.0000/12
= 17.5000

10.8333
= 1.62 p = .239

CRF-32 design F = 35.0000/2

372.0000/24
= 17.5000

15.5000
= 1.13 p = .340

RBF-32 design F = 35.0000/2

162.6667/20
= 17.5000

8.1333
= 2.15 p = .142
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The SPF-3·2 design is the first design I have described
that involves two different building block designs: a CR-p
design and an RB-q design. Also, it is the first design that
has two error variances: one for testing the between-blocks
effects and another for testing the within-blocks effects. A
weighted average of the two error variances is equal to
MSWCELL in a CRF-pq design, where the weights are the
degrees of freedom of the two error variances. This can be
shown using the mean squares from Tables 1.4 and 1.12:

p(n − 1)MSBL(A) + p(n − 1)(q − 1)MSRESIDUAL

p(n − 1) + p(n − 1)(q − 1)

= MSWCELL

3(5 − 1)20.1667 + 3(5 − 1)(2 − 1)10.8333

3(5 − 1) + 3(5 − 1)(2 − 1)
= 15.5000

A schematic partition of the total sum of squares and degrees
of freedom for the CRF-32 and SPF-3·2 designs is shown in
Figure 1.13.

Confounded Factorial Designs

As we have seen, an SPF-p·q design is not the best design
choice if a researcher’s primary interest is in testing treatments

A and B. The RBF-pq design is a better choice if blocks of size
p × q are acceptable. If this block size is too large, an alterna-
tive choice is a two-treatment confounded factorial design.
This design confounds an interaction with groups of blocks.
As a result, the test of the interaction is less powerful than tests
of treatments A and B. Confounded factorial designs are con-
structed from either a randomized block design or a Latin
square design. The designs are denoted by, respectively,
RBCF-pk and LSCF-pk, where RB and LS identify the build-
ing block design, C indicates that the interaction is completely
confounded with groups of blocks, F indicates a factorial de-
sign, and pk indicates that the design has k treatments each
having p levels. The simplest randomized block confounded
factorial design has two treatments with two levels each. Con-
sider the RBCF-22 design in Figure 1.14. The A × B interac-
tion is completely confounded with Group1 and Group2, as I
will now show. An interaction effect for treatments A and B
has the general form �jk − �jk ′ − �j ′k + �j ′k ′ . Let �i jkz

denote the population mean for the ith block, jth level of A,
kth level of B, and zth group. For the design in Figure 1.14,
the A × B interaction effect is

�·111 − �·122 − �·212 + �·221

or

(�·111 + �·221) − (�·122 + �·212).

SSWCELL � 372.0

pq(n � 1) � 24

SSBL(A) � 242.0

p(n � 1) � 12

SSRES � 130.0

p(n � 1)(q � 1) � 12

Figure 1.13 Schematic partition of the total sum of squares and degrees of freedom for CRF-32 and SPF-3·2 designs.
The shaded rectangles indicate the sums of squares that are used to compute the error variance for each design. The
SPF-3·2 design has two error variances: MSBL(A) = SSBL(A)/p(n − 1) is used to test treatment A; MSRES =
SSRES/p(n − 1)(q − 1) is used to test treatment B and the A × B interaction. The within-blocks error variance, MSRES,
is usually much smaller than the between-blocks error variance, MSBL(A). As a result, tests of treatment B and the A × B
interaction are more powerful than the test of treatment A.
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The difference between the effects of Group1 and Group2,

(�·111 − �·221) − (�·122 + �·212),

involves the same contrast among means as the A × B inter-
action effect. Hence, the two sets of effects are completely
confounded because we cannot determine how much of the
difference (�·111 + �·221) − (�·122 + �·212) is attributable to
the A × B interaction and how much is attributable to the
difference between Group1 and Group2.

The RBCF-pk design, like the SPF-p ·q design, has two
error variances: one for testing the between-blocks effects
and a different and usually much smaller error variance for
testing the within-blocks effects. In the RBCF-pk design,
treatments A and B are within-block treatments and are eval-
uated with greater power than the A × B interaction that is a
between-block component. Researchers need to understand
the tradeoff that is required when a treatment or interaction is
confounded with groups to reduce the size of blocks. The
power of the test of the confounded effects is generally less
than the power of tests of the unconfounded effects. Hence, if
possible, researchers should avoid confounding effects that
are the major focus of an experiment. Sometimes, however,
confounding is necessary to obtain a reasonable block size. If
the power of the confounded effects is not acceptable, the
power always can be increased by using a larger number of
blocks.

One of the characteristics of the designs that have been
described so far is that all of the treatment combinations
appear in the experiment. The fractional factorial design that
is described next does not share this characteristic. As the
name suggests, a fractional factorial design includes only a
fraction of the treatment combinations of a complete factorial
design.

Fractional Factorial Designs

Two kinds of confounding have been described thus far:
group-treatment confounding in an SPF-p ·q design and
group-interaction confounding in an RBCF-pk design. A third
form of confounding, treatment-interaction confounding, is
used in a fractional factorial design. This kind of confounding
reduces the number of treatment combinations that must be
included in a multitreatment experiment to some fraction—
1
2 , 1

3 , 1
4 , 1

8 , 1
9 , and so on—of the total number of treatment

combinations. A CRF-22222 design has 32 treatment combi-
nations. By using a 1

2 or 1
4 fractional factorial design, the

number of treatment combinations that must be included
in the experiment can be reduced to, respectively,
1
2 (32) = 16 or 1

4 (32) = 8.

The theory of fractional factorial designs was developed
for 2k and 3k designs by Finney (1945, 1946) and extended by
Kempthorne (1947) to designs of the type pk, where p is a
prime number that denotes the number of levels of each
treatment and k denotes the number of treatments. Fractional
factorial designs are most useful for pilot experiments and
exploratory research situations that permit follow-up experi-
ments to be performed. Thus, a large number of treatments,
typically six or more, can be investigated efficiently in an
initial experiment, with subsequent experiments designed to
focus on the most promising independent variables.

Fractional factorial designs have much in common with
confounded factorial designs. The latter designs achieve a
reduction in the number of treatment combinations that must
be included in a block. Fractional factorial designs achieve a
reduction in the number of treatment combinations in the ex-
periment. The reduction in the size of an experiment comes at
a price, however. Considerable ambiguity may exist in inter-
preting the results of an experiment when the design includes

Figure 1.14 Layout for a two-treatment randomized block confounded factorial design
(RBCF-22 design). A score in the ith block, jth level of treatment A, kth level of treatment B, and
zth group is denoted by Yijkz.
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only one half or one third of the treatment combinations.
Ambiguity occurs because two or more names can be given
to each sum of squares. For example, a sum of squares might
be attributed to the effects of treatment A and the BCDE in-
teraction. The two or more names given to the same sum of
squares are called aliases. In a one-half fractional factorial
design, all sums of squares have two aliases. In a one-third
fractional factorial design, all sums of squares have three
aliases, and so on. Treatments are customarily aliased with
higher-order interactions that are assumed to equal zero. This
helps to minimize but does not eliminate ambiguity in inter-
preting the outcome of an experiment.

Fractional factorial designs are constructed from com-
pletely randomized, randomized block, and Latin square de-
signs and denoted by, respectively, CRFF-pk–1, RBFF-pk–1,
and LSFF-pk. Let’s examine the designation CRFF-25–1. The
letters CR indicate that the building block design is a com-
pletely randomized design; FF indicates that it is a fractional
factorial design; and 25 indicates that each of the five treat-
ments has two levels. The −1 in 25−1 indicates that the design
is a one-half fraction of a complete 25 factorial design. This
follows because the designation for a one-half fraction of a 25

factorial design can be written as 1
2 25 = 2−125 = 25−1. A

one-fourth fraction of a 25 factorial design is denoted by
CRFF-p5−2 because 1

4 25 = 1
22 25 = 2−225 = 25−2.

To conserve space, I describe a small CRFF-23−1 design.
A fractional factorial design with only three treatments is un-
realistic, but the small size simplifies the presentation. The
layout for the design is shown in Figure 1.15. On close in-
spection of Figure 1.15, it is apparent that the CRFF-23−1 de-
sign contains the four treatment combinations of a CRF-22
design. For example, if we ignore treatment C, the design in
Figure 1.15 has the following combinations of treatments A
and B: a1b1, a1b2, a2b1, and a2b2. The correspondence be-
tween the treatment combinations of the CRF-22 and CRFF-
23−1 designs suggests a way to compute sums of squares for
the latter design—ignore treatment C and analyze the data as
if they came from a CRF-22 design.

Earlier, I observed that all sums of squares in a one-half
fractional factorial design have two aliases. It can be shown
(see Kirk, 1995, pp. 667–670) that the alias pattern for the
design in Figure 1.15 is as follows:

Alias (Name) Alias (Alternative name)

A B × C
B A × C

A × B C

The labels—treatment A and the B × C interaction—are two
names for the same source of variation. Similarly, B and the

A × C interaction are two names for another source of varia-
tion, as are A × B and C. Hence, the F statistics

F = MSA

MSWCELL
and F = MSB × C

MSWCELL

test the same sources of variation. If F = MSA/MSWCELL is
significant, a researcher does not know whether it is because
treatment A is significant, the B × C interaction is signifi-
cant, or both.

At this point you are probably wondering why anyone
would use such a design—after all, experiments are supposed
to help us resolve ambiguity, not create it. In defense of frac-
tional factorial designs, recall that they are typically used in
exploratory research situations where a researcher is inter-
ested in six or more treatments. In addition, it is customary to
limit all treatments to either two or three levels, thereby in-
creasing the likelihood that higher order interactions are
small relative to treatments and lower order interactions.
Under these conditions, if a source of variation labeled treat-
ment A and its alias, the BCDEF interaction, is significant, it
is reasonable to assume that the significance is probably due
to the treatment rather than the interaction.

Continuing the defense, a fractional factorial design can
dramatically decrease the number of treatment combinations
that must be run in an experiment. Consider a researcher
who is interested in determining whether any of six treat-
ments having two levels each is significant. An experiment
with six treatments and two participants assigned to each

Figure 1.15 Layout for a three-treatment completely randomized frac-
tional factorial design (CRFF-23−1 design). A score for the ith participant in
treatment combination ajbkcl is denoted by Yi jkl . The 4n participants are ran-
domly assigned to the treatment combinations with the restriction that n par-
ticipants are assigned to each combination. The mean for the participants in
the four groups is denoted by Y ·111, Y ·122, Y ·212, and Y ·221.
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treatment combination would have 64 combinations and re-
quire 2 × 64 = 128 participants. By using a one-fourth frac-
tional factorial design, CRFF-26−2 design, the researcher can
reduce the number of treatment combinations in the exper-
iment from 64 to 16 and the number of participants from
128 to 32. Suppose that the researcher ran the 16 treatment
combinations and found that none of the F statistics in the
fractional factorial design is significant. The researcher has
answered the research questions with one fourth of the effort.
On the other hand, suppose that F statistics for treatments C
and E and associated aliases are significant. The researcher
has eliminated four treatments (A, B, D, F), their aliases, and
certain other interactions from further consideration. The
researcher can then follow up with a small experiment to
determine which aliases are responsible for the significant
F statistics.

In summary, the main advantage of a fractional factorial
design is that it enables a researcher to investigate efficiently
a large number of treatments in an initial experiment, with
subsequent experiments designed to focus on the most
promising lines of investigation or to clarify the interpreta-
tion of the original analysis. Many researchers would con-
sider ambiguity in interpreting the outcome of the initial
experiment a small price to pay for the reduction in experi-
mental effort.

The description of confounding in a fractional factorial
design completes a cycle. I began the cycle by describing
group-treatment confounding in a split-plot factorial design.
I then described group-interaction confounding in a con-
founded factorial design, and, finally, treatment-interaction
confounding in a fractional factorial design. The three forms
of confounding achieve either a reduction in the size of a
block or the size of an experiment. As we have seen, con-
founding always involves a tradeoff. The price we pay for re-
ducing the size of a block or an experiment is lower power in
testing a treatment or interaction or ambiguity in interpreting
the outcome of an experiment. In the next section I describe
hierarchical designs in which one or more treatments are
nested.

HIERARCHICAL DESIGNS

All of the multitreatment designs that have been discussed
so far have had crossed treatments. Treatments A and B are
crossed, for example, if each level of treatment B appears
once with each level of treatment A and vice versa. Treatment
B is nested in treatment A if each level of treatment B appears
with only one level of treatment A. The nesting of treatment
B within treatment A is denoted by B(A) and is read “B within

A.” A hierarchical design has at least one nested treatment;
the remaining treatments are either nested or crossed.

Hierarchical Designs With One or
Two Nested Treatments

Hierarchical designs are constructed from completely
randomized or randomized block designs. A two-treatment
hierarchical design that is constructed from CR-p and CR-q
designs is denoted by CRH-pq(A), where pq(A) indicates that
the design has p levels of treatment A and q levels of
treatment B that are nested in treatment A. A comparison of
nested and crossed treatments for a CRH-24(A) design and a
CRF 22 design is shown in Figure 1.16. Experiments with
one or more nested treatments are well suited to research in
education, industry, and the behavioral and medical sciences.
Consider an example from education in which two ap-
proaches to introducing long division (treatments levels a1

and a2) are to be evaluated. Four schools (treatments levels
b1, . . . , b4) are randomly assigned to the two levels of treat-
ment A, and eight teachers (treatment levels c1, . . . , c8) are
randomly assigned to the four schools. Hence, this is a three-
treatment CRH-24(A)8(AB) design: schools, treatment B(A),
are nested in treatment A and teachers, treatment C(AB), are
nested in both A and B. A diagram of the nesting of treatments
for this design is shown in Figure 1.17.

A second example is from medical science. A researcher
wants to compare the efficacy of a new drug denoted by a1

with the currently used drug denoted by a2. Four hospitals,
treatment B(A), are available to participate in the experiment.
Because expensive equipment is needed to monitor the side
effects of the new drug, it was decided to use the new drug in
two of the four hospitals and the current drug in the other two
hospitals. The hospitals are randomly assigned to the drug
conditions with the restriction that two hospitals are assigned
to each drug. Patients are randomly assigned to the hospitals.
Panel A of Figure 1.16 illustrates the nesting of treatment B
within treatment A.

Figure 1.16 Comparison of designs with nested and crossed treatments. In
panel A, treatment B(A) is nested in treatment A because b1 and b2 appear
only with a1 while b3 and b4 appear only with a2. In panel B, treatments A and
B are crossed because each level of treatment B appears once and only once
with each level of treatment A and vice versa.
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As is often the case, the nested treatments in the drug and
educational examples resemble nuisance variables. The re-
searcher in the drug example probably would not conduct
the experiment just to find out whether the dependent vari-
able is different for the two hospitals assigned to drug a1 or
the hospitals assigned to a2. The important question for the
researcher is whether the new drug is more effective than the
currently used drug. Similarly, the educational researcher
wants to know whether one approach to teaching long divi-
sion is better than the other. The researcher might be inter-
ested in knowing whether some schools or teachers perform
better than others, but this is not the primary focus of the re-
search. The distinction between a treatment and a nuisance
variable is in the mind of the researcher—one researcher’s
nuisance variable can be another researcher’s treatment.

The classical model equation for the drug experiment is 

Yi jk = � + �j + �k( j) + �i( jk)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q),

where

Yi jk is an observation for participant i in treatment lev-
els aj and bk( j).

� is the grand mean of the population means.

�j is the treatment effect for population aj and is
equal to �j. − �. It reflects the effect of drug aj.

�k( j) is the treatment effect for population bk( j) and is
equal to �jk − �j.. It reflects the effects of hospi-
tal bk( j) that is nested in aj.

�i( jk) is the within-cell error effect associated with Yi jk

and is equal to Yi jk − � − �j − �k( j). It reflects
all effects not attributable to treatment levels aj

and bk( j).

Notice that because treatment B(A) is nested in treatment A,
the model equation does not contain an A × B interaction
term.

This design enables a researcher to test two null hypotheses:

H0: �1· = �2·
(Treatment A population means are equal.)

H0: �11 = �12 or �23 = �24

(Treatment B(A) population means are equal.)

If the second null hypothesis is rejected, the researcher can
conclude that the dependent variable is not the same for the
populations represented by hospitals b1 and b2, that the de-
pendent variable is not the same for the populations repre-
sented by hospitals b3 and b4, or both. However, the test of
treatment B(A) does not address the question of whether, for
example, �11 = �23 because hospitals b1 and b3 were as-
signed to different levels of treatment A.

Hierarchical Design With Crossed and
Nested Treatments

In the educational example, treatments B(A) and C(AB) were
both nested treatments. Hierarchical designs with three or
more treatments can have both nested and crossed treatments.
Consider the partial hierarchical design shown in Figure 1.18.
The classical model equation for this design is

Yi jkl = � + �j + �k + 	l(k) + (��)jk + (�	)jl(k) + �i( jkl)

(i = 1, . . . , n; j = 1, . . . , p; k = 1, . . . , q; l = 1, . . . , r),

where

Yi jkl is an observation for participant i in treatment
levels aj, bk, and cl(k).

� is the grand mean of the population means. 

�j is the treatment effect for population aj and is
equal to �j ·· − �.

�k is the treatment effect for population bk and is
equal to �·k· − �.

	l(k) is the treatment effect for population cl(k) and is
equal to �·kl − �·k·.

(��)jk is the interaction effect for populations aj and bk

and is equal to �jk· − �jk ′· − �j ′k· + �j ′k ′·.
(�	)jl(k) is the interaction effect for populations aj and

cl(k) and is equal to �jkl − �jkl ′ − �j ′kl + �j ′kl ′ .

�i( jkl) is the within-cell error effect associated with
Yi jkl and is equal to Yi jkl − � − �j − �k−
	l(k) − (��)jk − (�	)jl(k).

Figure 1.17 Diagram of a three-treatment completely randomized hierar-
chical design (CRH-24(A)8(AB) design). The four schools, b1, . . . , b4, are
nested in the two approaches to introducing long division, treatment A. The
eight teachers, c1, . . . , c8, are nested in the schools and teaching approaches.
Students are randomly assigned to the pq( j)r( jk) = (2)(2)(2) = 8 treatment
combinations with the restriction that n students are assigned to each
combination.

schi_ch01.qxd  8/7/02  12:13 PM  Page 28



Experimental Designs with a Covariate 29

Figure 1.18 Diagram of a three-treatment completely randomized partial
hierarchical design (CRPH-pqr(B) design). The letter P in the designation
stands for “partial” and indicates that not all of the treatments are nested. In
this example, treatments A and B are crossed; treatment C(B) is nested in
treatment B because c1 and c2 appear only with b1 while c3 and c4 appear only
with b2. Treatment C(B) is crossed with treatment A because each level of
treatment C(B) appears once and only once with each level of treatment A
and vice versa.

Notice that because treatment C(B) is nested in treatment B,
the model equation does not contain B × C and A × B × C
interaction terms.

This design enables a researcher to test five null
hypotheses:

H0: �1·· = �2··
(Treatment A population means are equal.)

H0: �·1· = �·2·
(Treatment B population means are equal.)

H0: �·11 = �·12 or �·23 = �·24

(Treatment C(B) population means are equal.)

H0: �jk − �jk′· − �j ′k· + �j ′k ′· = 0 for all j and k
(All A × B interaction effects equal zero.)

H0: �jkl − �jkl ′ − �j ′kl + �j ′kl ′ = 0 for all j, k, and l
(All A × C(B) interaction effects equal zero.)

If the last null hypothesis is rejected, the researcher knows
that treatments A and C interact at one or more levels of treat-
ment B.

Lack of space prevents me from describing other partial
hierarchical designs with different combinations of crossed
and nested treatments. The interested reader is referred
to the extensive treatment of these designs in Kirk (1995,
chap. 11).

EXPERIMENTAL DESIGNS WITH A COVARIATE

The emphasis so far has been on designs that use experimen-
tal control to reduce error variance and minimize the effects
of nuisance variables. Experimental control can take vari-
ous forms such as random assignment of participants to treat-
ment levels, stratification of participants into homogeneous

blocks, and refinement of techniques for measuring a depen-
dent variable. In this section, I describe an alternative ap-
proach to reducing error variance and minimizing the effects
of nuisance variables. The approach is called analysis of co-
variance (ANCOVA) and combines regression analysis and
analysis of variance.

Analysis of covariance involves measuring one or more
concomitant variables (also called covariates) in addition to
the dependent variable. The concomitant variable represents
a source of variation that was not controlled in the experi-
ment and one that is believed to affect the dependent variable.
Analysis of covariance enables a researcher to (a) remove
that portion of the dependent-variable error variance that is
predictable from a knowledge of the concomitant variable,
thereby increasing power, and (b) adjust the dependent vari-
able so that it is free of the linear effects attributable to the
concomitant variable, thereby reducing bias.

Consider an experiment with two treatment levels a1 and a2.
The dependent variable is denoted by Yi j , the concomitant
variable by Xi j . The relationship between X and Y for a1 and a2

might look like that shown in Figure 1.19. Each participant in
the experiment contributes one data point to the figure as de-
termined by his or her Xi j and Yi j scores. The points form two
scatter plots—one for each treatment level. These scatter plots
are represented in Figure 1.19 by ellipses. Through each ellip-
sis a line has been drawn representing the regression of Y on X.
In the typical ANCOVA model it is assumed that each regres-
sion line is a straight line and that the lines have the same slope.
The size of the error variance in ANOVA is determined by the
dispersion of the marginal distributions (see Figure 1.19).
The size of the error variance inANCOVAis determined by the

Figure 1.19 Scatter plots showing the relationship between the dependent
variable, Y, and concomitant variable, X, for the two treatment levels. The
size of the error variance in ANOVA is determined by the dispersion of the
marginal distributions. The size of the error variance in ANCOVA is deter-
mined by the dispersion of the conditional distributions. The higher the cor-
relation between X and Y is, the greater the reduction in the error variance
due to using analysis of covariance.
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dispersion of the conditional distributions (see Figure 1.19).
The higher the correlation between X and Y, in general, the
narrower are the ellipses and the greater is the reduction in the
error variance due to using analysis of covariance.

Figure 1.19 depicts the case in which the concomitant-
variable means, X ·1 and X ·2, are equal. If participants are
randomly assigned to treatment levels, in the long run the con-
comitant-variable means should be equal. However, if random
assignment is not used, differences among the means can be
sizable, as in Figure 1.20. This figure illustrates what happens
to the dependent variable means when they are adjusted for dif-
ferences in the concomitant-variable means. In panels A and B
the absolute difference between adjusted dependent-variable
means |Y adj·1 − Y adj·2| is smaller than that between unadjusted
means |Y ·1 − Y ·2|. In panel C the absolute difference between
adjusted means is larger than that between unadjusted means.

Analysis of covariance is often used in three kinds of
research situations. One situation involves the use of intact
groups with unequal concomitant-variable means and is com-
mon in educational and industrial research. Analysis of
covariance statistically equates the intact groups so that their
concomitant variable means are equal. Unfortunately, a re-
searcher can never be sure that the concomitant variable used
for the adjustment represents the only nuisance variable or
the most important nuisance variable on which the intact

groups differ. Random assignment is the best safeguard
against unanticipated nuisance variables. In the long run,
over many replications of an experiment, random assignment
will result in groups that are, at the time of assignment, simi-
lar on all nuisance variables.

A second situation in which analysis of covariance is often
used is when it becomes apparent that even though random
assignment was used, the participants were not equivalent on
some relevant variable at the beginning of the experiment.
For example, in an experiment designed to evaluate the ef-
fects of different drugs on stimulus generalization in rats, the
researcher might discover that the amount of stimulus gener-
alization is related to the number of trials required to estab-
lish a stable bar-pressing response. Analysis of covariance
can be used to adjust the generalization scores for differences
among the groups in learning ability.

Analysis of covariance is useful in yet another research
situation in which differences in a relevant nuisance variable
occur during the course of an experiment. Consider the ex-
periment to evaluate two approaches toward introducing long
division that was described earlier. It is likely that the daily
schedules of the eight classrooms provided more study peri-
ods for students in some classes than in others. It would be
difficult to control experimentally the amount of time avail-
able for studying long division. However, each student could

Figure 1.20 Analysis of covariance adjusts the concomitant-variable means, X ·1 and X ·2, so that they equal the
concomitant-variable grand mean, X ··. When the concomitant-variable means differ, the absolute difference between ad-
justed means for the dependent variable, |Y adj·1 − Y adj·2|, can be less than that between unadjusted means, |Y ·1 − Y ·2|,
as in panels A and B, or larger, as in panel C. 
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record the amount of time spent studying long division. If test
scores on long division were related to amount of study time,
analysis of covariance could be used to adjust the scores for
differences in this nuisance variable.

Statistical control and experimental control are not mutu-
ally exclusive approaches for reducing error variance and
minimizing the effects of nuisance variables. It may be con-
venient to control some variables by experimental control
and others by statistical control. In general, experimental
control involves fewer assumptions than does statistical
control. However, experimental control requires more infor-
mation about the participants before beginning an experi-
ment. Once data collection has begun, it is too late to assign
participants randomly to treatment levels or form blocks of
dependent participants. The advantage of statistical control is
that it can be used after data collection has begun. Its disad-
vantage is that it involves a number of assumptions such as a
linear relationship between the dependent and concomitant
variables and equal within-groups regression coefficients that
may prove untenable in a particular experiment.

In this chapter I have given a short introduction to those
experimental designs that are potentially the most useful in
the behavioral and social sciences. For a full discussion of the
designs, the reader is referred to the many excellent books on
experimental design: Bogartz (1994), Cobb (1998), Harris
(1994), Keppel (1991), Kirk (1995), Maxwell and Delaney
(1990), and Winer, Brown, and Michels (1991). Experimental
designs differ in a number of ways: (a) randomization proce-
dures, (b) number of treatments, (c) use of independent sam-
ples or dependent samples with blocking, (d) use of crossed
and nested treatments, (e) presence of confounding, and (f)
use of covariates. Researchers have many design decisions to
make. I have tried to make the researcher’s task easier by em-
phasizing two related themes throughout the chapter. First,
complex designs are constructed from three simple building
block designs. Second, complex designs share similar lay-
outs, randomization procedures, and assumptions with their
building block designs.
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Quantitative research methods in the twentieth century were
marked by the explosive growth of small-sample statistics
and the expansion of breadth and complexity of models for
statistical hypothesis testing. The close of the century, how-
ever, was marked primarily with a frustration over the limita-
tions of common statistical methods and frustration with their
inappropriate or ineffective use (Cohen, 1994). Responding
to the confusion that emerged in the psychological commu-
nity, the American Psychological Association convened a
task force on statistical inference that published a report
(Wilkinson & Task Force, 1999) recommending best prac-
tices in the area of method, results, and discussion. Among
the recommendations in the area of conducting and reporting
results, the task force suggested researchers undertake a clus-
ter of activities to supplement common statistical test proce-
dures with the aim of developing a detailed knowledge of the
data, an intimacy with the many layers of patterns that occur,
and a knowledge of the implications of these patterns for sub-
sequent testing.

Unbeknownst to many psychological researchers, the gen-
eral goals recommended by the task force, as well as specific

graphical techniques and conceptual frameworks mentioned
in the report, are rooted in the quantitative tradition of ex-
ploratory data analysis (EDA). Exploratory data analysis is a
well-established tradition based primarily on the philosophi-
cal and methodological work of John Tukey. Although Tukey
is clearly recognized as the father of EDA in statistical cir-
cles, most psychologists are familiar only with small aspects
of his work, such as that in the area of multiple-comparison
procedures. Although Tukey worked in mathematical statis-
tics throughout his life, the middle of his career brought
dissatisfaction with the value of many statistical tools for un-
derstanding the complexities of real-world data. Moreover,
Tukey fought what he perceived as an imbalance in efforts
aimed at understanding data from a hypothesis-testing or
confirmatory data analysis (CDA) mode while neglecting
techniques that would aid in understanding of data more
broadly. To fill this gap and promote service to the scientific
community, as well as balance to the statistical community,
Tukey developed and implemented the processes and philos-
ophy of exploratory data analysis to be discussed shortly. To
introduce the reader to this tradition, the chapter is divided
into four parts. First, the background, rationale, and philoso-
phy of EDA are presented. Second, a brief tour of the EDA
toolbox is presented. The third section discusses computer
software and future directions for EDA. The chapter ends
with a summary and conclusion.

This work was completed while Dr. Behrens was on leave from
Arizona State University, Division of Psychology in Education. He
would like to thank the staff and administration of the department
for their support.
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HISTORY, RATIONALE, AND PHILOSOPHY
OF EDA

John Tukey and the Origins of EDA

The tradition of EDA was begun and nurtured by John Tukey
and his students through his many years at Princeton Univer-
sity and Bell Laboratories. As a young academic, Tukey was
a prodigious author and formidable mathematical statistician.
He received his PhD in mathematics from Princeton at the
age of 25 and at 35 reached the rank of full professor at the
same institution (Brillinger, Fernholz, & Morgenthaler,
1997). A sense of Tukey’s breadth and impact can be gleaned
from examination of the eight volumes of his collected
works. Volumes 1 and 2 (Brillinger, 1984, 1985) highlight his
contributions to time-series analysis (especially through
spectral decomposition). Volumes 3 (Jones, 1986a) and 4
(Jones, 1986b) address Philosophy and Principles of Data
Analysis, and volume 5 is devoted to graphics (Cleveland,
1988). Volume 6 (Mallows, 1990) covers miscellaneous
mathematical statistics, whereas volumes 7 (Cox, 1992) and
8 (Braun, 1994) cover factorial and analysis of variance
(ANOVA) and multiple comparisons, respectively. More
may appear at a future date because Tukey remained an ac-
tive researcher and writer until his death in July of 2000.

In addition to the many papers in his collected works,
Tukey authored and coauthored numerous books. In the EDA
literature his central work is Exploratory Data Analysis
(Tukey, 1977), whereas Data Analysis and Regression: A
Second Course (Mosteller & Tukey, 1977) is equally com-
pelling. Three volumes edited by Hoaglin, Mosteller, and
Tukey (1983, 1985, 1991) complete the foundational corpus
of EDA. Brillinger, Fernholz, and Morgenthaler (1997) pro-
vide a Festschrift for Tukey based on writings of his students
at the time of his 80th birthday in 1995. 

As Tukey became increasingly involved in the application
of statistics to solve real-world problems, he developed his
own tradition of values and themes that emphasized flexibil-
ity, exploration, and a deep connection to scientific goals and
methods. He referred to his work as data analysis rather than
statistics because he believed the appropriate scientific work
associated with data was often much broader than the work
that was followed by the traditional statistical community.
Tukey did not seek to supplant statistics; rather, he sought
to supplement traditional statistics by restoring balance to
what he considered an extreme emphasis on hypothesis test-
ing at the expense of the use of a broader set of tools and
conceptualizations.

Although most psychologists are unaware of the specific
proposals Tukey made for EDA (but see Tukey, 1969;

Behrens, 1997a, 2000), the work of EDA is slowly filtering
into daily practice through software packages and through
the impact of a generation of statisticians who have been
trained under the influence of Tukey and his students. For ex-
ample, although highly graphical data analysis was rare in
the 1970s, the current reliance on computer display screens
has led statistical graphics to hold a central role in data
analysis as recommended in common software packages
(e.g., Norusis, 2000; Wilkinson, 2001). Tukey’s work in-
spired entire paradigms of statistical methods, including re-
gression graphics (Cook & Weisberg, 1994), robustness
studies (e.g. Wilcox, 1997, 2001), and computer graphics for
statistical use (Scott, 1992; Wilkinson, 1999).

Despite these advances in the application of EDA-like
technique, statistical training remains largely focused on spe-
cific techniques with less than optimal emphasis on philo-
sophical and heuristic foundations (cf. Aiken, West, Sechrest,
& Reno, 1990). To prepare the reader for appropriate appli-
cation of the techniques discussed later, we first turn to a
treatment of the logical and philosophical foundations of
EDA.

Rationale and General Tenets

It’s all about the World

Exploratory data analysis is an approach to learning from
data (Tukey & Wilk, 1966/1986) aimed at understanding the
world and aiding the scientific process. Although these may
not be “fighting words” among psychologists and psycholog-
ical methodologists, they were for Tukey as he first raised his
concerns with the statistical community.

Tukey’s emphasis on the scientific context of data analysis
leads to a view of data analysis as a scientific endeavor using
the tools of mathematics, rather than a mathematical en-
deavor that may have value for some real-world applications.
A number of changes to standard statistical practice are im-
plied in this view. First, the statistician cannot serve as an
aloof high priest who swoops down to sanctify a set of proce-
dures and decisions (Salsburg, 1985). Data analysts and
scientists (not mutually exclusive categories) must work in-
teractively in a cyclical process of pattern extraction (mathe-
matics) and pattern interpretation (science). Neither can
function without the other. This view has implications for the
organization of academic departments and organization of
graduate training.

Second, because the effort of data analysis is to under-
stand data in all circumstances, the role of probability models
relates primarily to confirmatory aspects of the scientific
process. This leaves a wide swath of the scientific processes
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for which researchers are left to use nonprobabilistic methods
such as statistical graphics. This emphasis is based on the
fact that in many stages of research the working questions are
not probabilistic. When probabilistic methods are applied,
there are layers of assumptions which themselves need to be
assessed in nonprobabilistic ways to avoid an unending loop
of assumptions. Contrasting classical statistics with data
analysis, Tukey (1972/1986a) wrote, “I shall stick to ‘data
analysis’ in part to indicate that we can take probability seri-
ously, or leave it alone, as may from time to time be appro-
priate or necessary” (p. 755).

The probabilistic approaches taken in most confirmatory
work may lead to different practices than the nonprobabilistic
approaches that are more common to working in the ex-
ploratory mode. For example, a number of researchers have
looked at the issue of deleting outliers from reaction time
data. From a probabilistic view this problem is addressed by
simulating distributions of numbers that approximate the
shape commonly found in reaction time data. Next, extreme
values are omitted using various rules, and observation is
made of the impact of such adjustments on long-run decision
making in the Monte Carlo setting. As one would expect in
such simulations, estimates are often biased, leading the re-
searcher to conclude that deleting outliers is inappropriate.

Working from the exploratory point of view, the data ana-
lyst would bring to bear the scientific knowledge he or she
has about the empirical generating process of the data—for
example, the psychological process of comparison. Using
this as the primary guideline, outliers are considered observa-
tions whose value is such that it is likely they are the result of
nonexperimental attributes. If common sense and previous
data and theory suggest the reaction times should be less than
3 s, extreme values such as 6 or 10 s are most likely the result
of other generating processes such as distraction or lack of
compliance. If this is the case, then a failure to exclude
extreme values is itself a form of biasing and is deemed
inappropriate.

These divergent conclusions arise from approaching the
problem with different assumptions. From a probabilistic
view, the question is likely to be formulated as If the underly-
ing process has a distribution of X and I exclude data from it,
is the result biased in the long run? On the other hand, the
exploratory question addressed is Given that I do not know
the underlying distribution is X, what do I know about the
processes that may help me decide if extreme values are from
the same process as the rest of the data? In this way EDA
emphasizes the importance of bringing relevant scientific
knowledge to bear in the data-analytic situation rather than
depending solely on probabilistic conceptualizations of the
phenomenon under study. As with all techniques, EDA does

not reject probabilistic approaches, but rather considers them
within a larger context of the many tools and ideas that bear
on scientific work.

A central idea in the EDA corpus is the goal of developing
a detailed and accurate mental model that provides a sense of
intimacy with the nuances of the data. Such an experience as-
sists both in constructing scientific hypotheses and building
mathematical representations that allow more formal confir-
matory methods to be used later. All of these issues argue
against the routine use of statistical procedures and the lock-
step application of decision rules. Tukey (1969) saw the com-
monplace use of statistical tests to prove “truth” as a social
process of “sanctification.” In this approach, the codifying of
specific actions to be undertaken on all data obscures the
individual nature of the data, removes the analyst from
the details of the world held in the data, and impedes the de-
velopment of intimacy and the construction of a detailed
mental model of the world.

Consider the story of the researcher who sought to analyze
the ratings of university faculty of various ethnicities accord-
ing to the ethnicities of the students providing the ratings. To
make sure the job was done properly, the researcher con-
tacted the statistical consulting center and spoke with the di-
rector. After a brief description of the problem, it was clear to
the consultant that this situation required a series of two-way
ANOVAs of rating value across levels of teacher ethnicity
and student ethnicity. A graduate student was assigned to
compute the ANOVAs using commonly available statistical
software, and both the researcher and consultant were quite
pleased with the resulting list of p values and binary signifi-
cance decisions.

In this true story, as in many, it was unfortunate that the
discussion focused primarily on choosing a statistical model
(ANOVA) to fit the design, rather than being a balanced dis-
cussion of the need for a broader understanding of the data.
When the researcher later sought help in answering a re-
viewer’s question, a simple calculation of cell frequencies
revealed that the scarcity of students and faculty in many mi-
nority groups led to a situation in which almost half of the
cells in the analysis were empty. In addition, many cells that
were not empty had remarkably few data points to estimate
their means. In many ways the original conclusions from the
analysis were more incorrect than correct.

The error in this situation occurred because a series of un-
spoken assumptions propagated throughout the data analysis
processes. Both the researcher and the director were con-
cerned primarily with the testing of hypotheses rather than
with developing a rich understanding of the data. Because of
this, the statistician failed to consider some basic assump-
tions (such as the availability of data) and focused too much
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on an abstract conceptualization of the design. It was
such lockstep application of general rules (factorial means
between groups implies ANOVA) that Tukey sought to
discourage.

Unfortunately, it is not unusual that authors of papers pub-
lished in refereed journals neglect detailed examination of
data. This leads to inferior mental models of the phenomenon
and impedes the necessary assessment of whether the data
conform to parametric test assumptions. For example, after
reviewing more than 400 large data sets, Micceri (1989)
found that the great majority of data collected in behavioral
sciences do not follow univariate normal distributions.
Breckler (1990) reviewed 72 articles in personality and social
psychology journals and found that only 19% acknowledged
the assumption of multivariate normality, and fewer than
10% considered whether this assumption had been met. Re-
viewing articles in 17 journals, Keselman et al. (1998) found
that researchers rarely verified that statistical assumptions
were satisfied and typically used analyses that were nonro-
bust to assumption violations. These authors noted that many
of these types of problems could be detected by the applica-
tion of techniques from the EDA tradition.

Detective Work and the Continuum of Method

In working to learn about the world, EDA holds several com-
plementary goals: to find the unexpected, to avoid being
fooled, and to develop rich descriptions. The primary analogy
used by Tukey to communicate these goals is that of the data
analyst as detective. Detective work is held up as a valuable
analogy because the process is essentially exploratory and
interactive; it involves an iterative process of generating
hypotheses and looking for fit between the facts and the ten-
tative theory or theories; and the process is messy and replic-
able only at the heuristic level. Detective work also provides
a solid analogy for EDA because it is essentially a bottom-up
process of hypothesis formulation and data collection.

Tukey (e.g., 1972/1986a, 1973/1986b) did not consider
methodology as a bifurcation between EDA and CDA, but
considered quantitative methods to be applied in stages of
exploratory, rough confirmatory, and confirmatory data
analyses. In this view EDA was aimed at the initial goals of
hypothesis generation and pattern detection, following the
detective analogy. Rough CDA is sometimes equated with
null-hypothesis significance testing or the use of estimation
procedures such as confidence intervals with the aim to an-
swer the question, “With what accuracy are the appearances
already found to be believed?” (Tukey, 1973/1986b, p. 794).
With regard to strict confirmatory analysis Tukey notes,
“When the results of the second stage is marginal, we need a

third stage. . . . It is at this stage . . . that we require our best
statistical techniques” (Tukey, 1973/1986b, p. 795). As a re-
searcher moves through these stages, he or she moves from
hypothesis generation to hypothesis testing and from pattern
identification to pattern confirmation. 

Whereas CDA is more ambitious in developing proba-
bilistic assessments of theoretical claims, the flexibility and
bottom-up nature of EDA allows for broader application. In
many cases an appropriate model of parametric statistics may
be unavailable for full CDA, while the simpler techniques of
EDA may be of use. Under such a circumstance the maxim
should be followed that “[f]ar better an approximate answer
to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made
precise” (Tukey, 1962/1986c, p. 407).

Summarization and the Loss of Information

Behrens and Smith (1996) characterize the nature of data
analysis as being oriented toward generating summary and
extracting gist. When faced with numerous pieces of data, the
goal of the analyst is to construct a terse yet rich mathemati-
cal description of the data. This is analogous to the summa-
rization process that occurs in natural language processing.
After reading a long book, one does not recall every individ-
ual word, but rather remembers major themes and prototypi-
cal events. In a similar way, the data analyst and research
consumer want to come away with a useable and parsimo-
nious description rather than a long list of data. An essential
concept associated with summarization is that every sum-
mary represents a loss of information. When some aspects of
data are brought to the foreground, other aspects are sent to
the background.

Algebra Lies, So You Need Graphics

Anscombe (1973) described a data set of numbers, each mea-
sured on the scales of x and y. He described the data as hav-
ing a mean of 9 and standard deviation of 3.3 in x and a mean
of 7.5 and standard deviation of 2.03 in y. The data were fit by
ordinary least squares (OLS) criteria to have a slope of .5, an
intercept of 3, and a correlation of .83. This allows the terse
and easily interpretable summary for the data in the form
y = 3 + .5(x) + error. As a thought experiment, we encour-
age the reader to try to visualize a scatter plot that depicts
such data.

If you imagined a scatter plot similar to that shown in
Figure 2.1, then you are quite correct, because this represents
the data Anscombe provided that met the descriptive statis-
tics we described previously. This, however, is only a small
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Figure 2.1 Plot of bivariate normal version of Anscombe data.

part of the story, for if you imagined the data to have the
shape shown in panel A of Figure 2.2 then you are also cor-
rect. If you imagined the pattern in panels B or C of Figure
2.2, you are also correct because all the patterns shown in
Figures 2.1 and 2.2 conform to the same algebraic summary
statistics given by Anscombe. Although this example speaks
to the weakness of overdependence on algebraic representa-
tions alone, it points to the larger issue that all summarization
leads to a loss of information.

Graphics Lie, So You Need Algebra 

Although graphics are a mainstay of EDA, graphics are not
immune from this general principle. Consider the follow-
ing data set: 1,1,2,2,3,3,4,4,5,5,5,5,6,6,6,6,6,6,7,7,7,7,8,8,
9,9,10,10,11,11. Entering this data into a standard statistics
package produces the display presented in Figure 2.3. As the
reader can see, a slight skew is evident that may not be de-
tected in the listing of numbers themselves. It is important to
consider the computational model that underlies this graphic.
It consists of a mapping of bar height to frequency and bar
width to bin width in the frequency table. Bin width refers to
the size of the interval in which numbers are aggregated when
determining frequencies. (The term bandwidth is similarly
used in many domains, including nonparametric smoothing;
cf. Härdle, 1991). Different bin widths and starting points for
bins will lead to different tables, and hence, different graph-
ics. Using the same data with different combinations of bin

starting point and bin widths produces the displays seen in
Figure 2.4.

In sum, all data analysis is a process of summariza-
tion. This process leads to a focus on some aspects of data
while taking focus off of other aspects. Conscious of these is-
sues, the exploratory analyst always seeks multiple represen-
tations of the data and always holds a position of skepticism
toward any single characterization of data.

The Importance of Models

Apart from the cognitive aspects of statistical information just
discussed, there is an additional epistemic layer of meaning
that must be dealt with. As George Box (1979) wrote: “All
models are wrong but some are useful” (p. 202). An important
aspect of EDAis the process of model specification and testing
with a focus on the value and pattern of misfit or residuals. Al-
though some psychologists are familiar with this view from
their experience with regression graphics or diagnostics, many
individuals fail to see their statistical work as model building.
In the EDA view, all statistical work can be considered
model building. The simple t test is a model of mean difference
as a function of group membership considered in terms of
sampling fluctuation. Regression analyses attempt to model
criteria values as a function of predictor variables, whereas
analysis of variance (ANOVA) models means and variances of
dependent variables as a function of categorical variables.

Unaware of the options, many individuals fail to consider
the wide range of model variants that are available. In re-
gression, for example, the “continuous” dependent variable
may be highly continuous or marginally continuous. If the
dependent variable is binary, then a logistic regression is ap-
propriate and a multilevel categorical dependent variable can
likewise be fit (Hosmer & Lemeshow, 2000). The closely re-
lated variant of Poisson regression exists for counts, and pro-
bit and Tobit variants also can be used.

The application of models in these instances is central to
EDA. Different models will have different assumptions and
often describe the data well in one way, but fail in others. For
example, in the world of item response theory, there is often
great consternation regarding the choice of models to use.
One-parameter models may misfit the data in some way, but
have the desirable properties of sufficiency and consistent
ordering of individuals. Two- and three-parameter models
generally fit the data more tightly but without the conceptual
advantages of the one-parameter model. From an EDA point
of view, each model is “correct” in some respect insofar as
each brings some value and loses others. Depending on the
exact scientific or practical need, the decision maker may
choose to emphasize one set of values or another.
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Figure 2.2 Additional data sets with same algebraic summaries as the data in Figure 2.1, with varying patterns and model fit.
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Figure 2.3 Histogram of small data set revealing slight skew.

Regardless of individual decisions about models, the most
important issues are that one realizes (a) that there is always
model being used (even if implicitly), (b) that for real-world
data, there is no such thing as the perfect model, and (c) that
the way in which the model is wrong tells us something about
the phenomenon.

Abduction as the Logic of EDA

Because of the rich mathematical foundation of CDA, many
researchers assume that the complete philosophical basis for
inferences from CDA have been worked out. Interestingly,
this is not the case. Fisher (1935, 1955) considered his
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Figure 2.4 Additional histograms of the same data depicted in Figure 2.3 with varying appearances as a function of bin width and bin starting value.

approach to significance testing an as implementation of “in-
ductive inference” and argued that all knowledge is gained
in this way. Neyman and Pearson (1928, 1933a, 1933b), on
the other hand, developed the concepts of power, type II
error, and confidence intervals, to which Fisher objected
(Gigerenzer, 1987, 1993; Lehmann, 1993). Neyman argued
that only deductive inference was possible in statistics, as
shown in the hypothesis testing tradition he developed.
Others argue that classical statistics involves both logical
modes, given that the hypothesis is generated deductively
and data are compared against the hypothesis inductively
(Lindsey, 1996).

Where, then, does this leave EDA? Because Tukey was
primarily a mathematician and statistician, there has been lit-
tle explicit work on the logical foundations of EDA from a
formal philosophical viewpoint. A firm basis for understand-
ing EDA, however, can be found in the concept of abduction
proposed by the American philosopher Charles Sanders
Peirce. Peirce, whose name is pronounced “pers,” was a tour
de force in American philosophy as the originator of modern
semiotics, an accomplished logician in logic of probability,
and the originator of pragmatism that was popularized by
James and Dewey. Peirce (1934/1960) explained the three
logical processes by arguing, “Deduction proves some-
thing must be. Induction shows that something actually is

operative; abduction merely suggests that something may be”
(vol. 5, p. 171). Put another way: Abduction plays the role of
generating new ideas or hypotheses; deduction functions
as evaluating the hypotheses; and induction justifies the
hypotheses with empirical data (Staat, 1993).

Deduction involves drawing logical consequences from
premises. The conclusion is true given that the premises are
true also (Peirce, 1868). For instance,

First premise: All As are Bs (True).

Second premise: C is A (True).

Conclusion: Therefore, C is B (True).

Deductive logic confines the conclusion to a dichotomous
answer (true-false). A typical example is the rejection or fail-
ure of rejection of the null hypothesis. To be specific, the for-
mulated hypothesis is regarded as the first premise. When the
data (the second premise) conform to the hypothesis, the con-
clusion must assert that the first premise is true. 

Some have argued that deduction is incomplete because
we cannot logically prove all the premises are true. Russell
and Whitehead (1910) attempted to develop a self-sufficient
logical-mathematical system. In their view, not only can
mathematics be reduced to logic, but also logic is the founda-
tion of mathematics. However, Gödel (1947/1986) found that
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it is impossible to have such a self-contained system. Any
lower order theorem or premise needs a higher order theorem
or premise for substantiation, and it goes on and on; no sys-
tem can be complete and consistent at the same time. Build-
ing on this argument, Kline (1980) held that mathematics had
developed illogically with false proof and slips in reasoning.
Thus, he argued that deductive proof from self-evident prin-
ciples in mathematics is an “intellectual tragedy” (p. 3) and a
“grand illusion” (p. 4).

For Peirce, inductive logic is based upon the notion that
probability is the relative frequency in the long run and that a
general law can be concluded based on numerous cases. For
example,

A1, A2, A3 . . . A100 are B.

A1, A2, A3 . . . A100 are C.

Therefore, B is C.

Hume (1777/1912) argued that things are inconclusive by
induction because in infinity there are always new cases and
new evidence. Induction can be justified if and only if in-
stances of which we have no experience resemble those of
which we have experience. Thus, the problem of induction is
also known as “the skeptical problem about the future”
(Hacking, 1975). Take the previous argument as an example.
If A101 is not B, the statement “B is C” will be refuted. We
never know when a line predicting future events will turn flat,
go down, or go up. Even inductive reasoning using numerous
accurate data and high-power computing can go wrong,
because predictions are made only under certain specified
conditions (Samuelson, 1967). 

Induction suggests the possible outcome in relation to
events in the long run. This is not definable for an individual
event. To make a judgment for a single event based on prob-
ability, such as saying that someone’s chance of surviving
surgery is 75%, is nonsensical. In actuality, the patient will
either live or die. In a single event, not only is the probability
indefinable, but also the explanatory power is absent. Induc-
tion yields a general statement that explains the event of ob-
serving, but not the facts observed. Josephson and Josephson
(1994) gave this example: 

Suppose I choose a ball at random (arbitrarily) from a large hat
containing colored balls. The ball I choose is red. Does the fact
that all of the balls in the hat are red explain why this particular
ball is red? No. . . “All A’s are B’s” cannot explain why “this A is
a B” because it does not say anything about how its being an A is
connected with its being a B. (p. 20)

The function of abduction is to look for a pattern in a
surprising phenomenon and suggest a plausible hypothesis
(Peirce, 1878). Despite the long history of abduction, it

remains overlooked among many texts of logic and research
methodology, while gaining ground in the areas of artificial
intelligence and probabilistic computing (e.g., Josephson &
Josephson, 1994; Schum, 1994). However, as logic is divided
into formal types of reasoning (symbolic logic) and informal
types (critical thinking), abduction is represented as informal
logic. Therefore, unlike deduction and induction, abduction
is a type of critical thinking rather than a formalism captured
by symbolic logic. The following example illustrates the
function of abduction, though illustrated with symbols for
simplification:

The surprising phenomenon, X, is observed.

Among hypotheses A, B, and C, A is capable of explain-
ing X.

Hence, there is a reason to pursue A.

At first glance, abduction may appear as no more than
an educated guess among existing hypotheses. Thagard and
Shelley (1997) addressed this concern. They argued that uni-
fying conceptions are an important part of abduction, and it
would be unfortunate if our understanding of abduction were
limited to more mundane cases where hypotheses are simply
assembled. Abduction does not occur in the context of a fixed
language, since the formation of new hypotheses often goes
hand in hand with the development of new theoretical terms
such as quark and gene. Indeed, Peirce (1934/1960) empha-
sized that abduction is the only logical operation that intro-
duces new ideas.

Although abduction is viewed as a kind of “creative intu-
ition” for idea generation and fact explanation (Hoffmann,
1997), it is dangerous to look at abduction as impulsive
thinking and hasty judgment. In The Fixation of Belief,
Peirce explicitly disregarded the tenacity of intuition as the
source of knowledge. Peirce strongly criticized his contem-
poraries’ confusion of propositions and assertions. Proposi-
tions can be affirmed or denied while assertions are final
judgments (Hilpinen, 1992). The objective of abduction is to
determine which hypothesis or proposition to test, not which
one to adopt or assert (Sullivan, 1991).

In EDA, after observing some surprising facts, we exploit
them and check the predicted values against the observed
values and residuals (Behrens, 1997a). Although there may
be more than one convincing pattern, we “abduct” only those
that are more plausible for subsequent confirmatory experi-
mentation. Since experimentation is hypothesis driven and
EDA is data driven, the logic behind each of them is quite
different. The abductive reasoning of EDA goes from data
to hypotheses, whereas inductive reasoning of experimenta-
tion goes from hypothesis to expected data. In fact, closely
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(and unknowingly) following Tukey (1969), Shank (1991),
Josephson and Josephson (1994), and Ottens and Shank
(1995) related abductive reasoning to detective work. Detec-
tives collect related “facts” about people and circumstances.
These facts are actually shrewd guesses or hypotheses based
on their keen powers of observation. 

In short, abduction can be interpreted as observing the
world with appropriate categories, which arise from the inter-
nal structure of meanings. Abduction in EDA means that
the analyst neither exhausts all possibilities nor makes hasty
decisions. Researchers must be well equipped with proper
categories in order to sort out the invariant features and pat-
terns of phenomena. Quantitative research, in this sense, is
not number crunching, but a thoughtful way of peeling back
layers of meaning in data.

Exploration, Discovery, and Hypothesis Testing

Many researchers steeped in confirmatory procedures have
appropriately learned that true hypothesis tests require true
hypotheses and that unexpected results should not be treated
with the same deference as hypothesized results. A corollary
is that one should keep clear what has been hypothesized
in a research study and not modify a hypothesis to match
data. This is certainly true and is an essential aspect of con-
firmatory inference. In some researchers, however, a neuro-
sis develops that extends the avoidance of hypothesis-
modification based on knowledge of the data to an
avoidance of intimacy with the data altogether. Sometimes
this neurosis is exacerbated by the fear that every piece of
knowledge has an amount of Type I error associated with it
and, therefore, the more we know about the data the higher
our Type I error. The key to appropriately balancing ex-
ploratory and confirmatory work is to keep clear what has
been hypothesized in advance and what is being “discov-
ered” for the first time. Discoveries are important, but do
not count as confirmations.

After years of extensive fieldwork an entomologist devel-
ops a prediction that butterflies with a certain pattern of spot-
ting should exist on top of a particular mountain, and sets off
for the mountaintop. Clearly, if the entomologist finds such
butterflies there will be evidence in support of her theory;
otherwise, there is an absence of evidence. On her way to the
mountain she traverses a jungle in which she encounters a
previously unknown species of butterflies with quite unantic-
ipated spottings. How does she handle this? Should she
ignore the butterfly because she has not hypothesized it?
Should she ignore it because it may simply be a misleading
Type I error? Should she ignore it because she may change
her original hypothesis to say she has really hypothesized this
jungle butterfly?

For most individuals it is clear that a new discovery is
valuable and should be well documented and collected.
The entomologist’s failure to have hypothesized it does not
impugn its uniqueness, and indeed many great scientific
conclusions have started with unanticipated findings
(Beveridge, 1950). Should the entomologist worry about
Type I error? Since Type I error concerns long-run error in
decision making based on levels of specific cutoff values in
specific distributions, that precise interpretation does not
seem to matter much here. If she makes an inference about
this finding then she should consider the probabilistic basis
for such an inference, but nevertheless the butterfly should
be collected. Finally, should she be concerned that this find-
ing will contaminate her original hypothesis? Clearly she
should continue her travel and look for the evidence con-
cerning her initial hypothesis on the mountaintop. If the
new butterfly contradicts the existing hypothesis, then the
entomologist has more data to deal with and additional
complexity that should not be ignored. If she is concerned
about changing her hypothesis in midstream to match the
new data, then she has confused hypothesis generation and
hypothesis testing. With regard to any new theories, she
must create additional predictions to be tested in a different
location.

EDA and Exploratory Statistics 

EDA and exploratory statistics (ES) have the same ex-
ploratory goals; thus, the question sometimes arises as to
whether ES is simply a subset of EDA or EDA is a subset of
ES. Because EDA is primarily an epistemological lens and
ES is generally presented in terms of a collection of tech-
niques, a more appropriate question is Can ES be conducted
from an EDA point of view? To this question we can answer
yes. Furthermore, EDA is a conceptual lens, and most re-
search procedures can be undertaken with an EDA slant. For
example, if one is conducting an “exploratory” factor analy-
sis without graphing of data, examination of residuals, or
attention to specific patterns of raw data underlying the cor-
relations that are central to the analysis, then little seems to be
consistent with the EDA approach. On the other hand, a
clearly probabilistic analysis can be well augmented by plots
of data on a number of dimensions (Härdle, Klinke, &
Turlach, 1995; Scott, 1992), attention to residual patterns in a
number of dimensions, and the use of detailed diagnostics
that point to patterns of fits and misfits. Regardless of
the software or specific statistical procedures used, such
activity would clearly be considered EDA and ES. ES does
not necessarily imply EDA, but ES can be conducted as EDA
if the conceptual and procedural hallmarks of EDA are
employed.
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Summary

Exploratory data analysis is a rich data-analytic tradition de-
veloped to aid practical issues of data analysis. It recom-
mends a data-driven approach to gaining intimacy with one’s
data and the phenomenon under study. This approach follows
the analogy of the detective looking for clues to develop
hunches and perhaps seek a grand jury. This counters the
more formal and ambitious goals of confirmatory data analy-
sis, which seeks to obtain and present formal evidence in
order to gain a conviction. EDA is recommended as a com-
plement to confirmatory methods, and in no way seeks to re-
place or eliminate them. Indeed, effective researchers should
incorporate the best aspects of all approaches as needed.

HALLMARKS OF EDA

In this section, the techniques and attitudes that are standard
aspects of EDA are discussed. The tools described here are
only recommendations that have worked to allow researchers
to reach the underlying goals of EDA. However, it is the un-
derlying goals that should be sought, not the particular tech-
niques. Following Hoaglin, Mosteller, and Tukey (1983), we
discuss these tools under the four Rs of EDA: revelation,
residuals, reexpression, and resistance.

Revelation

Graphics are the primary tool for the exploratory data ana-
lyst. The most widely cited reason for this is Tukey’s (1977)
statement that “The greatest value of a picture is when it
forces us to notice what we never expected to see” (p. vi). In
many ways, the graphics in Figures 2.1 and 2.2 illustrate all
the rationale of graphics in EDA. First, even though the alge-
braic summaries are “sufficient statistics,” they are sufficient
for only the very limited purpose of summarizing particular
aspects of the data. For specifying the exact form of the data
without additional assumptions regarding distributional
shapes, the summary statistics are not only “insufficient”
but are downright dangerous. Second, the indeterminacy of
the algebra calls us to fill in the details with possibly unten-
able assumptions. In the Anscombe data-thought experiment,
participants almost universally imagine the data to be of the
canonical form shown in Figure 2.1. In the absence of a skep-
tical mind and in the light of the history of statistics textbooks
that are focused on mathematical idealizations at the expense
of real-world patterns, many psychologists have developed
schemas and mental models (Johnson-Laird, 1983) that lead
to erroneous inferences.

Another psychological advantage of graphics is that it al-
lows for a parsimonious representation of the data. The facts
that are easily derivable from the image include all the indi-
vidual values, the relative position of each data point to every
other, shape-based characterizations of the bivariate distribu-
tion, and the relationship between the data and the proposed
regression line. After some practice, the trained eye can eas-
ily discern and describe the marginal distributions as well as
the distribution of residuals. The construction of a text-based
representation of all of this information would require an ex-
tensive set of text-based descriptors. In short, visual images
of the type shown here exploit the visual-spatial memory sys-
tem to support efficient pattern recognition (Garner, 1974),
problem solving (Larkin & Simon, 1987), and the construc-
tion of appropriate mental models (Bauer & Johnson-Laird,
1993).

Tukey’s early work and concomitant advances in comput-
ing have led to an explosion in graphical methods over the
last three decades. Numerous authors, including Tufte (1990,
1997, 1983/2001) and Wainer (1997; Wainer & Velleman,
2001) have worked to popularize data-based graphics.
William Cleveland has had a large impact on the statistical
community with his empirical studies of the use of graphics
(Cleveland & McGill, 1984), the initiation of cognitive mod-
els of graph perception (Cleveland, 1985), and his applica-
tion of these principles to statistical graphics (especially
Cleveland, 1993). Wilkinson (1993, 1994, 1999) made sub-
stantial contributions to the study of proper use of statistical
graphics, and has recently provided a comprehensive volume
regarding graphics in software and statistical analysis
(Wilkinson, 1999) that is required reading for anyone inter-
ested in the field. Kosslyn (1994) provided a discussion of
numerous potential rules for graph construction from a psy-
chological perspective, and Lewandowsky and Behrens
(1999) provide a recent review of cognitive aspects of statis-
tical graphs and maps.

Graphics Made for EDA

During the emergence of the EDA tradition, Tukey developed
a large number of graphical tools, some of which have be-
come commonplace, others of which have had little visibility
outside specialized applications. It is important to remember
that at the time of their original construction, much of what
Tukey sought to do was to support quick summarization and
analysis when data were available, and the analysis was to
occur by hand. 

Perhaps the best known of Tukey’s graphical devices
for EDA is the box-and-whisker plot, otherwise called the
box-plot. The box-plot is a graph based on a five-number
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Figure 2.5 Panel A consists of multiple box-plots of effect sizes in social
memory meta-analysis, organized by presentation speed (from Stangor &
McMillan, 1992). Panel B depicts the same data by plotting individual
values in a dot-plot.

summary of a distribution of data; these numbers are the me-
dian, the first and second hinges, and either the lowest and
highest number or a similar measure of range number arrived
at by separating very extreme values. The median is equal to
the 50th percentile of the distribution. The hinges are either
equal to or very close to the 25th and 75th percentiles—
although they are found using a simpler rank-based formula
for computation. To construct a box-plot, a scale is drawn,
and a box is placed on the scale with one end of the box indi-
cating the scale value of the lower hinge (25th percentile) and
the other end of the box occurring at the scale position of the
upper hinge (75th percentile). An additional line is drawn in
the middle to indicate the scale value of the median. The
scale-value difference between the two hinges is called either
the hinge spread or the interquartile range (often abbreviated
IQR), and in a normal distribution corresponds to approxi-
mately 0.67 standard deviations on each side of the mean.

Rules for the construction of the “whisker” portion of the
display vary. In the most common version, lines are extended
along the scale from the hinges to the farthest data value in
each direction up to 1.5 hinge spreads. If there are data past
that point, the whiskers extend to the farthest data point prior
to the 1.5 hinge-spread cutoff. Data points beyond the
whiskers are usually identified individually to bring attention
to their extremeness and potential characterization as
outliers.

An example of multiple box-plots is presented in Fig-
ure 2.5, panel A, with individual raw data values presented in
panel B for comparison. These graphics depict the distribu-
tions of effect sizes from the meta-analysis of social memory
conducted by Stangor and McMillan (1992). The categorical
variable on the horizontal axis is the length of stimulus pre-
sentation in seconds. The continuous variable on the vertical
axis is the size of the effect for each study included in the
meta-analysis. As the reader may see, the box-plots provide a
compact description of each distribution and allow relatively
easy comparison of both the level and spread of each distrib-
ution. The distribution farthest to the left represents all the
studies for which no presentation speed is reported. The
range is approximately from −2 to +2, with a median
slightly below zero. The second box-plot depicts the distrib-
ution of effect sizes from studies that used a 2-s presentation
speed. It is the highest distribution of all, with some positive
skew. The median of this distribution is higher than the
75th percentile of the remaining distributions, indicating a
clear trend toward larger values. The median is also higher
than the 75th percentile of the 6- and 10-s studies. The stud-
ies with presentation times of 6 s show very little variance
with the exception of two outliers, which are indicated
separately.

When two box-plots are compared, the analyst is under-
taking the graphical analog of the t test. Displays with addi-
tional boxes, as shown here, are analogous to the analysis of
variance: Group-level measures of central tendency are dis-
played relative to the amount of within-group variability in
the data.

Although the box-plots are very useful and informative in
their current state, working in the exploratory mode raises
additional issues. First, how might we be fooled by these dis-
plays? The answer to this is that there are times when the
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Figure 2.6 Panel A is two box-plots with identical summary statistics.
Panel B depicts the underlying data used to make panel A, illustrating the
possibility that different data may produce identical graphs.

five-number summaries are the same for different distribu-
tions. This leads to a case in which the box-plots look identi-
cal yet the data differ in structure. Consider the top panel of
Figure 2.6, in which each of two box-plots is identical, indi-
cating identical values of the five-number summary. The
lower panel of Figure 2.6 depicts the underlying raw data val-
ues that vary in form. Distortions can also occur if there are
very few levels of the variable being measured, because it
will cause many data points to have the same value. In some
cases the appearance of a plot may be distorted if the hinges
are equal to the minimum or maximum, because no whiskers
appear.

A second point of interest concerns how we can learn
more from the data by enhancing the box-plot. Toward this
end, recommendations abound. Tufte (1983/2001) recom-
mended the omission of the box (an idea not well supported
by empirical data; Stock & Behrens, 1991). Other suggested
improvements include indicating the sample size of the sub-
set below the box (e.g., Becker, Chambers, & Wilks, 1988),
adding confidence intervals around the median in the box, or
distorting the box shape to account both for sample size and
the confidence intervals (McGill, Tukey, & Larsen, 1978).

Berk (1994) recommended the overplotting of a dot-plot (as
seen in the lower panel of Figure 2.6) on top of the box-plot
so that two levels of detail can be seen simultaneously.
Regardless of the exact implementation used, users must be
wary that software packages vary on the algorithms used
to calculate their five-number summaries, and they may not
be looking at the summaries one expects (Frigge, Hoaglin, &
Iglewicz, 1989).

Interactive Graphics

Although much can be gained by modifying the static ap-
pearance of plots such as the box-plot, substantial gains in
data analysis can be made in computerized environments
by using interactive graphics with brushing and linking
(Cleveland & McGill, 1988). Interactive graphics are
graphic displays that respond to the brushing (selection) ac-
tion of a pointing device (such as a mouse) by modifying the
graphics in real time. Linking is the connection of values on
the same observation through brushing or selecting across
different graphics. Highlighting an observation in one display
(say, a scatter plot) causes the value of the same observation
to appear highlighted in another display (say, a histogram) as
well. In this way, an analyst working to analyze one graphic
can quickly see how information in that graphic relates to in-
formation in another graphic. For example, in Figure 2.5 the
conditional level of each distribution varies greatly. An ana-
lyst may wonder if this is primarily from the categorical
variables listed on the horizontal axis, or if there are other
variables that may also covary with these medians. One pos-
sibility is that different research laboratories tend to use dif-
ferent speeds and therefore, that laboratory covaries with
speed.

Prior to the advent of interactive graphics, one would stop
the analysis in order to look in a table to determine which
data came from which laboratory. Such a process could eas-
ily become tedious and distracting from the main task. Using
a program that has high graphical interactivity, in this case
Data Desk (Data Description, 1997), highlighting the data of
interest in one graphical display highlights the same data in
other graphical displays or in the variable listings. To accom-
plish this in Data Desk we simply turn off the box-plots using
the pull-down menu at the top of the graph window (thereby
changing panel A of Figure 2.5 to panel B), indicate “Show
identifying text” from a menu at the top of the screen, click
on the identifying variable of interest (study name), and high-
light observations to be linked. The final outcome of these
few quick hand movements is presented in Figure 2.7. Here
the graphics reveal some unexpected results. Eight of
the nine effect sizes in this group come from only two studies
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Figure 2.7 Dot-plot with identifying text obtained by selecting and
linking.

and the studies are highly stratified by effect size. When the
eight data points of the 7-s effects are circled, the study
names indicate that all these effects come from a single study.

Moving Up the Path of Dimensionality 

Whereas box-plots are often considered univariate graphics
because they are often used to display a single variable, our
simple example has demonstrated that the box-plot can easily
function in three variables. In this case the variables are pre-
sentation speed, effect size, and study origin. In highly inter-
active environments, however, additional variables are easily
added. For example, in Data Desk, palettes available on the
desktop allow one to choose the shape or color of symbols for
individual data points. This is accomplished through select-
ing the data points of interest by circling the points on the
graphic and clicking on the desired shape or color. Symbol
coloring can also be accomplished automatically by using a
pull-down menu that indicates a desire to color symbols by
the value of a specific variable. In our meta-analysis data,
coloring the data points by sample size and varying the shape
to indicate the value of another categorical variable of inter-
est may aid in finding unanticipated patterns. In this way,
we would have created a rather usable yet complex five-
dimensional graphic representation of the data.

For combinations of categorical and measured data, the
box-plot and corresponding dot-plot provide an excellent
starting point. For analyses that focus more heavily on

measured (continuous or nearly continuous) data, the scatter
plot is the common fundamental graphic. Here variations
abound, as well. Whereas the scatter plot is often used to un-
derstand two dimensions of data, when faced with high-
dimensional data, one often uses a matrix of scatter plots to
see the multidimensionality from multiple bivariate views.
An example of a scatter plot matrix is presented in Figure 2.8.
The data portrayed here are a subset of the data that Stangor
and McMillan (1992) used in a weighted least-squares re-
gression analysis of the effect sizes. The plot can be thought
of as a graphical correlation matrix. Where we would have
placed the value of the correlation, we instead put the graph-
ical bivariate display. For each individual scatter plot, one
can identify the variable on the vertical axis by looking at the
variable named at the far left of the row. The horizontal axis
is identified by looking down the column of the matrix to the
variable identified at the bottom of the scatter plot. For exam-
ple, the plot in the upper right corner has “N” (sample size)
on the vertical axis and “con / incon” on the horizontal axis,
indicating the ratio of congruent to incongruent stimuli. The
top of the “con / incon” label is hidden due to plot size in the
plot in the lower right corner. The plots in the diagonal cells
are normal-probability plots whose interpretation is dis-
cussed below.

In this situation, as is often the case, the scatter plot matrix
does an excellent job of revealing unexpected structure. For
many of the bivariate relationships there is great departure
from bivariate normality. Of particular concern is the combi-
nation of high skew in the congruent-incongruent ratio and
the floor effect in the targets and traits variables. These issues
lead to L-shaped distributions that will present a clear chal-
lenge to any continuous linear model. Outliers and combina-
tions of missing data should also be considered carefully. Of
particular note in these data is that the higher level of the
dummy-coded delay variable exists in only two observations,
but one of those observations has no matching data on many
variables and thus functions as a single point. In a multi-
variate situation such as regression analysis, this is quite
problematic because the estimation of the relationship of this
variable with all others rests precariously on the value of the
single point. Error at this point will thereby be propagated
through the system of partial correlations used to estimate
regression effects.

Plots with multiple straight lines indicate the 0 and 1 lev-
els of dummy coding. A number of additional dummy-coded
variables subjected to simultaneous regression by Stangor
and McMillan (1992) were omitted because the number of
plots became too large to present here clearly. Earlier ver-
sions of this matrix revealed additional unusual values that
were traced back to the present authors’ transcription process
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Figure 2.8 Scatter plot matrix of meta-analysis data from Stangor and McMillan (1992).

and have been since corrected. In this case, the graphics
revealed structure and avoided error.

Going Deeper

Although the scatter plot matrix is valuable and informa-
tive, it is important that the reader recognize that a series of
two-dimensional views is not as informative as a three-
dimensional view. For example, when Stangor and McMillan
computed a simultaneous regression model, the variables in-
dicating the number of targets and traits used in each study
reversed the direction of their slope, compared with their
simple correlations. Although a classical “suppressor” inter-
pretation was given, the exploratory analyst may wonder
whether the simple constant and linear functions used
to model these data were appropriate. One possibility is
that the targets variable mediates other relationships. For
example, it may be the case that some variables are highly
related to effect size for certain levels of target, but have
different relationships with effect size at other levels of
targets.

To provide a quick and provisional evaluation of this
possibility, we created a histogram of the target variables, se-
lected those bins in the graphic that represent low levels of
targets, and chose a unique color and symbol for the observa-
tions that had just been selected. From here, one can simply
click on the pull-down menu on any scatter plot and choose
“Add color regression lines.” Because the observations
have been colored by low and high levels of the target vari-
able, the plots will be supplemented with regression lines be-
tween independent variables and the effect size–dependent
variable separately for low and high levels of targets, as dis-
played in Figure 2.9. 

Moving across the second row of Figure 2.9 (which corre-
sponds to the response variable), first we see two regression
lines with low identical slopes indicating little relationship be-
tween task and effect, which is constant across levels of target.
The delay variable in the next column shows a similar pattern,
whereas the next three variables show small indications of in-
teraction. The interaction effect is very clear in the relation-
ship between effect size and the congruent-incongruent ratio
in the rightmost column. This relationship is positive for
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observations with high numbers of targets, but negative for
low numbers of targets. Unfortunately, in failing to recognize
this pattern, one may use a model with no interactions. In such
a case the positive slope observations are averaged with the
negative slope observations to create an estimate of 0 slope.
This would typically lead the data analyst to conclude that no
relationship exists at all, when in fact a clear story exists just
below the surface (one variable down!).

Although the graphics employed so far have been helpful,
we have essentially used numerous low-dimensional views
of the data to try to develop a multidimensional conceptual-
ization. This is analogous to the way many researchers
develop regression models as a list of variables that are “re-
lated” or “not related” to the dependent variable, and then
consider them altogether. Our brushing and coding of the
scatter plot matrix has shown that this is a dangerous
approach because “related” is usually operationalized as “lin-
early related”—an assumption that is often unwarranted.
Moreover, in multidimensional space, variables may be
related in one part of the space but not in the other.

Working in an exploratory mode, these experiences sug-
gest we step back and ask a more general question about the
meta-analytic data: In what way does the size and availability
of effects vary across the variety of study characteristics? To
begin to get such a view of the data, one may find three-
dimensional plots to be useful. A graphic created using a non-
linear smoother for the effect size of each study as a function
of the number of targets and presentation speed is presented
in panel A of Figure 2.10. The general shape is similar to the
“saddle” shape that characterizes a two-way interaction in
continuous regression models (Aiken & West, 1991). The
graphic also reveals that little empirical work has been un-
dertaken with high presentation speed and a low number of
targets, so it is difficult to assess the veracity of the smooth-
ing function given the lack of data in that area. At a mini-
mum, it suggests that future research should be conducted to
assess those combinations of study characteristics. Panel B of
Figure 2.10 shows an alternate representation of the data with
a traditional linear surface function that is designed to pro-
vide a single additive prediction across all the data. 

Figure 2.9 View of computer screen using Data Desk software for selecting, brushing, and linking
across multiple plots. Several plots have been enhanced with multiple regression lines that vary by sub-
sets of selected data.
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For another impression of the data, we can take a series of
slices of the three-dimensional data cube and lay the slices
out side by side. Such an arrangement is possible using a gen-
eral framework called a trellis plot (Becker, Cleveland, &
Shyu, 1996; Clark, Cleveland, Denby, & Liu, 1999) as
implemented in Splus (Insightful, 2001) and shown in Fig-
ure 2.11. The three panels show progressive slices of the data
with linear regression lines overlaid. As the reader can see,
the plots correspond to three slices of the three-dimensional
cube shown in Figure 2.10, panel A, with changes in the re-
gression line matching different portions of the “hills” in the
data.

The simple graphics we have used here provide an excel-
lent start at peeling away the layers of meaning that reside in
these data. If nothing else is clear, the data are more complex
than can be easily described by a simple linear model in
multiple dimensions. The theoretical concerns of Anscombe
(1973) have proven to be realistic after all. Despite the inte-
rocular effect provided by these graphics, some readers will
assure themselves that such difficulties appear primarily in
data from meta-analyses and that the data they work with will
not be so problematic. Unfortunately this is not often the
case, and there is a cottage industry among EDA proponents
of reanalyzing published data with simple graphics to show
rich structure that was overlooked in original work.

Residuals and Models

In the EDA tradition, the second R stands for residual, yet
this word signifies not simply a mathematical definition, but
a foundational philosophy about the nature of data analysis.
Throughout Tukey’s writings, the theme of DATA = FIT +
RESIDUALS is repeated over and over, often in graphical
analog: DATA = SMOOTH + ROUGH. This simple for-
mula reminds us that our primary focus is on the develop-
ment of compact descriptions of the world and that these
descriptions will never be perfect; thus there will always be
some misfit between our model and the data, and this misfit
occurs with every observation having a residual. 

This view counters implicit assumptions that often arise in
statistical training. First, many students acquire an unfortu-
nate belief that “error” has an ontological status equivalent to
“noise that can be ignored” and consequently believe the
results of a model-fitting procedure (such as least squares
regression) is the “true” model that should be followed. Such
a view fails to emphasize the fact that the residuals are sim-
ply a byproduct of the model used, and that different models
will lead to different patterns of residuals. As we saw in the
previous section, different three-dimensional models provide
different degrees of hugging the data, and hence, different
amounts of residual. Second, in EDA the analyst focuses on
the size and pattern of individual residuals and subsets of
residuals. A curve that remains in a residual plot indicates the
model has failed to describe the curve. Multiple modes re-
maining in the residuals likewise suggest that a pattern has
been missed. On the other hand, if students are taught to
focus on only the gross summary of the sums of squares, they
will also miss much of the detail in the pattern that is afforded
by a careful look at residuals. For example, as indicated by
the common r among the Anscombe (1973) data sets, all four
data sets have the same sums-of-squares residual, but dra-
matically different patterns of residuals.
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Figure 2.10 Panel A is a nonlinear surface estimate of the interaction of
presentation speed, number of targets, and effect size in the Stangor and
McMillan (1992) meta-analysis data. Panel B is a completely linear predic-
tion surface as would be obtained using common least squares regression.
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This emphasis on residuals leads to an emphasis on an iter-
ative process of model building: A tentative model is tried
based on a best guess (or cursory summary statistics), residu-
als are examined, the model is modified, and residuals are
reexamined over and over again. This process has some
resemblance to forward variable selection in multiple regres-
sion; however, the trained analyst examines the data in great
detail at each step and is thereby careful to avoid the errors that
are easily made by automated procedures (cf. Henderson &
Velleman, 1981). Tukey (1977) wrote, “Recognition of the
iterative character of the relationship of exposing and
summarizing makes it clear that there is usually much value in
fitting, even if what is fitted is neither believed nor satisfacto-
rily close” (p. 7).

The emphasis on examining the size and pattern of resid-
uals is a fundamental aspect of scientific work. Before this
notion was firmly established, the history of science was re-
plete with stories of individuals that failed to consider misfit
carefully. For example, Gregor Mendel (1822–1884), who is
considered the founder of modern genetics, established the
notion that physical properties of species are subject to hered-
ity. In accumulating evidence for his views, Mendel con-
ducted a fertilization experiment in which he followed sev-
eral generations of axial and terminal flowers to observe how
specific genes carried from one generation to another. On

subsequent examination of the data, R. A. Fisher (1936)
questioned the validity of Mendel’s reported results, arguing
that Mendel’s data seemed “too good to be true.” Using chi-
square tests of association, Fisher found that Mendel’s results
were so close to the predicted model that residuals of the size
reported would be expected by chance less than once in
10,000 times if the model were true.

Reviewing this and similar historical anomalies, Press
and Tanur (2001) argue that the problem is caused by the
unchecked subjectivity of scientists who had the confirma-
tion of specific models in mind. This can be thought of as
having a weak sense of residuals and an overemphasis on
working for dichotomous answers. Even when residuals ex-
isted, some researchers tended to embrace the model for fear
that by admitting any inconsistency, the entire model would
be rejected. Stated bluntly, those scientists had too much
focus on the notion of DATA = MODEL. Gould (1996) pro-
vides a detailed history of how such model-confirmation bi-
ases and overlooked residuals led to centuries of unfortunate
categorization of humans.

The Two-Way Fit

To illustrate the generality of the model-residual view of
EDA, we will consider the extremely useful and flexible
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Figure 2.11 Plot of presentation speed by effect size at different ranges of number of targets using a trellis display. Data are
identical with those presented in Figure 2.10.
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TABLE 2.1 Average Effect Sizes by Dependent Variable and Study
Characteristic. From Stangor and McMillan (1992).

Variable Recall Recognition Bias

Strength of expectations
a. Experimental session −0.37 −0.47 0.32
b. Existing 0.32 −0.8 0.93

Content of the stimuli
c. Behaviors −0.21 −0.1 0.66
d. Traits 0.71 −2.16 1.98

Type of behavioral inconsistency
e. Evaluative and descriptive −0.27 0.1 0.29
f. Descriptive only 0.36 −0.54 0.85

Type of target
g. Individual −0.32 −1.14 1.04
h. Group 0.22 −0.38 0.33

Processing goal
i. From impressions −0.46 0.19 0.57
j. Memorize 0.12 −0.71 1.01

Interpolated task
k. No −0.44 −0.30 0.62
l. Yes 0.06 −1.26 0.75

Type of delay
m. Within single session −0.19 −0.65 0.82
n. Separate session −0.02 −0.03 0.66

TABLE 2.2 Two-Way Decomposition of Average Effect Sizes by
Dependent Variable and Study Characteristic. From Stangor and
McMillan (1992).

Variable Recall Recognition Bias Row Effect

Strength of expectations
a. Experimental session 0.00 0.43 0.00 −0.35
b. Existing 0.08 −0.51 0.00 0.26

Content of the stimuli
c. Behaviors −0.18 0.46 0.00 −0.00
d. Traits 0.00 −2.34 0.58 0.73

Type of behavioral inconsistency
e. Evaluative and descriptive 0.00 0.90 −0.13 −0.25
f. Descriptive only 0.20 −0.17 0.00 0.19

Type of target
g. Individual 0.00 −0.29 0.67 −0.30
h. Group 0.07 0.00 −0.51 0.17

Processing goal
i. From impressions −0.34 0.84 0.00 −0.10
j. Memorize 0.00 −0.30 0.20 0.14

Interpolated task
k. No −0.37 0.30 0.00 −0.05
l. Yes 0.00 −0.79 0.00 0.08

Type of delay
m. Within single session −0.07 0.00 0.25 −0.10
n. Separate session 0.00 0.52 −0.01 0.00

Column effects 0.00 −0.53 0.69 −0.02

model of the two-way fit introduced by Tukey (1977) and
Mosteller and Tukey (1977). The two-way fit is obtained by
iteratively estimating row effects and column effects and
using the sum of those estimates to create predicted (model or
fit) cell values and their corresponding residuals. The cycles
are repeated with effects adjusted on each cycle to improve
the model and reduce residuals until additional adjustments
provide no improvement. This procedure can be applied di-
rectly to data with two-way structures. More complicated
structures can be modeled by multiple two-way structures. In
this way, the general approach can subsume such approaches
as the measures of central tendency in the ANOVA model, the
ratios in the log-linear model, and person and item parameter
estimates of the one-parameter item response theory model.

Consider the data presented in Table 2.1. It represents av-
erage effect sizes for each of a series of univariate analyses
conducted by Stangor and McMillan (1992). Such a display
is a common way to communicate summary statistics. From
an exploratory point of view, however, we would like to see
if some underlying structure or pattern can be discerned. Re-
viewing the table, it is easy to notice that some values are
negative and some positive, and that the large number of
�2.6 is a good bit larger than most of the other numbers
which are between 0 and +/− 1.0.

To suggest an initial structure with a two-way fit we cal-
culate column effects by calculating the median of each col-
umn. The median of each column then becomes the model for
that column, and we subtract that initial model estimate
from the raw data value to obtain a residual that replaces the

original data value in the data matrix. After this simple first
pass, we have a new table in which each cell is a residual and
the data from the original table are equal to the column effect
plus the cell residual. The row effects are estimated next by
calculating the median value of residuals in each row and
subtracting the cell values (first-stage residuals) from these
medians. The row effects are generally placed in the margin
of the table and the new residuals replace the residuals from
the previous stage. A similar calculation occurs on the row of
medians that represents the column effects; the median of
the column effects becomes the estimate of the overall or
“grand” effect and the estimates of the column effects are
likewise adjusted through subtraction.

This process is repeated iteratively until continued calcu-
lation of effects and residuals provides no improvement. The
result of such a summary is provided in Table 2.2. Here
we see an overall effect of −.02 as well as a characterization
of each row and column. It is clear which columns are
low, medium, and high, and likewise which rows stand out.
Each cell in the original table can be reconstructed using
the formula Data = grand effect + row effect + column
effect + residual. For example, the memorization task for the
bias condition can be recreated using the model of 1.01 =
−0.02 + 0.69 + 0.14 − 0.02.

To form a visual impression of these values, Tukey (e.g.,
Mosteller & Tukey, 1977) recommended a two-way fit plot
such as that shown in Figure 2.12, panel A. In this figure,
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Figure 2.12 Panel A is a plot of main effects of a two-way fit. The height
of the intersection of lines represents the sum of row, column, and grand
effects and the corresponding predicted value for that cell. Panel B shows
main effects of two-way fit with additional lines extending from predicted to
actual values to highlight the location and size of residuals.

there is a line for each row and column effect in the model.
For each row and column effect, the height of the intersection
of the two lines is equal to the value of the predicted value in
the model (overall effect + column effect + row effect). This
plot clearly portrays the separation of the bias, recall, and
recognition conditions, shows the clear separation of row d
(trait levels), and displays a cluster of common small effects
for rows a, g, and e. For us, this view was surprising because

when we first characterized row d, it was with a focus on the
large −2.16 value, which is the largest (negative) value in the
table. This graphic, however, suggests more needs to be con-
sidered. Reexamining the data for that row we see that not
only does that row have the largest negative value, but also
two of the largest positive values. All together, we end up
with a strong positive row effect. For individual cells, how-
ever, the effect may be low or high, depending on the column.

Because the grand, row, and column effects represent the
model, an assessment of that model requires an examination
of where the model fits and does not fit. The residuals for
these models are presented in the center of Table 2.2. Exami-
nation of these values reveals that the extreme value observed
in the raw data remains extreme in this model, and that this
value is not simply the result of combining row and column
effects. A graphical analog to the residuals can also be pro-
vided, as shown in Figure 2.12, panel B. In this diagram, lines
are drawn from the value of the predicted values (the inter-
section of row and column lines), downward or upward to the
actual data value. The length of each line thereby indicates
the size of the residual. Clearly, the size of the trait residual
for recognition tasks dwarfs the size of all other effects and
residuals in the data. Other patterns of residuals may provide
additional information about the data because they tell us
what departs from a standard description.

In this example we used simple raw residuals. In other ap-
plications, the actual value of residuals may be modified in a
number of ways. One common method is to report residuals
reexpressed as normal-deviates in the distribution of residu-
als. This approach, often used in structural equation analysis,
can help identify the locations of the extremes, but hides the
scale values of the error. In the highly developed area of re-
gression diagnostics, residuals may be adjusted for the size of
the leverage associated with the value of the criterion vari-
able (studentized residuals) or calculated using a model that
obtained predicted values without the presence of the obser-
vation in the model (externally studentized). This prevents
extreme values from distorting the model to the point that
an aberrant value leads to a small residual, as displayed in
panel C of Figure 2.2.

As illustrated previously, complementary to the notion of
patterns of residuals and meaning in individual residuals is the
emphasis on mathematical models of effects that provide rich
and parsimonious description. This view is very much in line
with the recently emerging view of the importance of effect
sizes suggested by Glass (1976) and renewed by Cohen (1994)
and the APA Task Force on Statistical Inference (Wilkinson,
1999). EDA reminds us that at the same time we focus on ef-
fects as a description of the data, we must also focus on the size
and pattern of misfits between effects and the data.
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Reexpression

The data examined previously remind us that data often come
to the exploratory data analyst in messy and nonstandard
ways. This should not be unexpected, given the common as-
sumption that the data distributions are either always well be-
haved, or that statistical techniques are sufficiently robust
that we can ignore any deviations that might arise, and there-
fore skip detailed examination. In fact, it is quite often the
case that insufficient attention has been paid to scaling issues
in advance, and it is not until the failure of confirmatory
methods that a careful examination of scaling is undertaken
(if at all). In the exploratory mode, however, appropriate scal-
ing is considered one of the fundamental activities and is
called reexpression. Although mathematically equivalent to
what is called transformation in other traditions, reexpres-
sion is so named to reflect the idea that the numerical changes
are aimed at appropriate scaling rather than radical change.

Because reexpression requires an understanding of the un-
derlying meaning of the data that are being reexpressed, the
EDA approach avoids using the common categorizations of
data as nominal, ordinal, interval, and ratio that follow
Stevens (e.g., 1951). Rather, Mosteller and Tukey (1977)
discussed broad classes of data as (a) amounts and counts;
(b) balances (numbers that can be positive or negative with
no bound); (c) counted fractions (ratios of counts); (d) ranks;
and (e) grades (nominal categories).

When dealing with common amounts and counts, Tukey
suggested heuristics that hold that (a) data should often be
reexpressed toward a Gaussian shape, and (b) an appro-
priate reexpression can often be found by moving up or down
“the ladder of reexpression.” A Gaussian shape is sought
because this will generally move the data toward more equal-
interval measurement through symmetry, will often stabilize
variance, and can quite often help linearize trend (Behrens,
1997a). In EDA, the term normal is avoided in favor of
Gaussian to avoid the connotation of prototypicality or social
desirability.

The ladder of reexpression is a series of exponents one
may apply to original data that show considerable skew. Rec-
ognizing that the raw data exists in the form of X1, moving up
the ladder would consist of raising the data to X2 or X3.
Moving down the ladder suggests changing the data to the
scale of X1/2, −X−1/2, −X−1, −X−2, and so on. Because X0 is
equal to 1, this position on the ladder is generally replaced
with the reexpression of log10 (X). To choose an appropriate
transformation, one moves up or down the ladder toward the
bulk of the data. This means moving down the ladder for
distributions with positive skew and up the ladder for distrib-
utions with negative skew. By far the most common re-

expression for positively skewed data is the logarithmic
transformation. For ratios of counts, the most common rec-
ommendation is to “fold” the counts around a midpoint
(usually .5) so that equal fractions equal 0. This generally
means using P/1 − P, where P is the proportion of the total
that the count comprises. A second step is to take the log of
this folded fraction to create a “flog” equal to log(P/1 − P).
In more common parlance, this is a logit that serves as the
basis for logistic regression, survival, or event-history analy-
sis, and measurement via item response theory. Additional
techniques recommend that balances should generally be left
alone whereas grades and ranks should be treated much like
counted fractions (see, e.g., Mosteller & Tukey, 1977).

Although reexpression is a long-standing practice in the
statistical community, going back at least to Fisher’s (1921)
construction of the r to z transformation, only recently has its
use become more widespread in psychological literature. In
fact, it often continues to arise more out of historic tradition
than as the result of careful and comprehensive analysis.
Consider, for example, the subset of data from a word-
recognition experiment recently reported by Paap, Johansen,
Chun, and Vonnahme (2000) and depicted in Figure 2.13.
The experiment reported in this paper concerns the percent-
age of times participants correctly identify word pairs (%C)
from a memory task as a function of the word pair’s correct-
incorrect confusability (CIC), percentage correct-letter dis-
tinctiveness (CD), number of neighbors (N), percentage of
friends in the lexical neighborhood (%F), number of higher
frequency neighbors (H), log of frequency of the test word
(LTF), and log of frequency formed by incorrect alternative
(LAF).

As the reader may see, although the distributions associ-
ated with the logarithmic reexpression are quite Gaussian, the
variables that are not reexpressed differ quite a bit in this
respect and lead to quite non-Gaussian bivariate distribu-
tions. The CIC variable is the most skewed. This leads to
quite distorted correlations that would suffer from variance
compression. Distributional outliers in CIC are indicated
with X symbols, and regression lines on the %C against CIC
scatter plot are present both for all data (lower line) and for
the data with the outliers removed (sloped line). 

Because these authors have already reexpressed the two
frequency (count) variables, it will be useful to reverse the
reexpression to see the original data, which are presented
in Figure 2.14. The top panels show the histograms of the
original raw data along with the quantile-quantile (QQ) plot,
which is often called the normal-probability plot in cases like
these because the ranks of the data are plotted against the z
scores of corresponding ranks in a unit-normal distribution.
When the points of the QQ plot are straight, this reflects the
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Figure 2.13 Scatter plot matrix of reaction time data from Paap, Johansen, Chun, and Vonnahme (2000).
Patterns in the matrix reflect skew and outliers in some marginal distributions as well as nonlinearity in bi-
variate distributions. Outliers are highlighted in all graphics simultaneously through brushing and linking.

match between the empirical and theoretical distributions,
which in this case is Gaussian. The data running along the
bottom of these displays reflect the numerous data values at
the bottom of the scales for the original frequency data. Pan-
els E and F show the scatter plot of the raw data before reex-
pression and the corresponding simple regression residuals,
which indicate that the spread of the error is approximately
equal to the spread of the data. Although this logarithmic
transformation is quite appropriate, it was chosen based upon
historical precedent with data of this type rather than on em-
pirical examination. Accordingly, in the view of EDA, the
outcome is correct while the justification is lacking.

Turning to how remaining variables may be improved, we
consider the four percentage variables, especially the highly
distorted CIC variable. Working directly with percentages
can be quite misleading because differences in values are not
equally spaced across the underlying continuum. For exam-
ple, it is generally easier to move from an approval rating of
50 to 55% than it is to move from 90 to 95%. All content

aside, the variance for the underlying binomial distribution is
largest around .5 and smallest near 0 and 1. As noted above,
this mathematical situation leads to a general rule for substi-
tuting logits (a.k.a., flogs) for raw percentages. Accordingly,
we move forward by converting each percentage into a pro-
portion (using the sophisticated process of dividing by 100)
and constructing the logit for each proportion. The effect of
this reexpression on the %C and CIC variables is portrayed in
Figure 2.15. As the reader can see, the distributions are
greatly moved toward Gaussian, and the appearance of the
scatter plot changes dramatically. 

The impact of this reexpression is considerable. Using the
correlation coefficient in the original highly skewed and
variance-unstable scale of percentages resulted in a measure
of association of r = .014, suggesting no relationship be-
tween these two values. However, when the scale value and
corresponding variance are adjusted using the logistic reex-
pression, the measure of relationship is r = .775—a dramatic
difference in impression and likely a dramatic effect on
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Figure 2.14 Histograms, normal-probability plots, and scatter plots for reaction time data as they would appear without the logarith-
mic reexpression used by the original authors.

theory development and testing. In a similar vein, Behrens
(1997a) demonstrated how failure to appropriately reexpress
similar data led Paap and Johansen (1994) to misinterpret the
results of a multiple regression analysis. As in this case, a
simple plotting of the data reveals gross violations of distrib-
utional assumptions that can lead to wildly compressed cor-
relations or related measures.

The H variable is likewise of interest. Because it is a
count, general heuristics suggest a square-root or logarithmic
reexpression. Such reexpressions, however, fail to improve
the situation substantially, so another course of action is re-
quired. Because the H variable is a count of high-frequency
neighbors, and this number is bounded by the number of
neighbors that exist, a logical alternative is to consider H as
the proportion of neighbors that are high frequency rather

than the simple count. When such a proportion is computed
and converted to a logit, the logit-H variable becomes very
well behaved and leads to much clearer patterns of data and
residuals. The revised scatter plot matrix for these variables is
presented in Figure 2.16. As the reader may see, a dramatic
improvement in the distributional characteristics has been
obtained.

Although some researchers may reject the notion of reex-
pression as “tinkering” with the data, our experience has been
that this view is primarily a result of lack of experience with
the new scales. In fact, in many instances individuals often
use scale reexpressions with little thought. For example,
the common practice of using a proportion is seldom ques-
tioned, nor is the more common reexpression to z scores. In
daily language many people have begun to use the log10
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Figure 2.15 Histograms, normal-probability plots, and scatter plot for percent correct (%C) and percent congruent-incongruent ratio
(CIC) following logistic reexpression.

reexpression of dollar amounts as “five-figure,” “six-figure,”
or “seven-figure.” Wainer (1977) demonstrated that the often
recommended reexpression of 1�X for reaction-time tasks
simply changes the scale from seconds per decision (time) to
decisions per second (speed). Surely such tinkering can have
great value when dramatic distributional improvements are
made and sufficient meaning is retained. 

Resistance

Because a primary goal of using EDA is to avoid being
fooled, resistance is an important aspect of using EDA tools.
Resistant methods are methods that are not easily affected by
extreme or unusual data. This value is the basis for the gen-
eral preference for the median rather than the mean. The

mean has a smaller standard error than the median, and so is
an appropriate estimator for many confirmatory tests. On the
other hand, the median is less affected by extreme scores or
other types of perturbations that may be unexpected or un-
known in the exploratory stages of research. 

In general, there are three primary strategies for improv-
ing resistance. The first is to use rank-based measures and ab-
solute values, rather than measures based on sums (such as
the mean) or sums of squares (such as the variance). Instead,
practitioners of EDA may use the tri-mean, which is the aver-
age of Q1, Q3, and the median counted twice. For measures
of spread, the interquartile range is the most common,
although the median absolute deviation (MAD) from the
median is available as well. The second general resistance-
building strategy is to use a procedure that emphasizes more
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Figure 2.16 Scatter plot matrix of reaction time data after full set of reexpressions. When compared with
the original data shown in Figure 2.13, this matrix reflects the improved ability to model the data using
linear models.

centrally located scores and that uses less weight for more
extreme values. This category includes trimmed statistics in
which values past a certain point are weighted to 0 and
thereby dropped from any estimation procedures. Less dras-
tic approaches include the use of the biweight, in which val-
ues are weighted as an exponential function of their distance
from the median. A third approach is to reduce the scope of
the data one chooses to model on the basis of knowledge
about extreme scores and the processes they represent.

Dealing with Outliers

The goal of EDA is to develop understandings and descrip-
tions of data. This work is always set in some context and
always presents itself with some assumptions about the scope
of the work, even when these assumptions are unrecognized.
Consider, for example, the task described in Behrens and
Smith (1996) of developing a model of state-level economic
aspects of education in the United States. In this analysis,

simple use of a scatter plot matrix revealed three consistent
outliers in distributions of variables measured in dollars. The
first outlier was the observation associated with the District of
Columbia. How should this extreme value be approached? If
the original intention was state-level analysis, the outlier in
the data simply calls attention to the fact that the data were not
prescreened for non-states. Here the decision is easy: Reestab-
lish the scope of the project to focus on state-level data.

The remaining two outliers were observations associated
with the states of Hawaii and Alaska. These two states had
values that were up to four times higher than the next highest
values from the set of all states. In many cases, the mean of
the data when all 50 states were included was markedly dif-
ferent from the mean computed using values from only the
contiguous 48 states. What should the data analyst do about
this problem? Here again, the appropriate role of the ex-
ploratory work has led to a scope-clarification process that
many data analysts encounter in the basic question Do I model
all the data poorly, or do I model a specific subset that I can

schi_ch02.qxd  9/6/02  11:57 AM  Page 56



Current Computing and Future Directions 57

describe well? Although this question needs to be answered
on a case-by-case basis, in the situation described here there is
little doubt. Alaska and Hawaii should be set aside and the re-
searcher should be content to construct a good model for the
48 contiguous states. Furthermore, the researcher should note
that he or she has empirical evidence that Alaska and Hawaii
follow different processes. This is a process of setting aside
data and focusing scope. Clearly this process of examination
and scope revision would need to be reported.

In this case, the rationale is clear and the data have seman-
tic clarity. In other cases, however, quite extreme values may
be found in data that are not simply victims of poor measure-
ment models (e.g., the end of a long tail awaiting logarithmic
reexpression). Under these circumstances the fundamental
question to ask is Do we know something about these obser-
vations that suggest they come from a different process than
the process we are seeking to understand? In experimentally
oriented psychology, rogue values could be caused by nu-
merous unintended processes: failure to understand instruc-
tions (especially during opening trials), failure to follow the
instructions, failure to pay attention to the task (especially
during closing trials), or equipment or data transcription fail-
ures. Under such circumstances, it is clear the data are not in
the domain of the phenomenon to be studied, and the data
should be set aside and the situation noted.

In other cases, extreme values present themselves with lit-
tle auxiliary information to explain the reason for the extreme-
ness. In such a situation we may first assess how much damage
the values create in the model by constructing the model with
all the data involved as well as with the questionable data
set aside. For example, Behrens (1997b) conducted a meta-
analysis of correlations between subscales of the White Racial
Identity Attitude Scale (Helms, 1997). Initial review of the
data suggested the distributions were not homogeneous and
that some study results differed dramatically from the average.
To assess the effect of these extreme values, Behrens calcu-
lated the average correlations, first, using all the data, and sec-
ond, using a 20% trimmed mean. Results were consistent
across approaches, suggesting the data could remain or be set
aside with little impact on the inferences he was to make. What
would have happened if, on the other hand, the trimmed re-
sults deviated from the full-data results? In such a case both
sets of analysis should be conducted and reported and the dif-
ference between the two results considered as a measure of the
effect of the rogue values. The most important aspect in either
case is that a careful and detailed description of the full data,
the reduced data, and the impact of the rogue data be reported.
Unfortunately, the extremely terse and data-avoidant descrip-
tions of much research reporting is inconsistent with this
highly descriptive approach.

Summary

The tools described in this section are computational and
conceptual tools intended to guide the skilled and skeptical
data analyst. These tools center on the four Rs of revelation,
residuals, reexpression, and resistance. The discussion
provided here provides only a glimpse into the range of tech-
niques and conceptualizations in the EDA tradition. In prac-
tice, the essential elements of EDA center on the attitudes of
flexibility, skepticism, and ingenuity, all employed with the
goals of discovering patterns, avoiding errors, and develop-
ing descriptions.

CURRENT COMPUTING AND FUTURE
DIRECTIONS

Computing for EDA

While EDA has benefited greatly from advances in statistical
computing, users are left to find the necessary tools and ap-
propriate interfaces spread across a variety of statistical pack-
ages. To date, the software most clearly designed for EDA is
Data Desk (Data Description, 1997). Data Desk is highly in-
teractive and completely graphical. Graphical windows in
Data Desk do not act like “static” pieces of paper with
graphic images, but rather consist of “live” objects that re-
spond to brushing, selecting, and linking. The philosophy is
so thoroughly graphical and interactive that additional vari-
ables can be added to regression models by dragging icons of
the variables onto the regression sums-of-squares table.
When this occurs, the model is updated along with all graph-
ics associated with it (e.g., residual plots). Data Desk has a
full range of EDA-oriented tools as well as many standards
including multivariate analysis of variance (MANOVA) and
cluster analysis—all with graphical aids. Because of its out-
standing emphasis on EDA, Data Desk has been slower to de-
velop more comprehensive data management tools, as has
been the case with more popular tools like those offered by
SAS, SPSS, and SYSTAT.

Both SAS (SAS Institute, 2001) and SPSS (SPSS, Inc.,
2001) have improved their graphical interactivity in recent
years. The SAS Insight module allows numerous interactive
graphics, but linking and other forms of interaction are less
comprehensive than those found in Data Desk. SYSTAT
serves as a leader in graphical and exploratory tools, placing
itself between the complete interactivity of Data Desk and the
more standard approach of SAS and SPSS.

The S language and its recent incarnation as S-PLUS
(Insightful, 2001) has long been a standard for research in
statistical graphics, although it appears also to be emerging as
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a more general standard for statistical research. Venables and
Ripley’s 1999 book titled Modern Applied Statistics with
S-PLUS (often called MASS) provides an outstanding intro-
duction to both the Splus language and many areas of modern
statistical computing of which psychologists are often un-
aware, including projection pursuit, spline-based regression,
classification and regression trees (CART), k-means cluster-
ing, the application of neural networks for pattern classifica-
tion, and spatial statistics.

High-quality free software is also available on the Internet
in a number of forms. One consortium of statisticians has cre-
ated a shareware language, called R, that follows the same
syntax rules as S-PLUS and can therefore be used inter-
changeably. A number of computing endeavors have been
based on Luke Tierney’s XLISP-STAT system (Tierney,
1990), which is highly extensible and has a large object-
oriented feature set. Most notable among the extensions is
Forrest Young’s (1996) ViSta (visual statistics) program,
which is also free on the Internet.

Despite the features of many of these tools, each comes
with weaknesses as well as strengths. Therefore, the end user
must have continuing facility in several computing environ-
ments and languages. The day of highly exchangeable data
and exchangeable interfaces is still far off.

Future Directions

The future of EDA is tightly bound to the technologies of
computing, statistics, and psychology that have supported its
growth to date. Chief among these influences is the rise of
network computing. Network computing will bring a number
of changes to data analysis in the years ahead because a net-
work allows data to be collected from throughout the world,
allows the data to have extensive central or distributed stor-
age, allows computing power a distributed or centralized lo-
cation, and allows distribution of results quickly around the
world (Behrens, Bauer, & Mislevy, 2001). With regard to the
increase in data acquisition, storage, and processing power,
these changes will lead to increasing availability and need for
techniques to deal with large-scale data. With increasingly
large data sets, data analysts will have difficulty gaining de-
tailed familiarity with the data and uncovering unusual pat-
terns. Hopefully, the capacity for ingenuity and processing
power will keep up with the increase in data availability. 

Data Projections

Currently, most existing visualization tools are based upon
variable space, in which data points are depicted within the
Cartesian coordinates. With the advent of high-powered

computing, more and more statistical software packages
incorporate graphical tools that utilize other spatial systems.
For example, several statistical packages implement the bi-
plot (Gabriel, 1981; Gower & Hand, 1996), which combines
variable space and subject space (also known as vector
space). In subject space each subject becomes a dimension,
and vectors are displayed according to the location of vari-
ables mapping into this subject space. In addition, SYSTAT
implements additional projections, including triangular dis-
plays, in which both the Cartesian space and the barycentric
space are used to display four-dimensional data.

Interactive methods for traversing multivariate data have
been developed as well. Swayne, Cook, and Buja (1998)
developed the X-GOBI system, which combines the high-
dimensional search techniques of projection pursuit
(Friedman & Tukey, 1974) and grand tour (Asimov, 1985).
The grand tour strategy randomly manipulates projections for
high-dimensional data using a biplot or similar plotting sys-
tem, so that the user has an experience of touring “around”
three- (or higher) dimensional rotating displays. Projection
pursuit is a computing-intensive method that calculates an
“interestingness function” (usually based on nonnormality)
and develops search strategies over the multidimensional gra-
dient of this function. Grand tour can provide interesting
views but may randomly generate noninteresting views for
quite some time. Projection pursuit actively seeks interesting
views but may get caught in local minima. By combining these
two high-dimensional search strategies and building them into
a highly interactive and visual system, these authors leveraged
the best aspects of several advanced exploratory technologies.

Data Immersion

To deal with the increasing ability to collect large data sets,
applications of EDA are likely to follow the leads developed
in high-dimensional data visualization used for physical
systems. For example, orbiting satellites send large quantities
of data that are impossible to comprehend in an integrated
way without special rendering. To address these issues,
researchers at the National Aeronautics and Space Adminis-
tration (NASA) have developed tools that generate images of
planetary surface features that are rendered in three-
dimensional virtual reality engines. This software creates an
imaginary topology from the data and allows users to “fly”
through the scenes.

Although most psychologists are unlikely to see such huge
(literally astronomical!) quantities of data, desktop computers
can provide multimedia assistance for the creation of inter-
active, three-dimensional scatter plots and allow the animation
of multidimensional data (e.g., Yu & Behrens, 1995).
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Distributed Collaboration 

Because data analysis is a social process and groups of re-
searchers often work together, EDA will also be aided by the
development of computer–desktop sharing technologies. In-
ternetworking technologies currently exist that allow individ-
uals to share their views of their computer screens so that
real-time collaboration can occur. As statistical packages be-
come more oriented toward serving the entire data-analytic
process, developers will consider the social aspects of data
analysis and build in remote data-, analysis-, image-, and
report-sharing facilities. Such tools will help highly trained
data analysts interact with subject-matter experts in schools,
clinics, and businesses.

Hypermedia Networks for Scientific Reporting 

While the natures of scientific inquiry, scientific philosophy,
and scientific data analysis have changed dramatically in the
last 300 years, it is notable that the reporting of scientific
results differs little from the largely text-based and tabular
presentations used in the eighteenth century. Modern print

journals, under tight restrictions for graphics and space, have
largely omitted the reporting of exploratory results or de-
tailed graphics. Although a textual emphasis on reporting was
necessary for economic reasons in previous centuries, the rise
of network-based computing, interactive electronic informa-
tion display, and hypertext documents supports the expansion
of the values of EDA in scientific reporting. In a paper-based
medium, narrative development generally needs to follow a
linear development. On the other hand, in a hypertext envi-
ronment the textual narrative can appear as traditionally im-
plemented along with auxiliary graphics, detailed computer
output, the raw data, and interactive computing—all at a
second level of detail easily accessed (or ignored) through
hypertext links. In this way, the rich media associated
with EDA can complement the terse reporting format of the
American Psychological Association and other authoring
styles (Behrens, Dugan, & Franz, 1997).

To illustrate the possibility of such a document structur-
ing, Dugan and Behrens (1998) applied exploratory tech-
niques to reanalyze published data reported in hypertext on
the World Wide Web. Figure 2.17 is an image of the interface

Figure 2.17 Screen appearance of electronic document created from EDA perspective by Dugan and
Behrens (1998).
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used by these authors. The pages were formatted so that the
names of variables were hyperlinked to graphics that ap-
peared on a side frame, and the names of references were hy-
perlinked to the references that appeared on the top frame of
the page. References to F tests or regression-results linked to
large and well-formatted result listings, and the data were hy-
perlinked to the paper as well.

While we wait for arrival of widespread hypertext in
scientific journals, personal Web sites for improving the re-
porting of results can be used. For example, Helms (1997)
criticized the analysis of Behrens (1997b), which questioned
the psychometric properties of a commonly used scale in the
counseling psychology racial-identity literature. Part of the
concern raised by Helms was that she expected large amounts
of skew in the data, and hence, likely violations of the statis-
tical assumptions of the meta-analyses and confirmatory fac-
tor analyses that Behrens (1997b) reported. In reply, Behrens
and Rowe (1997) noted that the underlying distributions had
been closely examined (following the EDA tradition) and
that the relevant histograms, normal-probability plots, scatter
plot matrices (with hyperlinks to close-up views), and the
original data were all on the World Wide Web (Behrens &
Dugan, 1996). This supplemental graphical archive included
a three-dimensional view of the data that could be navigated
by users with Web browsers equipped with commonly avail-
able virtual-reality viewers. Such archiving quickly moves
the discussion from impressions about possibilities regarding
the data (which can be quite contentious) to a simple display
and archiving of the data.

Summary

Emerging tools for EDA will continue to build on develop-
ments in integration of statistical graphics and multivariate
statistics, as well as developments in computer interface de-
sign and emerging architectures for collecting, storing, and
moving large quantities of data. As computing power contin-
ues to increase and computing costs decrease, researchers
will be exposed to increasingly user-friendly interfaces and
will be offered tools for increasingly interactive analysis and
reporting. In the same way that creating histograms and scat-
ter plots is common practice with researchers now, the con-
struction of animated visualizations, high-dimensional plots,
and hypertext reports is expected to be commonplace in the
years ahead. To offset the common tendency to use new tools
for their own sake, the emergence of new technologies cre-
ates an increased demand for researchers to be trained in the
conceptual foundations of EDA. At the same time, the emer-
gence of new tools will open doors for answering new scien-
tific questions, thereby helping EDA evolve as well.

CONCLUSION

Despite the need for a wide range of analytic tools, training
in psychological research has focused primarily on statistical
methods that focus on confirmatory data analysis. Ex-
ploratory data analysis (EDA) is a largely untaught and
overlooked tradition that has great potential to guard psy-
chologists against error and consequent embarrassment. In
the early stages of research, EDA is valuable to help find the
unexpected, refine hypotheses, and appropriately plan future
work. In the later confirmatory stages, EDA is valuable to
ensure that the researcher is not fooled by misleading aspects
of the confirmatory models or unexpected and anomalous
data patterns.

There are a number of missteps the reader can make when
faced with introductory materials about EDA. First, some
readers may focus on certain aspects of tradition and see their
own activity in that area as compelling evidence that they
are already conducting EDA. Chief among these aspects is
the use of graphics. By showing a broad range of graphics,
we sought to demonstrate to the reader that statistical graph-
ics has become a specialization unto itself in the statistics
literature, and that there is much to learn beyond what is
commonly taught in many introductory courses. Whereas the
exploratory data analyst may use graphics, the use of graph-
ics alone does not make an exploratory data analyst.

A second pitfall the reader should be careful to avoid is re-
jecting the relevance of the examples used in this chapter.
Some might argue that the pathological patterns seen herein
exist only in data from meta-analyses or reaction time exper-
iments, or in educational data. Our own work with many
types of data sets, and in conversations with psychologists in
numerous specializations, suggests that these are not isolated
or bizarre data sets but are quite common patterns. The reader
is encouraged to reanalyze his or her own data using some of
the techniques provided here before making judgments about
the prevalence of messy data.

A third pitfall to avoid is overlooking the fact that em-
bracing EDA may imply some confrontation with traditional
values and behaviors. If EDA is added to the methodology
curriculum then other aspects may need to be deemphasized.
If new software is desired, changes in budgets may need to
occur, with their associated social conflicts. Additionally,
conflict may arise within the researcher as he or she works
to balance the value of EDA for scientific advancement
while finding little explicit value for EDA in manuscript
preparation.

Psychological researchers address complex and difficult
problems that require the best set of methodological tools
available. We recommend EDA as a set of conceptual and
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computational tools to supplement confirmatory statistics,
and expect psychological research will increase in efficiency
and precision by its wider applications.
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There are, of course, two major types of errors one might
commit when testing any hypothesis. The first, called a Type I
error, is rejecting when in fact the null hypothesis is true, and
the second is failing to reject when the null hypothesis is
false. Certainly it is undesirable to claim that groups differ or
that there is an association between two variables when this is
false. But simultaneously, it is undesirable to fail to detect a
difference or to detect an association that is real, particularly
if the difference has important practical implications. This
latter error, failing to reject when the null hypothesis is false,
is called a Type II error, and the probability of rejecting when
the null hypothesis is false is called power. The roots of mod-
ern approaches to power date back two centuries to Laplace,
who derived the frequentist approach to computing confi-
dence intervals used today. And even before Laplace, the
basic idea can be gleaned from the work of de Moivre, who
derived the equation for the normal curve.

Consider, for example, the usual one-way analysis of vari-
ance (ANOVA) design where the goal is to test the hypothe-
sis of equal means among J independent groups. That is, the
goal is to test

H0: �1 = · · · = �J ,

where �1, . . . , �J are the corresponding population means.
Power analyses are used to plan studies with the goal that the

power of the statistical tests used will be adequate for the
smallest effect deemed to be important. Under normality and
homoscedasticity (meaning that all J groups have a common
variance), exact control over the probability of a Type I error
can be achieved with the classic ANOVA F test, as is well
known. Moreover, there is a standard method for assessing
power as well, which is described and illustrated later in
this chapter. In essence, based on a certain measure of the dif-
ference among the population means, it is possible to deter-
mine power exactly given the sample sizes and a choice for
the probability of a Type I error. In particular, the adequacy of
proposed sample sizes can be assessed by determining how
much power they provide. Today, the term power analysis
brings to mind this technique, so it is important to cover it
here.

However, a goal in this chapter is to take a broader look at
power, paying particular attention to modern insights and ad-
vances. A half century ago, the method for assessing power
mentioned in the previous paragraph was certainly reason-
able, but little was known about its properties when violating
the assumptions of normality and homoscedasticity. Indeed,
there were some indications that assumptions could be vio-
lated with impunity, but during the ensuing years there have
been many insights regarding the consequences of violating
these assumptions that have serious practical implications.
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So one of the goals here is to summarize why there are prac-
tical concerns and how they might be addressed. The theme
in this paper is that conventional methods have proven to be
useful but that they are far from perfect and sometimes disas-
trous. Moreover, our understanding of factors that are rele-
vant to power continues to grow, as does the collection of
statistical tools for dealing with problems that have been dis-
covered. In addition, there is more to power than determining
adequate sample sizes. Generally, it is a complex problem
that requires a plethora of tools, and one goal is to describe
some of the tools that might be used.

A related issue is power when dealing with associations
among two or more variables. Again, relatively simple meth-
ods are available under normality and homoscedasticity. For
example, when testing the hypothesis that Pearson’s correla-
tion is zero, if in reality it is equal to .3, say, the sample size
can be determined so that the probability of rejecting is
equal to .8, say, or any value deemed important. But when
these assumptions are violated, practical problems are even
worse relative to ANOVA. Of course, one could simply ig-
nore these problems, so a goal in this chapter is to explain
why this strategy can be highly unsatisfactory and summarize
some of the modern methods that might be used instead. Sub-
stantial progress has been made, but it will be argued that
even more needs to be done.

Generally, achieving high power, and even judging
whether power will be high in a given situation, is an ex-
tremely complex problem that has seen many major advances
in recent years. These advances include a better understand-
ing of what affects power and how power might be maxi-
mized. Consider, for example, the problem of comparing two
groups in terms of some measure of location such as the
mean or median. A variety of factors affects power, and
some are well known whereas others are being found to be
more important than was previously thought. A basic factor is
the smallest difference between the groups deemed impor-
tant, which is reflected by some type of effect size, examples
of which will be given. Certainly the variance associated
with some outcome variable is well known to influence
power when making inferences based on sample means, and
additional factors influencing power are skewness, heavy
tailedness (roughly referring to situations where outliers are
common), and heteroscedasticity (unequal variances).
Achieving relatively high power, as well as understanding
the limitations of standard approaches to power, requires an
understanding of how these factors influence power, so
another goal here is to address this issue.

Note that at best, there is a limited amount of control one
can exert over these factors. In some situations, the outcome
variable of interest can be constructed in a way that influences

its variance, but once a population of individuals has been
selected for study, and once the outcome (dependent) variable
has been settled upon, the variance becomes an unknown
state of nature that is now beyond our control. Other factors
over which we have partial control are � (the probability of a
Type I error), the reliability of the measures being used, and
the sample sizes. Steps can be taken to improve reliability;
nevertheless, it remains an issue when dealing with power.
As is well known, the choice for � influences power, but
typically there are limits on how large � can be. And of
course there are limits on how many observations one can
obtain.

At this stage, factors that remain within our control in-
clude the estimator used (such as the mean vs. the median)
and the hypothesis-testing technique employed. It has long
been known that under normality and homoscedasticity,
Student’s T test achieves relatively high power. However, a
practical concern is that arbitrarily small departures from a
normal curve toward a heavy-tailed distribution can destroy
power when working with any method based on means. Also,
skewness can contribute to this problem in a substantial way,
and even under normality heteroscedasticity is yet another
factor that can lower power. Increasing sample sizes is one
way of dealing with these concerns, but as will be explained,
restricting attention to this one approach can be relatively
unsatisfactory.

A CONVENTIONAL POWER ANALYSIS 

Although the goal in this paper is to provide a broad perspec-
tive on power, a description of a conventional power analysis
is first presented for readers unfamiliar with it. Consider two
independent groups, assume normality and homoscedasticity,
and assume that the population means are to be compared
with Student’s T test. If the means differ, we should reject, so
the issue is the probability of rejecting as a function of the
sample sizes. For example, if the sample sizes are n1 =
n2 = 20, what is the power, and if the power is judged to be
too low, how large must the sample sizes be to correct this
problem? Typically, a researcher specifies a desired amount
of power and consults specially designed tables or software
that indicates the required sample size. Doing this requires
first specifying some difference between the means that is
judged to be important. A natural way of doing this is with the
difference between the means, �1 − �2, but it is impossible
to determine the required sample size based on this approach
(Dantzig, 1940). (Switching to a two-stage procedure, power
can be addressed based on the difference between the means,
as will be explained later.) If a standardized difference is used
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instead, namely,

� = �1 − �2

�
,

where �2 is the assumed common variance, this technical dif-
ficulty is avoided. Cohen (1977) defined a large effect as some-
thing that is visible to the naked eye and concluded that for two
normal distributions having a common variance, small,
medium, and large effect sizes correspond to � = .2,� = .5,

and � = .8, respectively. Given that the probability of a Type I
error is �, Cohen provides tables for determining the required
sample sizes (also see Kraemer & Thiemann, 1987). For ex-
ample, with n1 = n2 = 20, � = .8, and � = .05, power is
.68. Rather than specify a value for �, one can plot a so-called
power curve where power is plotted versus �, given the sam-
ple sizes and �. An advantage of this approach is that it pro-
vides a more global sense of how power is related to � based
on the sample sizes used. (For software, see Bornstein, 2000;
Elashoff, 2000; O’Brien, 1998.)

An extension of this standard power analysis to more than
two groups, still assuming normality and homoscedasticity,
has been derived. That is, given �, the sample sizes corre-
sponding to J groups, and a difference among the means
deemed to be important, power can be computed. Assuming
equal sample sizes, now the difference among the means is
typically measured with

1

�

√∑
(�j − �)2

J
,

where again �2 is the assumed common variance. There are
fundamental problems with this standard approach, not the
least of which is the interpretation of this last equation when
dealing with nonnormal distributions. Some of these prob-
lems arise under arbitrarily small departures from normality,
as will be illustrated.

FACTORS OVER WHICH WE HAVE 
LIMITED CONTROL

Achieving relatively high power requires, among other
things, a more detailed understanding about how factors over
which we have limited control are related to power so that the
relative merits of factors within our control can be under-
stood. Consider some population of individuals and suppose
that some outcome measure, X, has been chosen for study.
When working with means, it is well known that the variance
of a distribution, �2, has a direct effect on power: The larger
�2 happens to be, the lower power will be with � and the

sample sizes fixed. More generally, power is related to the
squared standard error of the measure of location being used.
For the sample mean, X, the squared standard error is the
variance of the sample mean (if a study could be repeated
infinitely many times), which is

VAR(X) = �2

n
, (3.1)

where n is the sample size. It is this connection with the vari-
ance that wreaks havoc when using any method based on
means.

A classic illustration of why is based on a particular mixed
(or contaminated) normal distribution where with probability
.9 an observation is sampled from a standard normal distrib-
ution and otherwise sampling is from a normal distribution
having a standard deviation of 10. Figure 3.1 shows the stan-
dard and mixed normal distributions. The mixed normal is
said to have thick or heavy tails because its tails lie above the
normal curve, which implies that unusually small or large
values, called outliers, are more common when sampling
from the mixed normal versus the normal. As is evident, the
two distributions are very similar in a certain sense, but there
is a crucial difference: The standard normal has variance 1,
but the mixed normal has variance 10.9. This illustrates the
well-known result that an arbitrarily small change in any dis-
tribution, including normal distributions as a special case,
can cause the variance to become arbitrarily large. That is, �2

is extremely sensitive to the tails of a distribution. One impli-
cation is that arbitrarily small departures from normality can
result in low power (relative to other methods we might use)
when comparing means.

To begin to appreciate that alternative estimators can
make a practical difference in applied work, consider the me-
dian versus the mean. Figure 3.2 shows a plot of 5,000 medi-
ans and means, each based on 20 observations randomly
sampled from the mixed normal shown in Figure 3.1. Note
that the medians are more tightly clustered around zero, the
value being estimated, than are the means. That is, the me-
dian has a much smaller standard error than the mean, which
can translate into more power. However, if observations are
sampled from a standard normal distribution instead, the plot
of the medians versus the means now appears as shown in
Figure 3.3. That is, using medians can result in low power
relative to using the mean (as well as other estimators
described later in this chapter).

To provide an explicit illustration regarding the effect of
nonnormality on power when using means, suppose that 25
observations are randomly sampled from each of two normal
distributions both having variance 1, the first having mean 0
and the second having mean 1. Applying Student’s T test with
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Figure 3.2 Distribution of the mean versus median when sampling from a mixed normal
distribution.

� = .05, the probability of rejecting (power) is .96. But if
sampling is from mixed normals instead, with the difference
between means again 1, power is only .28. (A complication
when discussing means vs. medians is that for skewed distri-
butions, each generally estimates different quantities, so it is
possible for means to have more power regardless of their
standard errors, and the reverse is true as well.)

For the situation just described, if medians are compared
with the method derived by McKean and Schrader (1984),
power is approximately .8 when sampling from the normal
distributions. So a practical issue is whether a method can be

found that improves upon the power of the McKean-Schrader
method for medians when sampling from normal distribu-
tions and continues to have relatively high power when sam-
pling from a heavy-tailed distribution such as the mixed
normal. Such methods are available and are described later in
this chapter.

Student’s T Can Be Biased

To illustrate the effects of skewness on power when using
Student’s T, suppose that 20 observations are sampled from

Figure 3.1 A mixed normal and standard normal distribution. Despite the similarity, the
mixed normal has variance 10.9, whereas the standard normal which has variance 1.

schi_ch03.qxd  8/2/02  2:44 PM  Page 68



Factors Over Which We Have Limited Control 69

Figure 3.3 Distribution of the mean versus median when sampling from a standard normal
distribution.

Figure 3.4 A lognormal distribution.

the (lognormal) distribution shown in Figure 3.4, which has a
mean of .4658. From basic principles, inferences about the
mean are based on

T = X − �

s/
√

n
, (3.2)

assuming T has a Student’s T distribution with n − 1 degrees
of freedom, where s is the sample standard deviation and � is
the population mean. In particular, the distribution of T is as-
sumed to be symmetric about zero, but when sampling from
an asymmetric distribution, this is not the case. For the situa-
tion at hand, the distribution of T is given, approximately, by
the asymmetric curve shown in Figure 3.5, which is based on

values for T generated on a computer. The symmetric curve
is the distribution of T under normality. The main point here
is that the mean (or expected value) of T is not 0—it is ap-
proximately −.5. This might appear to be impossible because
under random sampling the expected value of the numerator
of T, X − �, is 0, which might seem to suggest that T must
have a mean of 0 as well. However, for nonnormal distribu-
tions, X and s are dependent, and this dependence makes it
possible for the mean of T to differ from zero. (Gosset, who
derived Student’s T distribution, was aware of this issue.)
This property is important because it has practical implica-
tions about power: Power can actually decrease as we move
away from the null hypothesis. That is, situations arise where
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Figure 3.5 The ragged line is the plot of T values based on data generated from a lognormal
distribution. The smooth symmetric curve is the distribution of T under normality.

Figure 3.6 Power curve of T when sampling from a lognormal distribution.

there is a higher probability of rejecting when the null hy-
pothesis is true versus situations where the the null hypothe-
sis is false. In technical terms, Student’s T test is biased.

To provide perspective, Figure 3.6 shows the power curve
of Student’s T with n = 20 and when � is added to every ob-
servation. That is, when � = 0, the null hypothesis is true;
otherwise, the null hypothesis is false, and the difference be-
tween the true mean and the hypothesized value is �. In this
case, power initially decreases as we move away from the
null hypothesis, but eventually it goes up (cf. Sawilowsky,
Kelley, Blair, & Markham, 1994). The value � = .6 repre-
sents a departure from the null value of slightly more than
one fourth of a standard deviation. That is, moving a quarter

standard deviation from the null, power is approximately the
same as when the null hypothesis is true.

The central limit theorem implies that with a sufficiently
large sample size, the distribution of T will converge to a nor-
mal distribution. It is known that for a lognormal distribution
(which is a skewed relatively light-tailed distribution among
the class of g-and-h distribution derived by Hoaglin, 1985),
even with 160 observations, there are practical problems with
obtaining accurate probability coverage and control over the
probability of a Type I error. (Westfall & Young, 1993, note
that for a one-sided test, the actual probability of a Type I
error is .11 when testing at the .05 level.) With about 200
observations, these problems become negligible. But when
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sampling from a skewed, heavy-tailed distribution, a sample
size greater than 300 might be required. It remains unclear,
however, how quickly practical problems with bias disappear
as the sample size increases.

The properties of the one-sample T test, when sampling
from a skewed distribution, have implications about compar-
ing two independent groups. To get a rough indication as to
why, consider the sample mean from two independent groups,
X1 and X2. If the two groups have identical distributions and
equal sample sizes are used, the difference between the means
has a symmetric distribution, and problems with bias and
Type I errors substantially higher than the nominal level are
minimal. But when distributions differ in skewness, practical
problems arise because the distribution of X1 − X2 will
be skewed as well. This is not to suggest, however, that bias is
not an issue when sampling from symmetric distributions. For
example, even when sampling from normal distributions, if
groups have unequal variances, the ANOVA F test can be
biased (e.g., Wilcox, Charlin, & Thompson, 1986).

A possible criticism of the problems with Student’s T
illustrated by Figures 3.5 and 3.6 is that in theory the actual
distribution of T can be substantially asymmetric, but can this
problem occur in practice? Using data from various studies,
Wilcox (2001, in press) illustrated that the answer is yes.
Consider, for example, data from a study conducted by
Pedersen, Miller, Putcha, and Yang (in press) where n = 104.

Figure 3.7 shows an approximation of the distribution of T
based on resampling with replacement 104 values from
the original data, computing T, and repeating this process
1,000 times. (That is, a bootstrap-t method was used, which is
described in more detail later.) In fact, all indications are that
problems with T are underestimated here for at least two

reasons. First, an extreme outlier was removed. If this outlier
is included, the approximation of the distribution of T de-
parts in an even more dramatic manner from the assumption
that it is symmetric about zero. Second, studies of the small-
sample properties of the bootstrap-t suggest that Figure 3.7
underestimates the degree to which the actual distribution of
T is skewed.

SAMPLE SIZE AND POWER

Perhaps the most obvious method for controlling power is
simply to adjust the sample size. This is relatively easy to do
when working with means and when sampling is from nor-
mal distributions, but such methods are fraught with peril.

Choosing Sample Sizes Before Sampling Observations

First, consider how the sample sizes might be chosen prior to
collecting data when comparing the means of two indepen-
dent normal distributions. A commonly used approach is to
characterize the difference between the groups in terms of a
standardized effect size:

� = �1 − �2

�
,

where by assumption the two groups have a common vari-
ance, �2. As mentioned, Cohen (1977) defined a large effect
as something that is visible to the naked eye and concluded
that for two normal distributions having a common variance,
small, medium, and large effect sizes correspond to � = .2,

� = .5, and � = .8, respectively. Given �, the sample sizes

Figure 3.7 An approximation of the distribution of T based on data with n = 104.

schi_ch03.qxd  8/2/02  2:44 PM  Page 71



72 Power: Basics, Practical Problems, and Possible Solutions

can be chosen so that for a given value of �, power will be
equal to some specified value—assuming normality (e.g.,
Cohen, 1977; Kraemer & Thiemann, 1987).

For example, with � = 1, and � = .05, and sample sizes
of 25, power will be equal to .96 when using Student’s T, as
previously indicated. What this reflects is a solution to
choosing sample sizes under the most optimistic circum-
stances possible. In reality, when comparing means, power
will be at most .96, and a realistic possibility is that power is
substantially lower than intended if Student’s T is used. As
already noted, an arbitrarily small departure from normality
can mean that power will be close to zero. Yet another con-
cern is that this approach ignores the effects of skewness and
heteroscedasticity.

Despite its negative properties, this approach to determin-
ing sample sizes may have practical value. The reason is that
when comparing groups with a robust measure of location
(described later) by design power will be approximately
equal to methods based on means and when sampling from a
normal distribution. Unlike means, however, power remains
relatively high when sampling from a heavy-tailed or asym-
metric distribution. So a crude approximation of the required
sample size when using a modern robust method might be
based on standard methods for choosing samples sizes when
comparing means.

Stein-Type Methods for Means

When some hypothesis is rejected, power is not an issue—the
probability of a Type II error is zero. But when we fail to re-
ject, the issue becomes why. One possibility is that the null
hypothesis is true, but another possibility is that the null hy-
pothesis is false and we failed to detect this. How might we
decide which of these two possibilities is more reasonable?
When working with means, one possibility is to employ what
is called a Stein-type two-stage procedure. Given some data,
these methods are aimed at determining how large the sample
sizes should have been in order to achieve power equal to
some specified value. If few or no additional observations are
required to achieve high power, this naturally provides some
assurance that power is reasonably high based on the number
of observations available. Otherwise, the indication is that
power is relatively low due to using a sample size that is too
small. Moreover, if the additional observations needed to
achieve high power are acquired, there are methods for test-
ing hypotheses that typically are different from the standard
methods covered in an introductory statistics course.

To describe Stein’s (1945) original method, consider a sin-
gle variable X that is assumed to have a normal distribution
and suppose that the goal is to test H0: � = �0, where �0 is

some specified constant. Further assume that the Type I error
probability is to be � and that the goal is to have power at
least 1 − � when � − �0 = �. For example, if the goal is to
test H0: � = 6, it might be desired to have power equal to .8
when in reality � = 8. Here, 1 − � = .8 and � = 8 − 6 = 2.

The issue is, given n randomly sampled observations, how
many additional observations, if any, are required to achieve
the desired amount of power. If no additional observations
are required, power is sufficiently high based on the sample
size used; otherwise, the sample size was too small. Stein’s
method proceeds as follows. Let t1−� and t� be the 1 − � and
� quantiles of Student’s T distribution with ν = n − 1 de-
grees of freedom. (So if T has a Student’s T distribution with
ν = n − 1 degrees, P[T ≤ t1−�] = 1 − �.) Let

d =
(

�

t1−� − t�

)2

.

Then the required sample size is

N = max

(
n,

[
s2

d

]
+ 1

)
,

where the notation [s2/d] means that s2/d is computed and
rounded down to the nearest integer. For example, if s = 21.4,

� = 20, 1 − � = .9, � = .01,and ν = 9, then

d =
(

20

1.383 − (−2.82)

)2

= 22.6,

so

N = max(10, [21.42/22.6] + 1) = max(10, 21) = 21.

If N = n, the sample size is adequate; but in the illustration,
N − n = 21 − 10 = 11. That is, 11 additional observations
are needed to achieve the desired amount of power. With
� = 29, N = 10, and no additional observations are required.

If the additional N − n observations can be obtained,
H0: � = �0 can be tested, but for technical reasons the obvi-
ous approach of applying Student’s T is not used. Rather, a
slight modification is applied that is based on the test statistic

TA =
√

n(�̂ − �0)

s
,

where �̂ is the mean of all N observations. You test hypothe-
ses by treating Ts as having a Student’s T distribution with
ν = n − 1 degrees of freedom. What is peculiar about Stein’s
method is that the sample variance based on all N observa-
tions is not used. Instead, s, which is based on the original
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n observations, is used. For a survey of related methods, in-
cluding techniques for controlling power when using the
Wilcoxon signed rank test or the Wilcoxon-Mann-Whitney
test, see Hewett and Spurrier (1983).

Stein’s method has been extended to the problem of com-
paring two or more groups. Included are both ANOVA and
multiple comparison procedures. The extension to ANOVA,
when comparing the means of J independent groups, was
derived by Bishop and Dudewicz (1978) and is applied as
follows. Imagine that power is to be 1 − � for some given
value of � and

� =
∑

(�j − �)2,

where � = ∑
�j/J. Further assume that nj observations

have been randomly sampled from the jth group, j =
1, . . . , J. One goal is to determine how many additional ob-
servations are required for the jth group to achieve the
desired amount of power.

Let z be the 1 − � quantile of the standard normal random
distribution. For the jth group, let νj = nj − 1. Compute

� = J∑ 1
�j −2

+ 2,

A = (J − 1)ν

ν − 2
,

B = ν2

J
× J − 1

ν − 2
,

C = 3(J − 1)

ν − 4
,

D = J 2 − 2J + 3

ν − 2
,

E = B(C + D),

M = 4E − 2A2

E − A2 − 2A
,

L = A(M − 2)

M
,

C = L f,

where f is the 1 − � quantile of an F distribution with L and
M degrees of freedom. The quantity c is the critical value
used in the event that the additional observations needed

to achieve power equal to 1 − � can be obtained. Next,
compute

b = (ν − 2)c

ν
,

A1 = 1

2
{
√

2z +
√

2z2 + A(2b − J + 2)},

B1 = A2
1 − b,

d = ν − 2

ν
× �

B1
.

Then the required number of observations for the jth group is

Nj = max

{
nj + 1,

[
s2

j

d

]
+ 1

}
. (3.3)

For technical reasons, the number of observations needed for
the jth group, Nj, cannot be smaller than nj + 1. (The notation
[s2

j /d] means that s2
j /d is computed and then rounded down

to the nearest integer.) Software for applying this method
can be found in Wilcox (in press).

In the event the additional Nj − nj observations can be ob-
tained from the jth group, exact control over both the Type I
error probability and power can be achieved even when the
groups have unequal variances—still assuming normality. In
particular, for the jth group compute

Tj =
nj∑

i=1

Xi j ,

Uj =
Nj∑

i=nj +1

Xi j ,

bj = 1

Nj


1 +

√√√√nj (Nj d − s2
j )

(Nj − nj )s2
j


 ,

X̃ j = Tj {1 − (Nj − nj )bj }
nj

+ bjUj .

The test statistic is

F̃ = 1

d

∑
(X̃ j − X̃)2,

where

X̃ = 1

J

∑
X̃ j .
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The hypothesis of equal means is rejected if F̃ ≥ c and
power will be at least 1 − �.

Multiple Comparisons

Stein-type multiple comparisons procedures were derived by
Hochberg (1975) and Tamhane (1977). One crucial differ-
ence from the Bishop-Dudewicz ANOVA is that direct con-
trol over power is no longer possible. Rather, these methods
control the length of the confidence intervals, which of
course is related to power. When sample sizes are small, both
methods require critical values based on the quantiles of what
is called a Studentized range statistic. Tables of these critical
values can be found in Wilcox (in press). For the details of
how to use these methods, plus easy-to-use software, see
Wilcox (in press).

DEALING WITH SKEWNESS,
HETEROSCEDASTICITY, AND OUTLIERS

Although Stein-type methods are derived assuming normal-
ity, they deal with at least one problem that arises under non-
normality. In particular, they have the ability of alerting us to
low power due to outliers. When sampling from a heavy-
tailed distribution, the sample variance will tend to be rela-
tively large, which in turn will yield a large N when using
Equation 3.3. This is because the sample variance can be
greatly inflated by even a single outlier. In modern terminol-
ogy, the sample variance has a finite sample breakdown point
of only 1/n, meaning that a single observation can make it
arbitrarily large. As a simple example, consider the values 8,
8, 8, 8, 8, 8, 8, 8, 8, 8, 8. There is no variation among these
values, so s2 = 0. If we increase the last value to 10, the sam-
ple variance is s2 = .36. Increasing the last observation to 12,
s2 = 1.45, and increasing it to 14, s2 = 3.3. The point is that
even though there is no variation among the bulk of the ob-
servations, a single value can make the sample variance arbi-
trarily large. In particular, outliers can substantially inflate s2,
but what can be done about improving power based on the
observations available, and how might problems due to
skewness, heteroscedasticity, and outliers be approached?

Heteroscedasticity

Today, virtually all standard hypothesis-testing methods
taught in an introductory course have heteroscedastic analogs,
summaries of which are given in Wilcox (in press). This is
true for methods based on measures of location as well as for
rank-based techniques such as the Wilcoxon-Mann-Whitney

test, and even for inferential methods used in regression and
when dealing with correlations. When comparing groups hav-
ing identical distributions, homoscedastic methods perform
well in terms of Type I errors, but when comparing groups that
differ in some manner, there are general conditions under
which these techniques are using the wrong standard error,
which in turn can result in relatively lower power. For exam-
ple, when using the two-sample Student’s T test, the assump-
tion is that the distribution of the test statistic T approaches a
standard normal distribution as the sample sizes increase. In
particular, the variance of the test statistic is assumed to
converge to one, but Cressie and Whitford (1986) described
general conditions under which this is not true. In a similar
manner, the Wilcoxon-Mann-Whitney test is derived under
the assumption that distributions are identical. When distribu-
tions differ, the wrong standard error is being used, which
causes practical problems. Methods for dealing with
heteroscedasticity have been derived by Fligner and Policello
(1981), Mee (1990), and Cliff (1994), as well as by Brunner
and Munzel (1999). The techniques derived by Cliff and
Brunner and Munzel are particularly interesting because they
include methods for dealing with tied values.

Skewness and the Bootstrap

The central limit theorem says that under random sampling
and with a sufficiently large sample size, it can be assumed
that the distribution of the sample mean is normal. Moreover,
Student’s T approaches a normal distribution as well, but a
practical concern is that it approaches a normal distribution
more slowly than X does when sampling from a skewed dis-
tribution (e.g., Wilcox, 2001). The problem is serious enough
that power is affected, as previously demonstrated.

One approach is to replace Student’s T and its het-
eroscedastic analogs with a bootstrap-t method. This ap-
proach is motivated by two general results. First, the theory
indicates that problems with nonnormality will diminish
more rapidly than with more conventional methods. To pro-
vide a rough idea of what this means, note that under nonnor-
mality there will be some discrepancy between the actual and
nominal level value for �, the probability of a Type I error.
When sample sizes are large, the rate at which conventional
(heteroscedastic) methods converge to the correct nominal
level is 1/

√
n. In contrast, methods based on the bootstrap-t

converge at the rate of 1/n—namely, faster. This does not
necessarily imply, however, that with small to moderate sam-
ple sizes, problems with low power due to skewness will be
negligible with a bootstrap technique. In terms of Type I er-
rors, for example, problems are often reduced considerably,
but for skewed heavy-tailed distributions, problems can
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persist even with n = 300 when attention is restricted to
means. Nevertheless, the bootstrap-t offers a practical advan-
tage because when making inferences based on means, it
generally performs about as well as conventional techniques
and in some cases offers a distinct advantage. As for power,
the bootstrap-t reduces problems due to bias, but just how
large the sample sizes must be to eliminate all practical con-
cerns remains unclear.

In the one-sample case, the bootstrap-t is applied as fol-
lows. Resample with replacement n observations from the
observed values X1, . . . , Xn yielding a bootstrap sample:
X∗

1, . . . , X∗
n . Compute

T ∗ =
√

n(X∗ − X)

s∗ ,

where X
∗

and s∗ are the mean and sample standard deviation
based on the bootstrap sample. Repeat this process B times
yielding T ∗

1 , . . . , T ∗
B . The middle 95% of these B values pro-

vides an approximation of the .025 and .975 quantiles of the
distribution of T, which can be used to test hypotheses or
compute confidence intervals. That is, rather than approxi-
mate the distribution of T by assuming normality, approxi-
mate its distribution based on the data available.

Dealing With Low Power Using Robust Estimators

Robust estimators provide another method for dealing with
low power due to skewness, and they can provide a substan-
tial advantage in power when sampling from heavy-tailed
distributions such as the mixed normal. Moreover, some ro-
bust estimators have been designed to provide relatively high
power under normality and simultaneously provide high
power when sampling from a heavy-tailed distribution.

It is noted that three criteria are used to judge the robust-
ness of any measure of location (e.g., Huber, 1981). Roughly,
these criteria reflect how small changes in any distribution
(including normal distributions as a special case) can affect
their values. The population mean (�) and population vari-
ance (�2) are not robust because arbitrarily small changes in
a distribution can alter their values by an arbitrarily large
amount. One practical consequence is that arbitrarily small
departures from normality can result in very poor power
compared to others methods that might be used.

As previously noted, outliers inflate the sample variance,
which can result in low power when comparing groups based
on means. So dealing with this problem might seem trivial:
Check for outliers, discard any that are found, and apply
some method for means to the data that remain. In symbols,
if we begin with N observations, discard those that are
declared outliers, leaving n observations, and then estimate

VAR(X), the squared standard error of the sample mean,
with s2/n, where s2 is the sample variance based on the n
observations left after outliers are discarded. However, there
are two concerns with this approach. First, it results in using
the wrong standard error; second, discarding outliers in some
manner is often met with incredulity because it seems coun-
terintuitive based on what has become traditional training in
statistics. In particular, it might seem that this must result
in less accurate results and less power.

First consider the issue of accuracy and power when some
of the smallest and largest observations are discarded. To take
an extreme case, consider the usual sample median, which
discards all but the middle one or two values. As illustrated in
Figure 3.2, it can be more accurate on average versus the
mean, as was first noted by Laplace in 1775. By 1818
Laplace was aware of more general conditions under which
the median beats the mean in accuracy. To provide some
sense of why this occurs, imagine that 20 observations are
randomly sampled from a standard normal distribution. Now
put these values in ascending order and label the results
X(1) ≤ · · · ≤ X(20) . It can be shown that with probability
.983, the smallest value will be less than −0.9. That is,
P(X(1) ≤ −0.9) = .983. Similarly, P(X(20) ≥ 0.9) = .983.
That is, there is a high probability that the smallest and
largest observations will be relatively far from the population
mean, the value we are trying to estimate. Of course, averag-
ing these values gives a reasonable estimate of the population
mean, but the point is that in general we would expect them
to add a relatively large amount of variation versus the two
middle values, which have a much higher probability of
being close to the population mean. But as is well known, de-
spite this property, the sample mean performs much better
than does the median under normality. The concern, however,
is that for nonnormal distributions there are situations where
the opposite is true.

Why does the mean beat the median in accuracy under
normality? The answer is that when we put the observations
in order, they are no longer independent, and the correlation
among the ordered observations is such that under normality
the mean beats the median. To elaborate a bit, consider three
observations randomly sampled from a normal  distribution:
X1, X2, and X3. Then each has probability .05 of being less
than or equal to −1.645. But suppose we put the observations
in ascending order, yielding X(1) ≤ X(2) ≤ X(3). Thus, X(1) is
the smallest of the three observations, and X(3) is the largest.
To see why these three variables are no longer independent,
first note that there is some positive probability that X(2) is
less than −1.645. If X(1) is independent of X(2), then know-
ing the value of X(1) should not alter the probabilities associ-
ated with X(2). But given that X(1) is greater than −1.645, for
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example, then P(X(2) < −1.645) = 0, because by defini-
tion, X(2) ≥ X(1). That is, X(1) and X(2) are dependent. More
generally, if independent observations are put in order and
some extreme values are removed, the remaining observa-
tions are no longer independent.

When sampling from a normal distribution, or from any
light-tailed distribution, methods based on medians can have
substantially less power than do methods based on means.
Is there some alternative measure of location that performs
about as well as the mean under normality but that guards
against low power when sampling from a heavy-tailed distri-
bution? There are in fact three such measures of location that
seem to have considerable practical value: trimmed means,
M-estimators, and a modified one-step M-estimator called
MOM. Not only do they enhance power, but also excellent
methods for controlling the probability of a Type I error have
been devised that continue to perform well in situations
where methods based on means are highly unsatisfactory.

Trimmed Means

Trimmed means are characterized by trimming a fixed (pre-
determined) proportion of observations. Typically, the same
amount of trimming is done from both tails. That is, a
trimmed mean removes a specified proportion of the largest
observations and repeats this for the smallest observations;
then the remaining observations are averaged. Note that the
mean and median represent two extremes: no trimming and
the maximum amount of trimming that can be done.

Trimming 20% from both tails maintains relatively high
power under normality, but power remains fairly high when
sampling, for example, from the mixed normal. As previ-
ously mentioned, removing extreme values creates a techni-
cal problem: The remaining observations are dependent, so
there is the practical issue of how to estimate its standard
error. Tukey and McLaughlin (1963) were the first to deal
with this issue. A description of their method is given in the
next section.

Another strategy is to check empirically for outliers, re-
move any that are found, and average the values that remain.
This includes the class of skipped estimators that was origi-
nally suggested by Tukey. Recently, the particular variation of
this method called MOM has been found to be especially use-
ful (Wilcox, in press). In the past, technical problems precluded
the routine use of these estimators when testing hypotheses, but
recent advances make them a viable option.

To explain part of the motivation behind MOM requires
some preliminary remarks about detecting outliers. There are
some well known and fairly obvious ways of detecting
outliers based on the mean and variance. A commonly used

strategy is to declare the value X an outlier if it lies more than
2 standard deviations from the sample mean. That is, declare
X to be an outlier if

|X − X |
s

> 2. (3.4)

However, it has long been known that this approach is highly
unsatisfactory (e.g., Rousseeuw & Leroy, 1987) because it
suffers from what is called masking. That is, outliers can
greatly influence the sample mean, and particularly the sam-
ple standard deviation, which in turn can mask outliers. For
example, consider the values

2, 2, 3, 3, 3, 4, 4, 4, 100,000, 100,000.

Surely, 100,000 is unusual compared with the other values,
but it is readily verified that 100,000 is not declared an outlier
when using Equation 3.4. Methods for dealing with this prob-
lem are available (e.g., Barnett & Lewis, 1994), and some
variation of these methods is recommended when dealing
with power. One method that stands out is based on the me-
dian, M, and a measure of scale called the median absolute
deviation (MAD) statistic, which is just

median(|X1 − M|, . . . , |Xn − M|).

That is, MAD is the median of |X1 − M|, . . . , |Xn − M|. A
rule for detecting outliers that is a special case of a general
approach proposed by Rousseeuw and van Zomeren (1990)
is to declare X an outlier if

|X − M|
MAD/.6745

> 2.24. (3.5)

(The constant .6745 stems from the fact that under normality,
MAD/.6745 estimates the population standard deviation, �.)

Now consider using as a measure of location the mean of
the observations left after outliers identified with Equation 3.5
are removed. Called MOM, the only difference between it
and Tukey’s skipped estimators is that Tukey’s estimator
identifies outliers using a box-plot rule rather than Equa-
tion 3.5. An appealing feature of MOM is that it introduces
more flexibility than does the trimmed mean. In particular,
MOM allows the possibility of no trimming and different
amounts of trimming from each tail, and it can handle more
outliers than can the 20% trimmed mean. An inconvenience
of MOM is that an explicit expression for its standard error
has not been derived, so the more obvious approaches to test-
ing hypotheses are not readily applied. However, a percentile
bootstrap method has been found to provide excellent control
over the probability of a Type I error. Moreover, good results
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are obtained in situations where methods based on M-
estimators are unsatisfactory, and all indications are that using
MOM with a percentile bootstrap method competes well with
the best methods for comparing 20% trimmed means. By
design, methods based on MOM will have about as much
power as methods based on means when sampling from nor-
mal distributions, but power can be vastly higher when using
MOM because its standard error is relatively unaffected by
outliers. Moreover, ANOVA methods have been developed,
including methods where the goal is to compare dependent
groups; multiple comparison procedures are available also
(Wilcox, in press).

The third strategy is to alter how we measure the distance
between an observation and some constant, say c, which is
to be used as a measure of location. To elaborate, suppose
we measure the typical distance between the observations
we make and c with the sum of squared differences:∑

(Xi − c)2. The least squares principle is to choose as a
measure of location the value c that minimizes this sum and
leads to c = X , the sample mean. But if the typical distance
is measured with 

∑ |Xi − c| instead, minimizing this sum
results in c = M , the sample median. That is, different mea-
sures of location are obtained depending on how distance
is measured. Rather than use squared error or absolute error,
M-estimators use other measures of error that result in mea-
sures of location with good properties under normality as
well as when sampling from skewed or heavy-tailed distribu-
tions. The idea appears to have been first proposed by Ellis in
1844, and a modern treatment of this approach was first
developed by Huber (1964). Among the measures of distance
that have been proposed, one due to Huber currently stands
out and leads to the so-called one-step M-estimator. (For
theoretical details, see Huber, 1981; Hampel, Ronchetti,
Rousseeuw, & Stahel, 1986.) To compute it, let L be the num-
ber of observation such that

Xi − M

MAD/.6745
< 1.28, (3.6)

and let U be the number of observation such that

Xi − M

MAD/.6745
> 1.28. (3.7)

That is, these last two equations are used to determine
whether an observation is an outlier. L is the number of out-
liers less than the median, and the number of outliers greater
than the median is U. The constant 1.28 arises because it pro-
vides relatively high power under normality. Let B be the sum
of the observations not declared outliers. Then the one-step

M-estimator (based on Huber’s measure of distance) is

1.28(MADN)(U − L) + B

n − L − U
, (3.8)

where MADN = MAD/.6745. Note that if 1.28 is changed
to 2.24 in Equation 3.7 and we calculate B/(n − L − U) in
place of Equation 3.8, we get MOM.

Inferences Based on a Trimmed Mean

This section illustrates that the choice of method can make a
substantial difference in the conclusions reached. Here, for
convenience, a nonbootstrap method based on 20% trimmed
means is described, the only point being that in some situa-
tions it can have a substantially lower significance level than
can a method based on means. (The choice of 20% trimming
is made because it provides relatively high power under nor-
mality, but power remains relatively high when sampling
from heavier tailed distributions.)

First we need an estimate of the standard error of the
trimmed mean. Recall that when computing a 20% trimmed
mean, the smallest and largest 20% of the observations are re-
moved. Winsorizing the observations by 20% simply means
that rather than remove the smallest 20%, their values are set
equal to the smallest value not trimmed when computing the
20% trimmed mean. Simultaneously, the largest 20% are
reset to the largest value not trimmed. The 20% Winsorized
variance is the usual sample variance based on the
Winsorized values, which will be labeled s2

w . It can be shown
that s2

w/.36n estimates the squared standard error of Xt , the
sample trimmed mean.

Yuen (1974) proposed testing the hypothesis of equal pop-
ulation trimmed means for two independent groups with

Ty = Xt1 − Xt2√
d1 + d2

,

where

dj = (nj − 1)s2
w j

h j (hj − 1)
,

hj is the number of observations left in the jth group after
trimming, and for the jth group, s2

w j is the Winsorized
variance. The (estimated) degrees of freedom are

�̂y = (d1 + d2)2

d2
1

h1−1 + d2
2

h2−1

,

schi_ch03.qxd  8/2/02  2:44 PM  Page 77



78 Power: Basics, Practical Problems, and Possible Solutions

and the hypothesis of equal population trimmed means is
rejected if

|Ty| > t,

where t is the 1 − �/2 quantile of Student’s t distribution
with �̂y degrees of freedom. (With zero trimming, Yuen’s
method reduces to Welch’s test for means.)

Consider the following data, which are from a study deal-
ing with self-awareness:

Group 1: 77 87 88 114 151 210 219 246 253
262 296 299 306 376 428 515 666 1310 2611

Group 2: 59 106 174 207 219 237 313 365 458 497 515
529 557 615 625 645 973 1065 3215

(These data were generously supplied by E. Dana and reflect
the time participants could keep a portion of an apparatus in
contact with a specified target.) Comparing means with
Welch’s heteroscedastic test, the significance level is .475.
With Yuen’s test, the significance level is .053.

Judging Sample Sizes When Using 
Robust Estimators

Stein-type methods provide a way of judging the adequacy of
a sample size based on data available. If a nonsignificant re-
sult is obtained, again there is the issue of whether this is due
to low power based on the available sample size. Under nor-
mality, and when working with means, this issue can be
addressed with Stein-type methods, but how might such tech-
niques be extended to other measures of location? Coming up
with reasonable methods for estimating power, based on esti-
mated standard errors, is a fairly trivial matter thanks to mod-
ern technology, and in fact there are many methods one might
use with robust measures of location. For example, theoreti-
cal results suggest how to extend Stein-type methods to
trimmed means, but finding a method that performs reason-
ably well with small or even moderately large sample sizes is
quite another matter. One practical difficulty is that the
resulting methods tend to be biased and that they can be rela-
tively inaccurate. For example, suppose that based on n
observations from each group being compared, the standard
error for each group is estimated, yielding an estimate of how
much power there is based on the observations available. For
convenience, let �̂ be some estimate of �, the true amount of
power. Of course there will be some discrepancy between �
and �̂, and typically it seems that this discrepancy can be
quite high. The problem is that estimated standard errors are

themselves inaccurate. That is, if the true standard errors
were known, methods for estimating power can be devised,
but because they are estimated, �̂ can be rather unsatisfactory.
Moreover, methods for deriving an appropriate estimate of �
usually are biased. Even when a reasonably unbiased estima-
tor has been found, what is needed is some method for as-
sessing the accuracy of �̂. That is, how might a confidence
interval for � be computed based on the data available?
Again, solutions are available, but the challenge is finding
methods for which the precision of �̂ can be assessed in an
adequate manner with small to moderate sample sizes.

A method that performs relatively well when working
with 20% trimmed means is described by Wilcox and
Keselman (in press). It is limited, however, to the one- and
two-sample case. A comparable method when comparing
more than two groups remains to be developed. The method,
along with easy-to-use software, is described in Wilcox
(in press) as well.

The method just mentioned could be extended to MOM
and M-estimators, but nothing is known about its small-
sample properties. This area is in need of further research.

Rank-Based Methods and Outliers

Yet another approach to low power due to outliers is to switch
to some rank-based method, but as already noted, modern
heteroscedastic methods are recommended over more tradi-
tional homoscedastic techniques. Ranks are assigned to
observations by putting the observations in ascending order,
assigning a rank of 1 to the smallest value, a rank of 2 to the
next smallest, and so on. So regardless of how extreme an
outlier might be, its rank depends only on its relative position
among the ordered values. Consider, for example, the values
198, 199, 245, 250, 301, and 320. The value 198 has a rank of
one. But if this smallest value were 2 instead, 2 is an outlier,
but its rank is still one, so when using a rank-based method to
compare groups, power is not affected. A summary of mod-
ern rank-based methods, developed after 1980, can be found
in Wilcox (in press).

REGRESSION

When dealing with regression, issues related to power be-
come more complex. To explain the basic issues, it helps to
begin with simple regression, where two variables are ob-
served, X and Y, and it is assumed that

Y = �1 X + �0 + �, (3.9)
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where �1 and �0 are the unknown population slope and
intercept, respectively; X and � are independent; and � has
variance �2. This model is homoscedastic, meaning that the
conditional variance of Y, given X, does not change with X. If
it is further assumed that � has a normal distribution, methods
for assessing power, given n, are available when the goal is to
test hypotheses about the slope and intercept based on the
randomly sampled pairs of observations (X1, Y1), . . . ,

(Xn, Yn) (e.g., Kraemer & Thiemann, 1987). But even under
normality, if the error term is heteroscedastic, meaning that
the conditional variance of Y varies with X, serious practical
problems with power can result. And under nonnormality, the
situation deteriorates even further. In fact, two fundamental
problems associated with heteroscedasticity affect power.
The first is that poor probability coverage can result when
using conventional methods for computing a confidence in-
terval for the slope or intercept. In terms of Type I errors, if
the goal is to test H0: �1 = 0 with α = .05, there are situa-
tions where the actual Type I error probability exceeds .5!
That is, when computing a .95 confidence interval for �1, the
actual probability coverage can be less than .5. Perhaps in
some situations this inadequacy unintentionally increases
power when in fact H0 is false, but it could decrease it as
well. Generally, if there is an association between two vari-
ables, there is no reason to expect homoscedasticity; under
heteroscedasticity standard hypothesis testing methods are
using the wrong standard error, and this can result in rela-
tively low power. A reasonable suggestion is to test the
hypothesis that the error term is homoscedastic and, if not
significant, to use a homoscedastic method when testing the
hypothesis of a zero slope. A practical problem, however, is
that researchers do not know how to determine whether a test
of homoscedasticity has enough power to detect situations
where heteroscedasticity creates practical problems. The sec-
ond fundamental problem is that there are situations where
the least squares estimator has a standard error thousands of
times larger than some competing method!

Heteroscedasticity and Probability Coverage

A variety of methods have been proposed for dealing with
poor probability coverage due to heteroscedasticity, several
of which were compared by Wilcox (1996) when making in-
ferences about the slope. The only method that performed
reasonably well among those that were considered is based
on a modified percentile bootstrap method. Derivation of the
method is based in part on Gosset’s approach, which led to
Student’s T distribution: When the sample size is small, make
adjustments to the critical value assuming normality and

homoscedasticity, and then hope that good probability cover-
age (and accurate control over the probability of a Type I
error) is achieved when these assumptions are violated.
Although Student’s T does not perform well when these as-
sumptions are violated, it currently seems that a similar ap-
proach is relatively effective for the problem at hand.

To provide some detail, let (X1, Y1), . . . , (Xn, Yn) be n
randomly sampled pairs of points. A bootstrap sample is ob-
tained by resampling with replacement n pairs of points from
(X1, Y1), . . . , (Xn, Yn). Let b∗

1 be the least squares estimate
of the slope based on this bootstrap sample. Next, repeat this
process 599 times, yielding b∗

11, . . . , b∗
1,599. The standard per-

centile bootstrap method uses the middle 95% of these 599
bootstrap estimates as a .95 confidence interval for �1. But
when using least squares, a modification is needed. In partic-
ular, put the 599 bootstrap estimates of the slope in ascend-
ing order yielding b∗

1(1) ≤ · · · ≤ b∗
1(599). The .95 confidence

interval is

(
b∗

1(a), b∗
1(c)

)
(3.10)

where for n < 40, a = 7 and c = 593; for 40 ≤ n < 80,

a = 8 and c = 592; for 80 ≤ n < 180, a = 11 and c = 588;
for 180 ≤ n < 250, a = 14 and c = 585; while for n ≥ 250,
a = 15 and c = 584. More recently, an alternative het-
eroscedastic method was studied and recommended by Long
and Ervin (2000). However, there are situations where it is
rather unsatisfactory, in terms of probability coverage (or
Type I error probabilities), when the bootstrap performs
fairly well, and so far no situations have been found where
the reverse is true.

In some instances, simply restricting the range of the X
values to eliminate obvious outliers can make least squares
competitive with other estimators. And the derivation of the
standard error of the least squares estimator, assuming
homoscedasticity, remains valid because the X values are
treated as constants (i.e., the variance of the least squares
estimator is derived by conditioning on X). However, this
strategy does not necessarily address problems due to het-
eroscedasticity among the points that remain, and eliminating
points for which the Y values are outliers leads to technical
problems because the derivation of the standard error of the
least squares estimator is no longer valid (for reasons similar
to why the derivation of VAR[X ] is invalid when outliers
among the X values are discarded).

Another facet to the relative merits of restricting the range
of the X values is related to good and bad leverage points. A
leverage point is an outlier among the X values. A bad lever-
age point is an outlier that is relatively far from the regression
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Figure 3.8 An example of good and bad leverage points.

line for the bulk of the points. That is, it has a relatively large
residual. A good leverage point is a leverage point that is
reasonably close to the regression line. Figure 3.8 shows
both a good and bad leverage point. An advantage of a good
leverage point is that it lowers the standard error of the least
squares estimator, which helps increase power. But a bad
leverage point can result in a poor fit to the bulk of the points,
resulting in a misleading summary of the data.

ROBUST REGRESSION ESTIMATORS AND POWER

Although it has been clearly established that in terms of
power, simply applying the least squares estimator to data
can be highly unsatisfactory, no single alternative estimator
has been found that can be recommended for general use to
the exclusion of all estimators that have been proposed. All
indications are that several estimators should be considered,
particularly in the exploratory phases of a study. Indeed, once
some familiarity with the issues that affect power has been
obtained, it seems to be an almost trivial matter to find fault
with any single strategy that might be used. That is, situations
can be found where many estimators offer substantial gains
in power versus least squares, but among these estimators,
situations can be found where method A beats method B, and
situations can be found where the reverse is true as well.
Moreover, at least for the moment, certain strategies present
computational problems and inconveniences that need to be
addressed. Nevertheless, least squares can result in relatively
low power (and a poor reflection of the association among the
majority of points). Some simple and effective methods
are available for addressing this problem, so knowing some

alternative estimators is important and can make a substantial
difference in the conclusions reached.

The Theil-Sen Estimator

There are many alternatives to least squares regression that
offer important advantages, including the possibility of rela-
tively high power. The immediate goal is to illustrate the
potential advantages of just one of these methods with the un-
derstanding that arguments for other estimators can be made.
The estimator discussed here was proposed by Theil (1950)
and Sen (1968). For comments on the relative merits of some
competing estimators, see Wilcox (in press).

The Theil-Sen estimate of the slope is the value b that
makes Kendall’s 	 statistic, between Yi − bXi and Xi, (ap-
proximately) equal to zero. Alternatively, for any Xi > Xj ,
let Sij = (Yi − Yj )/(Xi − Xj ). That is, Sij is the slope of the
line connecting the ith and jth points. Then b, the median of
the Sij values, is the Theil-Sen estimate of the slope. The
usual estimate of the intercept is My − bMx , where My and
Mx are the sample medians corresponding to the Y and X
values, respectively. (For results on extending this estimator
to more than one predictor, see Hussain & Sprent, 1983;
Wilcox, 1998.)

Because power is related to the standard error of an estima-
tor, an indirect comparison of the power associated with least
squares, versus the Theil-Sen estimator, can be obtained by
comparing their standard errors. Here, consideration is given to
n = 20 with X and � having one of four distributions: normal,
symmetric with heavy tails, asymmetric with relatively light
tails, and asymmetric with relatively heavy tails. The specific
distributions used are from the family of g-and-h distributions
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TABLE 3.2 Estimates of R, the Ratio of the Standard Errors
for Least Squares, versus Theil-Sen When the X Distribution is
Asymmetric, n = 20

X �

g h g h VP R

0.5 0.0 0.0 0.0 1 0.88
2 6.83
3 207.35

0.5 0.0 0.0 0.5 1 4.27
2 30.57
3 404.35

0.5 0.0 0.5 0.0 1 1.08
2 8.44
3 151.99

0.5 0.0 0.5 0.5 1 8.62
2 79.52
3 267.09

0.5 0.5 0.0 0.0 1 0.78
2 87.64
3 55.71

0.5 0.5 0.0 0.5 1 3.09
2 182.12
3 78.91

0.5 0.5 0.5 0.0 1 0.95
2 112.18
3 66.51

0.5 0.5 0.5 0.5 1 5.71
2 394.67
3 96.49

derived by Hoaglin (1985). The parameter g controls skew-
ness, and h controls heavy-tailedness. Here, both g and h were
taken to have one of two values: 0 and .5. Setting g = h = 0
yields a standard normal distribution. (For more details about
these distributions, see Hoaglin, 1985.) Tables 3.1 and 3.2 pro-
vide an estimate (labeled R) of the standard error of the least
squares estimator divided by the standard error of the Theil-
Sen estimator. So R < 1 indicates that least squares is more ac-
curate on average, and R > 1 indicates the opposite. Included
are values for R when there is heteroscedasticity. Specifically,
observations were generated from the model Y = X + 
(X)�

with three choices for 
(X) : 
(X) = 1 (homoscedasticity),

(X) = X2, and 
(X) = 1 + 2/(|X | + 1). For convenience,
these three function are called variance patterns (VP) 1, 2,
and 3. (The values of R in Tables 3.1 and 3.2 are based on
simulations with 5,000 replications.)

Note that under normality and homoscedasticity, Table 3.1
indicates that least squares is slightly more accurate, the value
of R being 0.91. However, even when the error term is normal
but heteroscedastic, least squares performs rather poorly—
the Theil-Sen estimator can be hundreds of times more

accurate. Among the situations considered, there are many
instances where the Theil-Sen estimator provides a striking
advantage, and there are none where the reverse is true, the
lowest value for R being 0.76. It should be remarked that di-
rect comparisons in terms of power are hampered by the fact
that for many of the situations considered in Tables 3.1 and
3.2, conventional hypothesis testing methods based on least
squares perform very poorly. Perhaps there are situations
where the very inadequacies of conventional techniques re-
sult in relatively high power. That is, probability coverage
might be extremely poor, but in a manner that increases
power. Experience suggests, however, that it is common to
find situations where the hypothesis of a zero slope is rejected
when using Theil-Sen, but not when using least squares.

A technical issue when using the Theil-Sen estimator is
that when there is heteroscedasticity, an explicit expression
for its standard error is not available. However, a percentile
bootstrap method has been found to provide fairly accurate
probability coverage and good control over the probability of
a Type I error for a very wide range of situations, including
situations where the conventional method based on least
squares is highly inaccurate. But rather than use the modified
percentile bootstrap method previously described, now it suf-
fices to use the standard percentile bootstrap method instead.

TABLE 3.1 Estimates of R, the Ratio of the Standard Errors for
Least Squares, versus Theil-Sen When the X Distribution is
Symmetric, n = 20

X �

g h g h VP R

0.0 0.0 0.0 0.0 1 0.91
2 2.64
3 202.22

0.0 0.0 0.0 0.5 1 4.28
2 10.67
3 220.81

0.0 0.0 0.5 0.0 1 1.13
2 3.21
3 183.74

0.0 0.0 0.5 0.5 1 8.89
2 26.66
3 210.37

0.0 0.5 0.0 0.0 1 0.81
2 40.57
3 41.70

0.0 0.5 0.0 0.5 1 3.09
2 78.43
3 38.70

0.0 0.5 0.5 0.0 1 0.99
2 46.77
3 39.32

0.0 0.5 0.5 0.5 1 6.34
2 138.53
3 43.63

Note. g = h = 0 is standard normal; (g, h) = (0, .5) is symmetric heavy
tailed; (g, h) = (.5, 0) is skewed light tailed; g = h = .5 is skewed heavy
tailed.
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Figure 3.9 Surface temperature and light intensity of 47 stars.

In particular, again let (X1, Y1), . . . , (Xn, Yn) be n randomly
sampled pairs of points and generate a bootstrap sample
by resampling with replacement n pairs of points from
(X1, Y1), . . . , (Xn, Yn). Let b∗

1 be the Theil-Sen estimate of
the slope based on this bootstrap sample. Next, repeat this
process B times yielding b∗

11, . . . , b∗
1B . The standard per-

centile bootstrap method uses the middle 95% of these B
bootstrap estimates as a .95 confidence interval for slope.
That is, put the B bootstrap samples in ascending order, label
the results b∗

1(1) ≤ · · · ≤ b∗
1(B) , in which case a 1 − � confi-

dence interval for the population slope is (b1(L+1), b1(U)),
where L = �B/2, rounded to the nearest integer, and
U = B − L . (B = 600 seems to suffice, in terms of accurate
probability coverage, when using Theil-Sen.) Obviously this
approach requires a computer, but even with a moderately
large sample size, execution time is fairly low.

CORRELATION

Certainly one of the most common goals is to test

H0: � = 0, (3.11)

the hypothesis that Pearson’s correlation is zero. One ap-
proach is to use what is called Fisher’s Z transformation,
which is also called the r-to-z transformation. It provides a
simple method for determining sample size when dealing
with power, but the method assumes normality. When sam-
pling from a nonnormal distribution, there are general condi-
tions under which Fisher’s Z does not converge to the correct

answer even as the sample size gets large (e.g., Duncan &
Layard, 1973).

A more general and perhaps a more serious problem is that
at least six features of data affect the magnitude of � (e.g.,
Wilcox, 2001), which in turn makes it very difficult to find a
satisfactory method for dealing with power. These six fea-
tures are (a) the slope of the line around which the points are
clustered, (b) the magnitude of the residuals, (c) outliers,
(d) curvature, (e) a restriction of range, and (f) reliability. So
if a sample size for achieving high power is determined under
normality, the extent to which power will indeed be high in
reality is far from clear.

Figure 3.9 illustrates the effect of outliers on r, the standard
estimate of �. Shown are the surface temperature and light in-
tensity of 47 stars plus the least squares regression line. As is
evident, the bulk of the points appear to have a positive asso-
ciation, but r = −.21, and Student’s T test of Equation 3.10
has a significance level of .16. The points in the upper left cor-
ner of Figure 3.9 have a tremendous influence on r. A box plot
indicates that X values less than or equal to 3.84 are outliers.
If these points are eliminated, r = .68 with a significance
level less than .001. In this case, simply restricting the range
of X seems to correct problems with detecting a positive asso-
ciation among the majority of the points, but it is well known
that restricting the range of X values can lower r as well.

Robust Correlations

Another way of dealing with low power due to outliers is to re-
place Pearson’s correlation with some type of so-called robust
estimator. Such methods include Kendall’s tau, Spearman’s
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rho, a Winsorized correlation, and what is called the percent-
age bend correlation. The first two are well known, so further
details are not given. Details about the Winsorized correlation
coefficient can be found in Wilcox (1997).

The percentage bend correlation is based in part on an
empirical check for outliers and is computed as follows: For
the observations X1, . . . , Xn , let Mx be the sample median.
Choose a value for � between 0 and 1 and compute

Wi = |Xi − Mx |,
m = [(1 − ξ)n],

where the notation [(1 − �)n] is (1 − �)n rounded down to
the nearest integer. Using � = .2 appears to be a good choice
in most situations. Let W(1) ≤ · · · ≤ W(n) be the Wi values
written in ascending order and let

̂x = W(m).

Let i1 be the number of Xi values such that (Xi − �̂)/

̂x < −1, and let i2 be the number of Xi values such that
(Xi − �̂)/̂x > 1. Compute

Sx =
n−i2∑

i=i1+1

X(i)

�̂x = ̂x(i2 − i1) + Sx

n − i1 − i2
.

Set Ui = (Xi − �̂x)/̂x . Repeat these computations for the

Yi values yielding Vi = (Yi − �̂y)/̂y . Let

�(x) = max[−1, min(1, x)].

Set Ai = �(Ui ) and Bi = �(Vi ). The percentage bend
correlation is estimated to be

rpb =
∑

Ai Bi√(∑
A2

i

) (∑
B2

i

) .

Under independence, the population percentage bend
correlation is zero. To test the hypothesis that the population
percentage bend correlation is zero, compute

Tpb = rpb

√
n − 2

1 − r2
pb

(3.12)

and reject if |Tpb| > t1−�/2, where t1−�/2 is the 1 − �/2
quantile of Student’s T distribution with n − 2 degrees of
freedom.

For the star data in Figure 3.9, rpb = .31, and the signifi-
cance level based on the method just described is .03. That is,
without restricting the range of the X values, a significant re-
sult is obtained, and the percentage bend correlation indicates
a positive association among the bulk of the observations.
Spearman’s rho and Kendall’s tau are also positive with sig-
nificance levels of .044 and .013, respectively.

There are, however, situations where outliers can affect all
three of these correlation coefficients, which in turn can affect
power. Consider, for example, the 20 pairs of observations
shown in Figure 3.10 (ignoring the point in the lower right
corner) which were generated from the standard regression

Figure 3.10 Robust measures of correlation reduce the effects of outliers, but depending on
where they are located, outliers can still have an undue influence.
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model Y = X + � where both X and � have standard normal
distributions. All three of these correlation coefficients yield
significance levels less than .05.

Now suppose that two points are added, both at
(X, Y ) = (2,−2.4), which correspond to the point in the
lower right corner of Figure 3.10. These two points are un-
usual compared to how the original 20 observations were
generated because they lie more than 4.5 standard deviations
away from the regression line. Note that in order to eliminate
these points by restricting the range of the X values, a point
that is not an outlier would be removed as well. Now the sig-
nificance levels based on Kendall’s tau, Spearman’s rho, and
the percentage bend correlation are .34, .36, and .26, respec-
tively. If these two aberrant points are moved to the left to
(X, Y ) = (1,−2.4), the significance levels are now .23, .20,
and .165. All three of these correlation coefficients offer pro-
tection against outliers among X values; they do the same for
the Y values, but none of them take into account the overall
structure of the data. That is, the power of all three methods
can be affected by unusual points that are not outliers among
the X values (ignoring the Y values), nor outliers among the Y
values (ignoring X), yet they are outliers among the scatter
plot of points. There are methods for detecting outliers that
take into account the overall structure of the data, but the bet-
ter known methods (e.g., Rousseeuw & van Zomeren, 1990)
can eliminate too many points, resulting in a poor reflection
of how the bulk of the observations are associated (Wilcox,
in press). It seems that no method is perfect in all situations,
but a technique (called the MGV regression estimator) that
addresses this issue and that seems to have practical value
can be found in Wilcox (in press).

CONCLUDING REMARKS

It would be convenient if a single method could be identified
that has the highest power relative to all other statistical meth-
ods one might use. It is evident, however, that no such method
exists. The optimal method, in terms of maximizing power,
will depend on how groups differ or how variables are related,
which of course is unknown. However, the choice of statistical
method is far from academic. A general rule is that methods
based on least squares perform well under normality, but other
methods have nearly the same amount of power for this special
case yet maintain relatively high power under arbitrarily small
departures from normality—in contrast to methods based on
means or least squares regression. At a minimum, use a het-
eroscedastic rather than a homoscedastic method. Robust
measures of location and rank-based methods represent the
two main alternatives to least squares, but in terms of power

there is no clear choice between them. Each gives a different
and useful perspective on how groups differ. There is weak
evidence that in practice, methods based on robust measures
of location are a bit more likely to reject, but we can be fairly
certain that in some situations the reverse is true.

One of the many remaining problems is finding ways of
assessing power, based on available data, when using a robust
measure of location. If a nonsignificant result is obtained,
why? If power is low, it is unreasonable to accept the null hy-
pothesis. Relevant methods have been developed when using
conventional (homoscedastic) rank-based methods, but how
should power be assessed when using more modern tech-
niques? Progress has been made when comparing two groups
with 20% trimmed means, but extensions to other measures
of location are needed, as well as extensions to more complex
designs. Of course, similar issues arise when dealing with
correlation and regression.
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A LITTLE HISTORY

In the past, when data were missing from our data sets, any
number of reactions were common. Positive emotions, such
as happiness and contentment, never occurred. Rather, the
emotions we felt (often in this order) were frustration, anger,
guilt, fear, and sadness.

When we wanted to do a particular analysis but some
data were missing, the number of cases available for the
analysis was reduced to the point that the result was often not

significant. It was particularly frustrating when data were
missing from one part of a model we might be testing, but not
from other parts, but we had to test the model using only
those cases with no missing data. Alternatively, we could test
something simpler than the preferred model. All of the
choices we seemed to face were bad. We could accept the
nonsignificant result. We could employ some procedure of
questionable validity. We could just lie. We could try again to
wade through one of the highly technical journal articles that
supposedly dealt with the issue of handling missing data.
After going around in circles, we always found ourselves
back again at the starting place, and angry.

If we tried one of the procedures that has questionable va-
lidity, we would immediately feel guilty. Questions would

This research was supported in part by grants from the Hanley
Family Foundation and The JM Foundation, and by NIDA Grants
P50-DA-10075 and R01-DA-05629.

schi_ch04.qxd  8/7/02  12:15 PM  Page 87



88 Methods for Handling Missing Data

bedevil us: Do the results represent reality? Or are they just a
figment of our imagination? Will we be able to defend our
procedure to the reviewers? If by some miracle our article is
published, will we find out later that the results were not
valid? Not everyone in psychology faces the problem of
missing data, but we do. We knew that every time we em-
barked on an analysis, we could look forward to the sequence
of frustrating setbacks, and this knowledge always made
us sad.

Four separate pieces were published in 1987 that would
forever change the way researchers looked at data analysis
with missing data. Two papers were published describing a
procedure for analyzing missing data using standard struc-
tural equation modeling (SEM) software (Allison, 1987;
Muthén, Kaplan, & Hollis, 1987). Although somewhat un-
wieldy, and extremely error prone for most real-life applica-
tions, this procedure provided researchers with the first truly
accessible and statistically sound tool for dealing with miss-
ing data. Of course, this procedure assumed that one knew
how to use the SEM programs to begin with.

Little and Rubin’s (1987) highly influential book on analy-
sis with missing data also appeared in 1987. In this book,
Little and Rubin, following Dempster, Laird, and Rubin
(1977), laid the groundwork for development of the expecta-
tion maximization (EM) algorithm for numerous missing
data applications. In addition, Rubin (1987) published the
first book on multiple imputation in 1987. Although practical
applications of multiple imputation would not appear for an-
other 10 years, this was the beginning of what would be the
most general approach to handling missing data.

Since 1987, numerous software products have become
available that address the issue of missing data. Many of the
best of these are free. For the ones that are not free, the cost
is more than offset by their usefulness. Although we need to
continue to move forward in this area, we have made tremen-
dous progress in making missing data analysis accessible to
researchers all over the world. In fact, we stand at the begin-
ning of an era in which useful and accessible missing data
procedures are an integral part of mainstream statistical
packages.

A LITTLE PHILOSOPHY

One of the concerns most frequently heard in the early days
of missing data procedures was something like, “Aren’t you
helping yourself unfairly when you use this procedure?” The
short answer to this questions is “no!” In general, use of the
prescribed missing data procedures does not give something
for nothing. These procedures simply allow one to minimize

losses. In particular, these procedures allow one to make full
use of any partial data one may have. As we shall see in the
following pages, making use of partial data often proves to be
a tremendous advantage.

A similar concern in the early days, especially with respect
to data imputation, was something along these lines: “How
can you say that this imputed value is what the person would
have given if he or she had given us data? It sounds like
magic.” Well, it would be magic if it were true. That is why
we always tell people not to focus on the imputed values
themselves. We do not impute a value because we are trying
to fathom what an individual would have said if he or she had
given us data. That would typically be impossible. Rather, we
impute in order to preserve important characteristics of the
whole data set. That is, we impute to get better estimates of
population parameters (e.g., variances, covariances, means,
regression coefficients, etc.) and distributions. As it turns out,
this is a very possible goal.

Any good procedure will yield unbiased and efficient pa-
rameter estimates. By unbiased, we mean that the expected
value of the parameter estimate (e.g., a b weight) is the
same as the true population value. By efficient, we mean
that the variability around the estimated value is small. A
second characteristic of a good missing data procedure is
that it provides a reasonable estimate of the variability
around the parameter estimate (i.e., standard errors or confi-
dence intervals).

MISSING DATA PATTERNS AND MECHANISMS

There are two general patterns of missing data. With the first
pattern, the respondent does take part in a measurement ses-
sion, but for whatever reason does not respond to some ques-
tions. This type of missingness might be referred to as item
nonresponse. With one manifestation of this pattern, the per-
son omits the last k items of a long survey, for example, due
to slow reading. Second, the respondent may fail to answer
individual items in the middle of a survey that is otherwise
complete. Third, the respondent may omit blocks of ques-
tions, but not necessarily at the end of the survey.

A second general missing data pattern occurs when the
respondent is missing from a whole wave of measurement in
a longitudinal study. This is sometimes referred to as attri-
tion and sometimes as wave nonresponse. With this sort of
missingness, the person may be absent from one or more
waves of measurement and then reappear at a later wave. Al-
ternatively, the person may fail to appear at one wave of
measurement and all subsequent waves. A third version of
this pattern occurs when the person is not present at the first
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wave of measurement but drops in to the study at a subse-
quent wave.

Numerous explanations are possible for each of these
patterns of missing data. These explanations, or missing
data mechanisms, fall into three general categories (e.g., see
Little & Rubin, 1987). First, the data may be missing
completely at random (MCAR). Data are MCAR if the
mechanism for the missingness is a completely random
process, such as a coin flip. Data are also MCAR if the cause
of missingness is not correlated with the variable containing
missingness. An important consequence of MCAR missing-
ness is that there is no estimation bias if the cause of
missingness is omitted from the missing data model.

A second missing data mechanism has been referred to as
missing at random (MAR; e.g., Little & Rubin, 1987). With
this mechanism, the cause of missingness is correlated with
the variable(s) containing the missing data, but variables rep-
resenting this cause have been measured and are thus avail-
able for inclusion in the missing data model. Inclusion of
MAR causes of missingness in the missing data model cor-
rects for all biases associated with them.

Unfortunately, the term MAR (which is sometimes
referred to as ignorable missingness) has produced consid-
erable confusion among psychologists and other social sci-
entists. First, this mechanism is neither random (at least, not
in the sense that most of us think of when we see the word
random), nor is it ignorable (at least, not in the sense in
which the word ignorable is typically used). In fact, one of
the very characteristics of this missing data mechanism is
that one must not ignore it. Rather, one must include the
cause of missingness in the model, or there will be estima-
tion bias.

Technically, MAR missingness occurs when the missing-
ness is not due to the missing data themselves. Because of
this definition, it turns out that MCAR is a special case
of MAR missingness. The term missing at random does
make sense if we realize that the missingness is condition-
ally random. That is, once one has conditioned on the cause
of missingness (which is available), the missingness is
random.

The term accessible missingness (Graham & Donaldson,
1993) was coined in an attempt to define the mechanism in a
less confusing way. However, because the term MAR is so
well established in the statistical literature, it would be a dis-
service to psychologists not to use this term. Thus, we en-
dorse the term MAR and will use it exclusively in the future
to refer to this sort of missingness.

A third missing data mechanism has been referred to as
missing not at random (MNAR; Collins, Schafer, & Kam,
2001; Schafer & Graham, in press). In this case, the cause of

missingness is correlated with the variable(s) containing
missing data, but the cause has not been measured, or it is
otherwise unavailable for inclusion in the missing data
model. This type of missingness is related to the missing
data, even after conditioning on all available data. Thus, it is
not missing at random.

Each of the two general kinds of missing data (item
nonresponse, wave nonresponse) can be caused by any of the
three missing data mechanisms (MCAR, MAR, MNAR).
Each of the six combinations may be represented in any
given data set. As we suggested above, missing data may
be due to (a) processes that are essentially random,
(b) processes that are represented by variables in the data set,
or (c) processes that have not been measured. In addition,
MCAR missingness within a wave, or even across waves, can
be part of a planned missing data design (Graham, Hofer, &
MacKinnon, 1996; Graham, Hofer, & Piccinin, 1994;
Graham, Taylor, & Cumsille, 2001; McArdle, 1994). Given
the increasing usefulness of missing data analysis proce-
dures, such as those described in this chapter, Graham,
Taylor et al. (2001) have argued that it may be time to begin
considering such designs in most research endeavors.

OLD (UNACCEPTABLE) PROCEDURES FOR
ANALYSIS WITH MISSING DATA

Complete Cases Analysis (Listwise Deletion)

Over the years, the most common approach to dealing with
missing data has been to pretend there are no missing data.
That is, researchers (including the present authors, of course),
have simply omitted any cases that are missing data on the
relevant variables. There are two possible problems with this
approach. At an intuitive level, it is easy to see that this ap-
proach could introduce estimation biases. The people who
provide complete data in a study are very likely going to be
different from those who do not provide complete data. There
has been ample evidence in the prevention literature, for ex-
ample, that people who drop out of a prevention study are
generally very different from those who remain in the study.
For example, adolescents who drop out of a longitudinal
study are much more likely to be drug users at the last wave
of measurement for which they did provide data.

Although bias with complete cases analysis is certainly a
possibility (e.g., see Schafer & Graham, in press; Wothke,
2000), we argue that for many kinds of analysis, for example,
for multiple-regression analysis, the amount of bias produced
by complete cases analysis will generally be small, even triv-
ial. For example, suppose we plan a multiple-regression
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analysis with several predictors (with no missing data) and a
dependent variable that is sometimes missing, for example,
due to attrition. If the dependent variable is missing due to an
MCAR mechanism, then complete cases analysis is known to
yield unbiased estimates. If the missing data mechanism is
MAR, that is, if the missingness on the dependent variable
is due to some combination of the predictor variables, then
the biases are completely controlled by the complete cases
analysis (e.g., see Heckman, 1979; also see Graham &
Donaldson, 1993). If the cause of missingness on the depen-
dent variable is an MNAR process, then the degree of bias
due to complete cases will be the same as the bias that will
occur with the acceptable analysis procedures described
below (e.g., Graham & Donaldson, 1993). Of course, this is
true only under somewhat limited conditions. In more
complex analysis situations, complete cases analysis could
introduce bias to the parameter estimates.

In short, we do not side with those who argue that com-
plete cases analysis should not be used because of the poten-
tial for bias. Rather, we argue that complete cases analysis
should not be used because of loss of statistical power. In
virtually all research situations, using complete cases analy-
sis means that the researcher must discard at least some in-
formation. In fact, it is becoming more and more common
that a large proportion of cases is lost if listwise deletion is
used.

In order to illustrate this issue, consider two proportions:
the proportion of complete cases, and the proportion of non-
missing data points. The latter figure is calculated easily by
considering the total number of data points in a data set,
N × k, where N is the number of cases and k is the number of
variables. One can simply divide the number of nonmissing
data points by N × k to determine the proportion of nonmiss-
ing data points. Of course, if most of the data points are
missing, the results may be suspect regardless of the analysis
used. However, there are many situations in which the pro-
portion of nonmissing data points is actually quite high
but the proportion of complete cases is disturbingly low.
Three common research situations can produce this pattern:
(a) missing data on different variables in different cases; (b) a
substantial amount of missing data in one part of a model,
with very little missing data in other parts of the model; and
(c) planned missing data designs such as the three-form
design (Graham et al., 1994, 1996, Graham, Taylor, et al.,
2001).

In sum, we argue that complete cases should not be used
as the general analysis strategy. Although bias may be mini-
mal in many research situations, the loss of power could be
tremendous. However, we explicitly stop short of saying that
complete cases analysis should never be used. First, we have

argued previously (Graham & Hofer, 2000; Graham, Taylor,
et al., 2001) that if the number of cases lost to missing data is
small, for example if 5% or fewer cases are lost, then the
amount of bias would very likely be trivial, and even the loss
of power would be minimal. Second, the standard errors (and
confidence intervals) based on complete cases are quite
reasonable (Schafer & Graham, in press).

Pairwise Deletion

Pairwise deletion (sometimes referred to as pairwise inclu-
sion) involves calculating each element of a covariance ma-
trix using cases that have data for both variables. Using this
procedure, one would then analyze the covariance matrix
using some analytic procedure that can analyze the covariance
matrix directly. Conceptually, this procedure makes sense in
that one appears to be making use of all available data. How-
ever, statistically, this is not a desirable procedure. Parameter
estimates based on pairwise deletion can be biased. More of a
problem, however, is the fact that the resulting covariance
matrix is not guaranteed to be positive definite; that is, there
may be less information in the matrix than would be expected
based on the number of variables involved.

A third problem with analysis based on pairwise deletion
is that one is limited to analyses that can be performed di-
rectly from the covariance matrix. Finally, there is no basis
for estimating standard errors of the parameters based on
the pairwise covariance matrix. Although all of these prob-
lems could be overcome—for example, standard errors
might be obtained with bootstrapping—the work required to
patch up the procedure will very likely turn out to be more
than what is involved in the preferred analyses to be de-
scribed later.

Even for quick and dirty analyses, we recommend other
procedures (see the section “A Few Loose Ends,” near the
end of this chapter).

Mean Substitution

With this procedure, whenever a value is missing for one case
on a particular variable, the mean for that variable, based on
all nonmissing cases, is used in place of the missing value.
(The term mean substitution, as it is used here, applies to
substituting the mean for the variable. It is also possible
to substitute the mean, for that particular case, of other highly
correlated variables.As described in a later section, we do rec-
ommend this latter procedure under some circumstances.)

Mean substitution has been shown in several simulation
studies to yield highly biased parameter estimates (e.g.,
Graham et al., 1994, 1996; Graham, Hofer, Donaldson,
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MacKinnon, & Schafer, 1997). We argue that it should never
be used. Even for quick and dirty analyses, and even with
small rates of missingness, we recommend the procedures
described in the following sections.

Regression-Based Single Imputation

The idea of imputation is to substitute a plausible value for
the one that is missing. One of the most plausible values, at
least in theory, is the value that is predicted by a regression
equation involving a number of other predictor variables. In
brief, suppose a variable, Y, is sometimes missing, and an-
other set of variables, X1 − Xk, is never missing. We can cal-
culate the predicted value for Y (i.e., Y-hat), based on the
cases for which we have data on Y. For cases with Y missing,
we can substitute Y-hat instead.

In theory, this is an excellent approach to doing imputa-
tion. The problem, however, is that regression-based single
imputation produces substantial bias, especially in the esti-
mates of variance (and therefore in correlations as well). Also,
it has been shown that this procedure is valid only under cer-
tain, rather limited, patterns of missing data (i.e., monotone
missing data patterns). In addition, there is no reasonable
basis for calculating standard errors. Regression-based sin-
gle imputation does form the statistical basis for many of the
acceptable procedures described below, but as a stand-alone
procedure it is not recommended. We argue that it should
never be used. Even for quick and dirty analyses, and even
with small rates of missingness, we also recommend the pro-
cedures described in the acceptable methods section.

Summary of Unacceptable Procedures

In summary, we argue that pairwise deletion, mean substitu-
tion, and regression-based single imputation should never be
used. Even for quick and dirty analyses, and even with small
rates of missingness, we recommend other procedures (see
section “A Few Loose Ends”). We do, however, conditionally
endorse the use of complete cases analysis. In particular,
when one loses only a small proportion of cases (e.g., 5% or
less), use of complete cases analysis seems reasonable. Please
note that we always prefer other methods (e.g., multiple im-
putation), even with small amounts of missing data. From our
perspective, further along on the learning curve, it costs us
very little to use the better procedures, and the payoff, how-
ever small, is worth it. However, for many researchers (nearer
the start of the learning curve), the payoff may not be worth it
under these circumstances. Still, in the very near future, these
better procedures, or at least rudimentary versions of them,
will be available in ways that are more or less transparent to
the end user. We look forward to those days.

ACCEPTABLE MODEL-BASED MISSING
DATA PROCEDURES

Before embarking on a description of acceptable procedures,
we should note that our description of acceptable procedures
is neither highly technical nor exhaustive. For more technical
and more general treatments on these topics, other publica-
tions are available (e.g., Little & Schenker, 1995; Schafer &
Graham, in press).

Model-based missing data procedures deal with the miss-
ing data at the same time that they deal with parameter esti-
mation. That is, missing data and data analysis are handled in
a single step. As we see below, most of these procedures have
been built around latent variable procedures and are thus
somewhat less accessible for the average data analyst than
are the data-based procedures described next. Still, some of
these procedures are extremely easy to use and, when used
properly, can be enormously valuable as a general tool for
dealing with missing data.

Multiple Group Structural Equation Modeling

At the outset of this chapter we mentioned this method as
being one of the first accessible approaches to analysis with
missing data. We cannot go into great detail here in describ-
ing this procedure (greater detail about this procedure
may be found in Allison, 1987; Duncan & Duncan, 1994;
Graham et al., 1994). In brief, the procedure divides up the
sample into groups containing cases with the same pattern of
missing and nonmissing values. A system of equality con-
straints is then placed on the parameter estimates across
groups, such that parameters are estimated based only on
those cases having data that bear on that parameter estimate.
This procedure has some serious limitations and has thus
been supplanted by the other procedures to be described
below. However, this procedure continues to be valuable for
particular applications.

The main limitation of this procedure is that it can be
extremely unwieldy and error prone, especially when
there are many distinct missing data patterns. Because the
SEM code must be changed in subtle ways from group to
group in the multiple group design, it is very easy to intro-
duce errors into the code. In addition, one requirement of
this procedure is that there must be more cases than vari-
ables for every group. With a typical longitudinal data set,
this means that some data must be discarded in order to
produce groups (of missing data patterns) with sufficiently
large sample sizes.

Beyond these limitations, however, this procedure can be
quite good. The parameter estimates are good (i.e., unbiased
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and efficient), and the standard errors are reasonable. This
procedure can be especially good for certain specialty mod-
els. For example, Duncan, Duncan, and Li (1998; also see
McArdle & Hamagami, 1991) have shown how this proce-
dure can be useful with cohort sequential designs in which
not all combinations of measures are available. In addition,
Graham, Taylor, et al. (2001) have shown how this proce-
dure can be extremely useful in simulation work involving
missing data.

Full-Information Maximum Likelihood for SEM

Full-information maximum likelihood (FIML) procedures
for SEM, like other model-based procedures, solve the miss-
ing data problem and the parameter estimation problem in a
single step. With all of these FIML procedures for SEM, the
program yields excellent parameter estimates and reasonable
standard errors, all in a single analysis (however, see the dis-
cussion in the later section “A Comparison of Model-Based
and Data-Based Procedures” for some limitations to these
statements).

Amos

Amos (Arbuckle & Wothke, 1999) has become one of the
more commonly used SEM programs available today. Amos
provides good, quick parameter estimation, along with rea-
sonable standard errors, in the missing data case. Two of the
most desirable features of Amos are (a) that it has an excel-
lent and extremely flexible graphical interface and (b) that it
is now part of the SPSS package. This latter fact means that
one can create one’s SPSS data set, making any desired data
modifications, and then click on Amos as one of the available
analyses within the SPSS package. Despite the drawbacks
described in the next paragraph, the array of nifty features
makes Amos a highly desirable option for researchers in the
social sciences. Amos is not free, but it is available at a rea-
sonable price, especially if one can obtain it at the same time
one obtains the latest version of SPSS.

Unfortunately, Amos is not without limitations. Perhaps
the most important limitation is that one of its most desirable
features, the graphical interface, becomes quickly loaded
down with squares, circles, and arrows when more than a few
latent variables are included in the model. For example, a
model with five independent latent variables, three latent me-
diating variables, and three latent outcomes variables, would
be a jumble of wires (regression and correlation paths) and
extremely difficult to read. This problem is further exacer-
bated if one makes use of one of the models recommended
for enhancing the missing data estimation (described later).

Fortunately, Amos provides two solutions to these prob-
lems. First, Amos warns the user whenever two variables are
not connected by correlation or regression paths. Although
we cannot guarantee that this warning catches all possible
problems, we have found it to be very useful. Second, the text
version of Amos offers a clear solution for estimation of
larger models. Although the text version is a bit clunky in
comparison to the graphical version, it is a completely ser-
viceable alternative.

A second drawback to the use of Amos is that it is not quite
up to the state of the art regarding the SEM analysis itself.
First, the goodness of fit indices are a bit nonstandard in the
missing data case. The independence or null model, on which
many goodness of fit indices are based, assumes that all means
are zero. This assumption is so far wrong (unless the input
variables are standardized) that almost any model looks very
good in comparison. The solution is to estimate one’s own in-
dependence model, which estimates all item variances and
means, but no item covariances. This corresponds to the inde-
pendence model in use by the other major SEM programs.

A second way in which Amos is not quite up to existing
SEM standards relates to its modification indices. They are
not available at all in the missing data case and are sometimes
quite misleading even in the complete data case. Also not
available in Amos 4.0 is the Satorra and Bentler (1994)
correction to standard errors when data are not normally dis-
tributed. Note that some or all of these limitations may be
resolved in newer versions of Amos.

To finish on an up note, one of the key advantages of the
Amos program is that it provides a reasonable estimate of the
chi-square in the missing data case. This is something that is
not yet available with the data-based procedures described
next. In short, where possible, we highly recommend having
Amos as one of your missing data analysis tools.

Other FIML Programs for SEM

Three other options for FIML programs for SEM are LISREL
(Jöreskog & Sörbom, 1996), Mx (Neale, Boker, Xie, &
Maes, 1999), and Mplus (Muthén, 2001; Muthén & Muthén,
1998). LISREL (Jöreskog & Sörbom, 1996) has been the
most often used of the SEM programs since its introduction
in the late 1970s. The recently released version 8.50 has both
FIML and multiple-imputation capabilities. A single state-
ment converts the standard, complete-cases version of
LISREL to its FIML counterpart. The new missing data
features of this program are very good news for the regular
LISREL users.

Mx is a free program that takes the same analysis
approach as Amos. Although Mx’s interface is not as fancy
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as Amos, it is an extremely useful program. The fact that it
is available for free makes it especially appealing for some
researchers. In addition, Mx has features that were espe-
cially designed to facilitate analysis of behavioral genetics
data.

Mplus is a flexible SEM program developed with the
intention of presenting the data analyst with a simple and
nontechnical language to model data (Muthén & Muthén,
1998). Mplus includes many of the features offered by other
SEM programs and a few that are not offered by other pro-
grams. For example, the ability to work with categorical vari-
ables is not easily implemented in other SEM programs. A
major innovation of Mplus is its ability to use mixture mod-
els to model categorical and continuous data simultaneously.
For example, Mplus allows one to model different latent
classes of trajectories in latent growth curve modeling, a kind
of model referred to as second-generation structural equation
modeling by Muthén (2001).

Mplus includes missing data analysis for continuous
outcomes under the assumption of MAR or MCAR. Parame-
ters are estimated using maximum likelihood. Mplus also
allows for missing data in categorical variables in mixture
models.

FIML for Latent Class Analysis

In addition to Mplus, which has latent class features, LTA
(Latent Transition Analysis; Collins, Hyatt, & Graham, 2000;
Hyatt & Collins, 2000) also offers missing data capabilities
in conjunction with latent class analysis. Although a full de-
scription of the capabilities of these programs is beyond the
scope of this chapter, both programs share with other FIML
procedures the feature of dealing with missing data and para-
meter estimation in a single step.

ACCEPTABLE DATA-BASED MISSING
DATA PROCEDURES

With data-based missing data procedures, the missing data
issues are handled in a preliminary step, and the main
data analysis (parameter estimation) is handled in a second,
separate step. The two procedures discussed here are
the EM algorithm for covariance matrices, and multiple
imputation.

EM Algorithm

The EM algorithm for covariance matrices reads in the data
matrix, with missing and nonmissing values, and reads out a

maximum-likelihood variance-covariance matrix and vector
of means. This variance-covariance matrix and vector of
means may then be used by other programs for further analy-
ses of substantive interest. Analyses that may be performed
with the output from the EM algorithm include SEM (e.g.,
with LISREL or EQS), multiple regression (e.g., with SAS),
exploratory factor analysis (e.g., with SAS), and coefficient
alpha analysis (e.g., with the utility ALPHNORM).

EM Algorithm in Brief

Details of the EM algorithm for covariance matrices
are given in Little and Rubin (1987; also see Graham &
Donaldson, 1993; Schafer, 1997). In brief, EM is an iterative
procedure. In the E-step, one reads in the data, one case at a
time. As each case is read in, one adds to the calculation of
the sufficient statistics (sums, sums of squares, sums of cross
products). If nonmissing values are available for the case,
they contribute to these sums directly. If a variable is missing
for the case, then the best guess is used in place of the miss-
ing value. The best guess is the predicted score based on a
regression equation with all other variables as predictors.
For sums of squares and sums of cross products, if neither
element is missing, or if just one element is missing, the
best guess is used as is. If both elements are missing, a cor-
rection term is added. This correction term amounts to added
variability.

In the m step, once all the sums have been collected, the
variance-covariance matrix (and vector of means) can simply
be calculated. Based on this covariance matrix, the regression
equation can also be calculated for each variable as a depen-
dent variable. The regression equation from iteration 1 is then
used in the next e step for iteration 2. Another (better) covari-
ance matrix is produced in the m step of iteration 2. That co-
variance matrix and regression equations are used for the
next e step, and so on. This two-step process continues until
the change in the covariance matrix from one iteration to the
next becomes trivially small.

EM provides maximum-likelihood estimates of the vari-
ance-covariance matrix elements. Some analyses that are
based on this covariance matrix are also maximum likeli-
hood. For example, if the EM covariance matrix is used to
perform a multiple-regression analysis, the resulting regres-
sion weights are also maximum-likelihood estimates. With
this type of analysis, EM and FIML procedures (e.g., Amos)
yield identical results.

However, for other analyses—for example, SEM with
latent variables—parameter estimates based on the EM
covariance matrix are technically not maximum likelihood.
Nevertheless, even these parameter estimates based on the
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EM covariance matrix are excellent in that they are unbiased
and efficient.

The biggest drawback with EM is that it typically does not
provide standard errors (and confidence intervals) as a by-
product of the parameter estimation. Thus, although the para-
meter estimation itself is excellent with EM, it is not possible
to do hypothesis testing with the EM-based estimates unless
one does a separate step specifically for that purpose, such as
the bootstrap (Efron, 1982). The more common approach to
obtaining standard errors for general analysis is a procedure
related to EM: multiple imputation (described in a later
section).

However, for special purposes, using the excellent para-
meter estimation of EM serves an extremely useful function.
If hypothesis testing is not important, for example, with ex-
ploratory factor analysis, or coefficient alpha analysis, ana-
lyzing the EM covariance matrix is an excellent option. We
present an illustration of this type of analysis later in this
chapter. In a later section (“A Few Loose Ends”), we also dis-
cuss briefly the use of the EM covariance matrix for taking a
quick and dirty look at one’s data, even when hypothesis
testing is required. Use of the EM matrix is also good for es-
tablishing goodness of fit in SEM when data are missing
(Graham & Hofer, 2000).

EM Algorithm Programs

There are many programs available for the EM algorithm for
covariance matrices. Perhaps the best option is Schafer’s
(1997) NORM program. The program is designed to perform
multiple imputation, but one of the intermediate steps is
to calculate the EM covariance matrix. Utility programs
(e.g., ALPHNORM) are easily written that allow the use of
NORM’s EM covariance matrix for performing analysis with
SAS (and other programs) and for doing coefficient alpha
analysis.

Other programs for performing EM include EMCOV
(Graham et al., 1994), SPSS, and SAS. EMCOV is a DOS-
based program that was developed in the early 1990s. Nearly
all of its functions are better handled by Schafer’s (1997)
NORM program, except that, as a stand-alone program,
EMCOV is sometimes easier to use with simulation studies.
The current implementation of the EM algorithm within
SPSS (version 10) is disappointing. First, the program is
painfully slow, and it often crashes with problems of any
size. Second, the EM routine is not integrated into the other
SPSS procedures. An excellent, but nonexistent option, for
example, would be to use the EM covariance matrix (auto-
matically) as input into the factor analysis and reliability
procedures. In fact, this should be the default for handling

missing data in these two procedures. Watch for substantial
improvements in future releases of SPSS. SAS 8.2 offers all
these functions in PROC MI. (Please check our web site,
http://methodology.psu.edu, for updated information relating
to the software described in this chapter.)

Multiple Imputation

The problem with regression-based single imputation is that
there is too little variability in the variables containing miss-
ing values. This lack of variability comes from two sources.
First, the singly imputed values lack error variance. Every
imputed value lies right on the regression line. In real (i.e.,
nonmissing) data, the data points are above or below the re-
gression line but seldom right on it. This sort of variability
can be restored simply by adding a random error term to each
imputed value (EM adds a similar kind of error to the sums of
squares and sums of cross products). This random error could
come from a distribution of the known error terms for the
variable in question, or it could simply be a value from a nor-
mal distribution. Schafer’s (1997) NORM program takes this
latter approach.

The second reason that single imputation lacks variabil-
ity is that the regression equation used for imputing values
is just one estimate of the regression equation. That is, this
regression equation is based on the data at hand, and the
data at hand represent just a single (random) draw from the
population. Another random draw from the population
would yield a slightly different regression equation. This
variability translates into slightly different imputed values.
Restoring this kind of variability could be done easily if a
person could simply make multiple random draws from the
population. Unfortunately, this is almost never possible; we
typically have just one data set to work with. However, it
may be possible to simulate multiple random draws from
the population.

One approach to this simulation is to use bootstrap meth-
ods. Creating multiple bootstrap data sets would (to an
extent) be like taking multiple random draws from the popu-
lation. Another approach is to simulate these random draws
with data augmentation (Tanner & Wong, 1987). Data
augmentation, which is used in Schafer’s (1997) NORM
program, bears some similarity to EM. Like EM, data aug-
mentation is a two-step, iterative procedure. For each step
of data augmentation, one has an i (imputation) step and a p
(posterior) step (the accepted jargon is steps of data augmen-
tation and iterations of EM). In each i step, data augmentation
simulates the data based on the current set of parameters. In
each p step, data augmentation simulates the parameters
given the current data.
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With this process, which is one in a family of Markov
Chain Monte Carlo procedures, the parameters from one step
of data augmentation are dependent upon the parameters
from the immediately preceding step. However, as one
moves more and more steps away from the original step, the
parameter estimates become less and less dependent upon
the initial estimates, until the two sets of parameter estimates,
and the imputed data sets that are generated from them, are as
independent of one another as one might find with two ran-
dom draws from the same population. It is important to dis-
cover how many steps apart two imputed data sets must be in
order for them to simulate two random draws from the popu-
lation. We will elaborate on this point during the practical
example.

Doing Multiple Imputation

The multiple-imputation process requires three steps. First,
one creates m imputed data sets, such that each data set con-
tains a different imputed value for every missing value. The
value of m can be anything greater than 1, but it typically
ranges from 5 to 20. Second, one analyzes the m data sets,
saving the parameter estimates and standard errors from
each. Third, one combines the parameter estimates and stan-
dard errors to arrive at a single set of parameter estimates and
corresponding standard errors.

Implementation of Multiple Imputation

There are many implementations of multiple imputation. An
excellent option is Schafer’s (1997) set of programs, headed
by the NORM program for multiple imputation under the
normal model. This program works with continuous data, but
it has been shown to perform well with categorical data (3+
categories with no missing data, 2− category data with miss-
ing data). NORM performs well with nonnormal data and
with small sample sizes (Graham & Schafer, 1999). NORM
can also be used with longitudinal panel data and with cluster
data, as long as the number of clusters is relatively small
(cluster membership in k clusters is modeled as k � 1 dummy
codes, which are included in the multiple-imputation model).

Schafer’s (1997) NORM program (or any normal-based
imputation procedure) is an excellent choice with most longi-
tudinal data sets. Many longitudinal models—for example,
standard growth models—are fully captured by the NORM
model. Nothing is gained in this context by using specialized,
general linear mixed model programs, such as Schafer’s PAN
program. It is only under special longitudinal circumstances
(e.g., when all cases are missing for one variable at one point
in time, or when some pair of variables is missing for all

subjects, as with cohort-sequential designs) that these spe-
cialized programs are better.

Schafer (1997) also has three other multiple-imputation
programs. PAN is available for special longitudinal panel
data situations and cluster data when there are many clusters
(Schafer, 2001; also see Verbeke & Molenberghs, 2000 for
another treatment of mixed models for longitudinal data).
CAT is available for strictly categorical data and is especially
suited for missing data when the categorical variable has
three or more levels. MIX is available for mixed categorical
and continuous data.

All four of the programs are available as Splus routines.
NORM is also available as a stand-alone Windows (95/98/
NT/2000) program, and the current implementation is ver-
sion 2.03. All of Schafer’s (1997, 2001) programs are avail-
able at no cost at http://methodology.psu.edu.

We have already mentioned that LISREL 8.50 (Jöreskog &
Sörbom, 1996) has a multiple-imputation feature. In addition,
PROC MI and PROC MIANALYZE have been implemented
in SAS version 8.2. Both of these implementations of multiple
imputation are based on Schafer (1997) and promise to in-
crease greatly the usefulness of these procedures.

A COMPARISON OF MODEL-BASED AND
DATA-BASED PROCEDURES

The conventional wisdom regarding missing data procedures
holds that the model-based procedures and data-based proce-
dures, especially multiple imputation, are essentially equiva-
lent in the quality with which they deal with missing data and
differ only in the preferences researchers may have regarding
the use of one or the other. However, recent evidence has
shown that, although the conventional wisdom remains true
in theory, there may be important differences in the quality of
these two approaches as they are typically practiced (Collins
et al., 2001). The main difference relates to the use of model-
irrelevant variables.

Model-based procedures—for example, FIML procedures
for SEM—deal with the missing data and parameter estima-
tion at the same time. Thus, by their very nature, these mod-
els tend to be limited to the variables that are deemed to be of
substantive relevance. The idea of including substantively ir-
relevant variables into the model, although quite possible
with many model-based procedures, is not typical. With mul-
tiple imputation, it is quite common, and also quite easy, to
include substantively irrelevant variables into the model.
Without understanding fully the reasons behind this,
researchers have been adding such variables for some time
under the belief that it is valuable to do so in order to help

schi_ch04.qxd  8/7/02  12:15 PM  Page 95



96 Methods for Handling Missing Data

with the missing data aspect of the model. It is not so much
the number of variables that is important, but which variables
are or are not included.

Recent research (Collins et al., 2001) has shown that there
is good reason for including such substantively irrelevant
variables into all missing data models. Collins et al. have
shown several points relevant to this discussion. All of these
points relate to the inclusion of variables, which, although
outside the model of substantive interest, are highly corre-
lated with variables containing missing data. First, including
such variables when the missing data mechanism is MCAR
can reduce the standard errors of estimated parameters. Sec-
ond, with MAR missingness, although there is bias when the
causes of missingness are not included in the model, the bias
is much less of a problem than previously thought. Also, in-
cluding highly correlated variables into the model under
these circumstances reduces the standard errors of estimated
parameters.

Finally, Collins et al. (2001) have shown that with MNAR
missing data mechanisms, where the cause of missingness
cannot be included in the missing data model, bias can be
substantial. However, including highly correlated, substan-
tively irrelevant variables into the model can reduce this bias,
often substantially and, as with the other missing data mech-
anisms, can reduce the standard errors of estimated parame-
ters, without affecting the important parameter estimates. In
short, it is essential to include variables that, although sub-
stantively irrelevant, are highly correlated with the variables
containing missing data.

Because of these recent findings, users of model-based
missing data procedures must make every attempt to in-
clude these model-irrelevant variables. With some model-
based procedures, such as LTA (Collins et al., 2000), this is
simply not possible (at least at present). Thus, for many
analysis problems, the use of multiple imputation is clearly
preferred. However, for FIML-based SEM programs such
as Amos, Mx, LISREL 8.50, and Mplus, it is quite possible
to introduce these substantively irrelevant variables into the
model in a way that helps deal with the missing data and
does not alter the substantive aspects of the original model.
Models of this sort have been described recently by Graham
(in press).

The preliminary evidence is that the practice of adding sub-
stantively irrelevant variables has no real drawback, other
than increased model complexity. One of the problems with
multiple imputation is that as the number of variables in-
creases, EM and data augmentation require more iterations
and more time for each iteration. Thus, one practical draw-
back to adding many extra variables to the model will be that
it may take longer to run. In extreme cases, it may even be

necessary to break the problem apart in reasoned fashion (e.g.,
see Graham & Taylor, 2001) and impute the parts separately.

ILLUSTRATIONS OF MISSING DATA
PROCEDURES: EMPIRICAL EXAMPLES

In this section, we illustrate the use of two basic missing data
procedures: multiple imputation with NORM (Schafer, 1997)
and FIML with Amos (Arbuckle & Wothke, 1999). We
illustrate these procedures with two types of data analysis.
First, we illustrate the use of NORM, along with the utility
ALPHNORM, to perform basic data quality analyses (coeffi-
cient alpha). We illustrate this by analyzing the EM covari-
ance matrix directly and also by imputing a single data
set from EM parameters. Second, we illustrate a straightfor-
ward multiple-regression analysis with multiple imputation.
We illustrate this with both SAS and SPSS. For comparison,
we perform this same multiple-regression analysis using the
Amos program. Although we do not illustrate latent-variable
regression analysis, we do discuss SEM analysis with multi-
ple imputation and Amos.

Participants and Missing Data Patterns

The empirical data for these examples are drawn from the
Alcohol-Related Harm Prevention (AHP) project (Graham,
Roberts, Tatterson, & Johnston, in press; Graham, Tatterson,
Roberts, & Johnston, 2001). The participants for the AHP
study were undergraduate college students, the majority of
whom were sophomores in fall 1999. Longitudinal data are
included from five waves of data collected from September
1999 to November 2000 from the same students.

Describing the sample size in a study with missing data is
not a straightforward thing. We recommend describing the
sample size as follows. First, the population was defined as
the 1,702 students enrolled in one large college course in fall
1999. Of this number, N � 1,024 took part in at least one of
the five waves of measurement. A subset of these students
(634, 489, 707, 714, 628, respectively) participated in waves
1 through 5 of measurement. Table 4.1 summarizes the stu-
dent participation over the course of the study.

The “0” values in Table 4.1 represent wave nonresponse
or attrition. In addition to the wave nonresponse, students
may not have completed all items within the questionnaire.
For example, due to slow reading, they may have left
questions blank at the end of the survey. To minimize this
problem, the AHP questionnaire used a version of the “3-form
design” (Graham et al., 1994, 1996, 1997; Graham, Taylor,
et al., 2001). With this measurement design, the order of
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TABLE 4.1 Participation Patterns for the Five Waves of the
AHP Study

Wave

1 2 3 4 5 Frequency Percent

0 0 0 0 1 56 5.5
0 0 0 1 0 44 4.3
0 0 0 1 1 47 4.6
0 0 1 0 0 38 3.7
0 0 1 1 0 44 4.3
0 0 1 1 1 64 6.3
0 1 1 1 1 33 3.2
1 0 0 0 0 58 5.7
1 0 1 0 0 23 2.2
1 0 1 1 0 32 3.1
1 0 1 1 1 64 6.3
1 1 0 0 0 24 2.3
1 1 1 0 1 21 2.1
1 1 1 1 0 69 6.7
1 1 1 1 1 253 24.7

870 85.0

Note. 1 = participated; 0 = did not participate. The 15 patterns shown are
those involving the largest numbers of participants. Sixteen additional pat-
terns, each containing fewer than 20 students, are not shown.

presentation of the main item sets was rotated across the three
forms so that slow readers would leave different questions
blank depending upon which form they received.

Measures

Because the focus of this chapter is the methods more than
the substantive analyses, we describe the measures only
briefly. The main analysis to be described was multiple
regression.

Dependent Variable

For the main substantive analyses, we treated heavy alcohol
use at the last wave of measurement (November 2000) as the
dependent variable. This measure was made up of three ques-
tionnaire items. One question asked for the number of times in
the previous two weeks the person had consumed five or more
drinks in a row. A second asked how many times in the previ-
ous two weeks the person had consumed four or more drinks
in a row. The third question asked how many times in the pre-
vious 30 days the person had consumed enough alcohol to get
drunk. For the regression analyses, these items were summed
to form a composite scale for heavy alcohol use.

Predictors

There were six predictor variables in the multiple-regression
models. Three of these were considered background
variables: gender, religiosity, and the personality variable,

introversion. Gender was coded 1 for women and 0 for men.
The gender variable was the average of the gender question
over the five waves of measurement. For 1,021 students, this
average was exactly 1 or exactly 0, implying complete con-
sistency. For two students, the average was 0.8, meaning
that these students were most likely women but responded
male on one of the five questionnaires. For this chapter, these
were assumed to be women. For only one student was this
variable missing altogether.

The religion question was a single item asking how
important it was for the student to participate in religion at
college. Because the answer to this question was so highly
intercorrelated from wave to wave, the religion variable used
in this chapter was a simple average of this variable over the
five waves of measurement.

The introversion variable was a composite of 10 items from
a 50-item version of the Big-5 (Saucier, 1994). The items were
scored such that higher values implied greater introversion.

Also included as predictors were three other variables
from the September 1999 survey: negative attitudes about
authority (DefyAuthority), perceptions of alcohol consump-
tion by students in general at this university (PeerUse), and
intentions to intervene in possible harm situations (Intent-
Intervene). The number of items and coefficient alpha for
each scale are presented in Table 4.2.

The patterns of missing data for the variables included in
the main regression analyses (described later) are shown in
Table 4.3. Two of the predictor variables (gender and reli-
giosity), which were formed by combining data from all five
waves of measurement, had so few missing values (12 cases
were missing for religiosity and 1 case was missing for gen-
der) that they were omitted from Table 4.3. A third predictor
variable (introversion) was measured at only one time (at
whichever time was the first measurement for any given indi-
vidual) but had slightly more missing data and appears in
Table 4.3.

TABLE 4.2 Summary of Questionnaire Items and Coefficient Alpha

Coefficient Alpha

Impute Analyze
Number from EM

AHP Predictors of Items EM Directly

gender (men = 0, women = 1) 1 — —
religion (higher value = religion 1 — —

more important)
introversion 10 .89 .89
Defy Authority (Sep 1999) 3 .60 .60
Perceptions of Peer alcohol use 3 .84 .85

(Sep 1999)
Intent to Intervene (Sep 1999) 4 .74 .74
Main DV: Heavy alcohol use (Nov 2000) 3 .94 .94
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TABLE 4.3 Missing Data Patterns for Variables Included in
Main Analyses

Variables

DV Predictors

Heavy
Drinking Intro- Defy Peer Intent
Nov 2000 version Auth Use Intervene Freq Percent

0 0 1 1 1 23 2.2
0 1 0 0 0 147 14.4
0 1 1 1 1 193 18.8
1 1 0 0 0 227 22.2
1 1 0 1 1 26 2.5
1 1 1 1 1 357 34.9

Totals 973 95.0

Note. “1” means student provided data; “0” means student did not provide
data. These six patterns are those involving the largest numbers of partici-
pants. Ten additional patterns, each involving fewer than 20 students, are not
shown. The predictor variables gender and religiosity, which were formed by
combining data from all five waves, had so little missing data that they are
not shown here.

Other Variables

As we noted previously, there is value in including other vari-
ables in the missing data model, whether or not they are re-
lated to missingness, if they are highly correlated with the
variables containing missing data. In any study involving
longitudinal data, it is always possible to include measures
from all waves of measurement, even if all waves are not in-
volved in the analysis of substantive interest. Because it is
often the case that measures from one wave are rather highly
correlated with the same measures from an adjacent wave, it
is generally an excellent idea, from a missing data standpoint,
to include such variables where possible.

For our analysis of substantive interest, the dependent vari-
able was from the November 2000 measure (wave 5), and the
predictors of interest were mainly from the September 1999
measure (wave 1). In our case, we also included 21 relevant
variables from all five waves of measurement. We included
measures of alcohol use (i.e., three items measuring alcohol
consumption without focusing on heavier drinking) from all
five waves, heavy drinking (same as main dependent variable)
from waves 1–4, and defiance of authority (same as predictor
variable), perceptions of peer alcohol use (same as predictor),
and intent to intervene (same as predictor) from waves 2–5.

Data Quality Analysis with NORM

With most analyses, the researcher wishes to test hypotheses.
For these analyses, it is important to have good parameter
estimation and good estimation of standard errors (and confi-
dence intervals). However, with data quality analysis, it is

generally sufficient to have good parameter estimation. Thus,
for data quality analysis, there are two good options that are
not available for hypothesis testing. These two options are
(a) to analyze the EM covariance matrix directly and (b) to
analyze a single data set imputed from the EM parameters
(with error).

EM produces maximum-likelihood estimates of the
covariance matrix. From this, one may perform exploratory
factor analysis and may get excellent estimation of coeffi-
cient alpha in the missing data case. The main drawback to
analyzing the EM covariance matrix has been the logistics of
producing a matrix that is readable by existing software. We
will describe a solution to this logistical problem.

Producing a single imputed data set from EM parameters is
not normally a good solution to hypothesis-testing problems.
Although the data set itself is a plausible one, the fact that there
is just one data set means that it is not possible to estimate
standard errors accurately for the parameters estimated from
this data set. Nevertheless, if one must produce a single im-
puted data set, using EM parameters is the best option in that
EM parameters are, in a sense, in the center of parameter
space. Another way of thinking about this is to note that the
EM parameters are very similar to the average parameters
obtained from a large number of imputed data sets.

The key advantage of using a single data set imputed from
EM parameters is that one is dealing with a data set with no
missing data. Thus, standard statistical software (e.g., SAS or
SPSS) can be used. The only caveat is that in analyzing this
single data set, one should NOT rely on the t values and p
values generated by the analysis.

Multiple Imputation with NORM

In this section, we describe in some detail the use of the
NORM software (version 2.03; Schafer, 1997). NORM will
very likely be modified and improved in the future. In order
to maximize the value of the information provided in the pre-
sent chapter, step-by-step instructions for the operation of the
current version of NORM will be maintained at our web site,
http://methodology.psu.edu.

Although the step-by-step instructions described here
apply specifically to the NORM program, most of the issues
covered will, or should, have counterparts in any multiple-
imputation program. Thus, the instructions provided in the
following pages should be seen as being applicable in a
quite general way to other multiple-imputation software
as well.

In order to perform item analysis (coefficient alpha) or ex-
ploratory factor analysis, we must first perform the first part
of multiple imputation with NORM (Schafer, 1997). For
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more detail about the operation of NORM, please see Schafer
and Olsen (1998; also see Graham & Hofer, 2000).

Running NORM, Step 1: Getting NORM

If you do not have NORM already, it can be downloaded for
free from our web site. Please note that all software illus-
trated in this chapter (except Amos) can be downloaded for
free from this web site. Click on Software and follow the
links for NORM. Once you have it downloaded, install the
program. The defaults usually work well.

Running NORM, Step 2: Preparing the Data Set

First, one must prepare the data set. Do this by converting
all missing values in the data set to the same numeric value
(e.g., �9). Whatever value it is, this missing value indicator
should be well out of the legal range for all variables in the
data set. Next, write the data out as an ASCII, or text data set.
We find that using the suffix .dat tends to work best, but .txt
will also work. Each value in the output data set should be
separated by a space (i.e., it should be space delimited).
Be careful to write out the data for each case in one long line.

It really helps if you have a separate file containing just the
variable labels (in order) as one long column vector (i.e., one
variable name per line). This should also be an ASCII, or text
file, and it should have the same name as your data file, except
that it should have .nam as the suffix, rather than .dat or .txt.

Many of these data preparation steps, which are required
with NORM 2.03, may not be required in other programs. For
example, one clear advantage of working with PROC MI in
SAS is that the data sets are already prepared, and this step is,
to a large extent, unnecessary.

Running NORM, Step 3: Variables

For the most part, NORM is a rather user-friendly program. It
works like most Windows programs, and very often one can
simply accept the default options at each step. With NORM
2.03, begin by starting a new session. Locate your recently
created data file, and read it into NORM.

Once your data have been read into NORM, you are ready
to go. If you want to name your variables (e.g., if you have
not created a separate .nam file), look at their distributions,
perform any temporary transformations, request rounding for
imputed values, or select variables for inclusion in the model.
You can do so by clicking on the Variables tab.

We have two points to make here. First, if you have a very
large data set (e.g., 100 variables and 3,000 cases), you will
want to consider applying appropriate transformations (e.g.,

log transformation if skew is to the right or square transfor-
mation if skew is to the left) before running NORM. It will
speed up EM and data augmentation to a substantial degree.
Please note that if you choose to transform variables in
NORM, NORM uses these transformations during calcula-
tions but always writes out its imputed data sets using the
original, untransformed scales.

Second, NORM 2.03 has Not recommended for the No
rounding option. We take exactly the opposite view. Except
for special cases (e.g., needing a dichotomous dependent
variable for logistic regression), we argue that less rounding
is better. We argue that rounding is rather like adding more
random variability to a variable once it has been imputed.
This is typically not desirable. In any case, the difference be-
tween rounding and not rounding is generally small. For our
example, we changed all integer rounding (the default for in-
teger variables), to hundredths rounding.

Running NORM, Step 4: Summarize

Click on the Summarize tab, and click on Run (accepting
the defaults). The results of this summary will be much more
meaningful if you have included a .nam file with the variable
names or if you have explicitly named your variables in
the Variables tab. Otherwise, you have to know which vari-
able is which.

This summary is an extremely valuable troubleshooting
tool. Look at the number and percent missing for each vari-
able. Do the numbers make sense, given what you know
about the data set? If any variable is missing for 100% of the
cases, it may mean that you have made a coding error some-
where. If it is not an error, the variable should be omitted
from the analysis.

The matrix of missingness patterns is also very useful. If
the number of patterns is small, this could be reported, as is,
in your article where you would normally talk about the sam-
ple size. If the number of patterns is large, it might be useful
to present in table form only the patterns with the largest
numbers of cases. If there is a very large number of missing-
ness patterns, it will be necessary to summarize the patterns,
as we have done in this chapter.

Please note that the pattern representing complete data (if
it exists) always appears at the top and that the pattern with
the least data appears at the bottom. It is not good if the pat-
tern at the bottom shows all zeros (no data). If the number of
cases with no data is large or puzzling, it could be due to a
coding error somewhere. Whether or not it is an error, you
should delete such cases before continuing.

Our first example involved the 25 individual variables de-
scribed above and in Table 4.2, as well as the 21 variables
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included to help with imputation. In this first example, there
were 205 patterns of missing and nonmissing data. Most of
these patterns involved just a single individual. The largest
pattern (N � 106) was the pattern for which the cases had
complete data for all 46 variables included in the missing
data analysis.

Running NORM, Step 5: EM Algorithm

Next, click on the EM algorithm tab. It is often possible to ac-
cept all the defaults here and simply click on Run (this worked
in our example). However, there are some options you should
consider before doing this. For some of these options, click on
the Computing button. The options here are maximum itera-
tions, convergence criterion, and ML or posterior mode.

Maximum Iterations. The default here (1,000 itera-
tions) will usually be enough. However, if this is a large job
(e.g., anywhere near 100 variables), you might want to bump
this up to something larger (e.g., 2,000). Please note that you
can always stop the iterations at any point and use the interim
results as a new starting place. Also, if EM stops after 1,000
iterations and has still not converged, you can always use that
(interim) result as the new starting place.

Convergence Criterion. The default in NORM is .0001.
We have always used this default. NORM automatically stan-
dardizes all variables prior to running EM. All variables are
back-transformed to the original scales for imputation. Stan-
dardizing all variables to variance = 1 gives the convergence
criterion clear meaning. Bear in mind that other missing data
programs may not routinely standardize the variables prior to
running EM. Thus, the convergence criterion for other pro-
grams may have different meaning if the variables involved
have variances that are substantially smaller or larger than 1.
Also, note that for other programs the meaning of the conver-
gence criterion may be something different from the criterion
in NORM. With EMCOV and SAS, for example, convergence
is achieved when the largest covariance matrix element
change is smaller than the convergence criterion. However,
with NORM, convergence is achieved when the largest
change, divided by the parameter value, is smaller than the
convergence criterion. Thus, the convergence criterion in ver-
sion 2.03 of NORM is generally more conservative than the
corresponding criterion in SAS PROC MI.

ML or Posterior Mode. If you have a relatively large
number of complete cases, you should use the ML estimate
or at least try that first. Use of the ridge prior is not well
described in the substantive literature, but it is defensible if

you have relatively few complete cases. Adding a hyperpara-
meter has an effect similar to adding that number of new
(complete) cases to your data set, such that all the variables
are uncorrelated. The benefit of adding complete cases is that
it adds stability to the EM and data augmentation models.
The drawback of adding a hyperparameter is that all covari-
ances will be suppressed toward zero. For this latter reason, it
is critical that this hyperparameter be kept small. In fact,
Schafer (1997) talks about the possible benefit of a hyperpa-
rameter of less than 1. Think like a critic when selecting this
value. How would you, as a critic, react to someone’s adding
100 new (bogus) cases to a data set if the original sample
was only 200? On the other hand, how would you react to
someone’s adding 10 new (bogus) cases to a data set when
the original sample size was 1,000? We argue that the second
example is much easier to accept.

Other Options. The EM part of NORM produces two
files, em.out and em.prm. Em.out is a nicely formatted output
file that is meant to be viewed. The EM means, variances, and
covariances shown in this file are the best available single es-
timates of these values. We recommend that it is these values
that should be reported in your article. If you are interested in
seeing the EM correlations (rather than variances and covari-
ances), you can select Correlation matrix before you run EM.
The file em.prm is the parameter file and is meant to be used
in analysis, but not to be viewed. Be careful when you are
starting EM that you are not overwriting another file with the
same name. You could be throwing away hours of work! You
can rename these output files if you like.

It is also possible to specify one of these .prm files from a
previous job. For example, if you have previously allowed
EM to run for 1,000 iterations, and it did not converge, you
can rename the old em.prm file to be, say, em_old.prm, and
then specify that as your starting values for the new analysis.

Speed of EM. The speed of convergence of EM de-
pends on many factors. The most important factor is the num-
ber of variables. The number of cases does not matter as
much. Another factor that affects the speed of EM is the
amount of missing information. This is not the same as the
amount of missing data, per se, but it is certainly related to
that. If you have much missing data, EM (and data augmen-
tation) will take longer.

Our Example. In our initial example, we had 46 vari-
ables and 1,024 cases. EM converged normally in 146 itera-
tions. By normal convergence we mean that there were no
error messages and that the fit function changed monotoni-
cally throughout the iteration history.
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Pause to Perform Data Quality Analyses with Interim
Results from NORM

Coefficient Alpha Analysis: Analysis of EM Covariance
Matrix With the ALPHNORM Utility

The ALPHNORM utility can be downloaded for free
from our web site (note that the current version of
ALPHNORM works only if you have made no data trans-
formations with NORM). This utility makes use of the EM
output from NORM. The current version of the program is a
bit clunky and works only from the DOS prompt. However,
it is useful for calculating standardized coefficient alpha
and alpha-if-item-deleted from the EM covariance matrix
produced by NORM. If you have previously used a .nam
file with NORM, then ALPHNORM reads these names.
Each variable is also identified by number. You select the
number of variables to be analyzed and the corresponding
variable numbers. ALPHNORM provides the standardized
coefficient alpha, along with information about alpha-if-
item-deleted.

We do not actually describe the coefficient alpha analysis
here, but the results of these analyses appear in the rightmost
column of Table 4.2.

Exploratory Factor Analysis: Using ALPHNORM to
Create SAS-Ready Data Sets

The ALPHNORM utility can also be used simply to write out
SAS-ready data sets. Specifying 1 when prompted results in
the utility’s writing out a SAS-ready version of the EM co-
variance matrix, along with the actual SAS code needed to
read that matrix. This SAS code (see Appendix A) includes
the variable names, if available. The SAS data step should
run as is. The utility also sets up the syntax for PROC FAC-
TOR, leaving out only the variable names. The utility also
provides syntax for PROC REG, but this should be used with
caution, because there is no basis for the T and p values. The
ALPHNORM utility sets the sample size arbitrarily to 500. If
there is a good rationale, you can change this number manu-
ally to something more reasonable.

We do not actually perform an exploratory factor analysis
here, but the code provided in Appendix A will facilitate this
analysis. With version 8.2 of SAS it is very convenient to do
exploratory factor analysis based on the EM covariance ma-
trix all within SAS. First, specify PROC MI nimpute = 0;
and EM emout = sasdatasetname. Then specify PROC FAC-
TOR data = sasdatasetname (type � cov). . . . Unfortu-
nately, this shortcut is not available in earlier versions of
SAS, and a similar shortcut is not available for performing
coefficient alpha analysis.

Multiple Imputation: Running NORM, Continued

Running NORM, Step 6: Impute From EM Parameters

To impute from EM parameters in NORM, simply click on
the Impute from parameters tab, and click on the Run button.
Be sure that the window Use parameters from parameter
(*.prm) file has been selected and that em.prm is indicated.
By default, NORM writes out a data set with the root of the
data set name, followed by _0.imp. This data set may then be
analyzed using SAS, SPSS, or any program of your choosing.

Coefficient Alpha Analysis: Using NORM to Impute From
EM Parameters (Analysis With SAS or SPSS)

We have argued above that using one imputed data set based
on EM parameter estimates is a reasonable way to proceed
for analyses that require raw data but not hypothesis testing.
Because this approach is so much like analyzing a complete
cases data set, many users will find this to be a desirable al-
ternative to analyzing the EM covariance matrix for perform-
ing coefficient alpha analysis or exploratory factor analysis.

We do not actually show these analyses here, but the re-
sults of the coefficient alpha analyses (using SAS) for these
data appear in Table 4.2. Note how similar these results were
in comparison with direct analysis of the EM covariance ma-
trix. Of the five scales analyzed, coefficient alpha was the
same (to two decimal places) for four and differed by only
one one-hundredth for the remaining scale.

Many programs have the capability of imputing a single
data set from EM parameters (e.g., SPSS and EMCOV). If
programs other than NORM are used for this purpose, be cer-
tain that error is added to each imputed value. In SPSS (ver-
sion 10.1), for example, the values are imputed, but error is
not added. This will produce important biases in exploratory
analyses.

Running NORM, Step 7: Data Augmentation
and Imputation

Please note that the following analyses were based on a
slightly different data set from what we just described. The
remainder of our empirical example involves imputation of
the seven intact scales described above and in Table 4.2,
along with the 21 other variables added to help with imputa-
tion. EM analysis of the individual items was required for the
coefficient alpha analysis. However, multiple imputation of
the intact scales, which was all that was required for per-
forming the multiple regression, was much more efficient.
For example, note the difference in number of iterations re-
quired for EM to converge (42 versus 146). 
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We summarize briefly the preliminary NORM analyses
with this new data set. For these analyses, there were 28
variables in total. There were 105 patterns of missing and
nonmissing values, 56 of which involved just a single indi-
vidual. The largest pattern (N � 218) was the pattern of
complete data. For this data set, EM converged normally in
42 iterations.

Once you have run EM within NORM, the next step for
multiple imputation is data augmentation. Click on the Data
augmentation tab.

The Series Button. The information here is for setting
up the diagnostics for data augmentation. In order to run the
diagnostics, you should click on one of the Save options.
Click on Save all parameters to save information about all of
the parameters (variances, covariances, and means). If the
number of variables is small, or if you have little experience
with a particular data set, this may be a good option. However,
with this option, the program saves all parameter estimates at
every step of data augmentation. Thus, with a large number of
variables and a large number of steps, the file containing this
information could be huge (e.g., 50 to 100 MB or larger).

Thus, a good compromise is to click on Save only worst
linear function. If the results for the worst linear function are
acceptable, then the results for all other parameter estimates
will be no worse than this. This file is generally very small.

The Imputation Button. Usually you will want to click
on Impute at every kth iteration. However, what value should
be used for k? We noted earlier that one of the key questions
when doing data augmentation is how many steps are re-
quired before two imputed data sets are like two random
draws from a population. There are two approaches to be
taken here: (a) One can select a conservative number of steps
between imputed data sets, or (b) one can perform the diag-
nostics to see how many steps between imputed data sets are
suggested by the data. We recommend a combination of these
two approaches.

With other implementations of multiple imputation, the
entire process may be more automated than the process de-
scribed for NORM. For example, in SAS 8.2 one runs EM,
MCMC, and imputation all in a single step without user
input. This reduction of steps, however, is only apparent.
Regardless of what software one uses, the user must, as we
describe below, make decisions along the way.

First, determine how many iterations it took EM to con-
verge. We recommend that you begin with this number for k.
For example, it took EM 42 iterations to converge in our ex-
ample. Thus, to be somewhat conservative, we began by set-
ting k to 50. That means that NORM will produce an imputed

data set every 50 steps of data augmentation. If, after viewing
the diagnostics, you believe that k should have been larger,
you can (a) redo data augmentation using the larger value for
k, or (b) simply use every imputed data set with an even num-
ber, discarding those with odd numbers. This effectively dou-
bles k. Then create as many new imputed data sets as needed
using the larger number of k between imputed data sets.

The Computing Button. The number of iterations is the
total number of iterations. For example, if k is set to 50 and
you wish to produce 20 imputed data sets, this value should
be 20 � 50 � 1,000. If you have used the ridge prior for EM,
you should use the same thing here (this will be the default).

How many imputed data sets? Schafer and Olsen (1998)
provide a table for assisting with this decision. The larger the
fraction of missing information, the greater m should be. Un-
fortunately, one obtains the estimate of the fraction of miss-
ing information only after one imputes the data. Further, the
fraction of missing information provided by NORM is itself
just an estimate. Thus, for small values of m, this estimate is
rather unstable (unreliable). Thus, our somewhat nonstatisti-
cal recommendation is to set m to at least 10 (20 is better).
You can always decide to analyze only the first m � 5 im-
puted data sets if it turns out that is all you need.

Running Data Augmentation. Once all the informa-
tion has been given, click on run. With smaller problems (rel-
atively few variables), this process will be rather quick. With
larger problems (many variables), this may take some time.
You will notice that every time the number of steps passes a
multiple of k, NORM pauses to write out an imputed data set.

Multiple-Imputation Data Sets. The result of all your
efforts will be m imputed data sets. Each data set will be like
a complete data set. For every nonmissing value, that non-
missing value will appear in each of the data sets. For every
value initially missing, an imputed value will appear. That
value will be different, sometimes quite different, across the
m different data sets. 

Our Example. In our example, we created 20 imputed
data sets. We set k = 50, and the total number of data aug-
mentation steps was 1,000. The imputation process took just
under three minutes on a 366 MHz Pentium II laptop.

Running NORM, Step 8: Data Augmentation Diagnostics

To check the diagnostics, click on the word Series at the top
of the screen. Click on Open to see a menu of the available
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series. The default name is da.prs. Once the data set is open,
click on Series again and on Plot. If you asked for the worst
linear function, that is all that will appear. Figure 4.1 shows
the diagnostic plots for the worst linear function from 1,000
steps of data augmentation for the sample data used in this
chapter. The upper plot is simply a plot of the value of the
worst linear function at each step of data augmentation.
Ideally, you will see a pattern in this upper plot that looks
something like a rectangle. The plot shown in Figure 4.1 is
reasonably close to the ideal. Schafer & Olsen (1998) show
figures of two additional NORM plots, including plots of so-
lutions that are problematic. Additional figures are presented
in the Help documentation for NORM. If the plot snakes
gradually up and down, you may have a problem. If you do
notice this sort of problem (please see Schafer & Olsen for a
particular kind of problem), you may be able to solve it ade-
quately by using the ridge prior with a small hyperparameter.

The lower plot (see Figure 4.1) is the plot of the autocorre-
lation. It is the correlation of a parameter estimate (in this case
the worst linear combination) at one step with the same esti-
mate 1, 2, 50, or 100 steps removed. When the autocorrelation
dips below the red line (and stays there), you have evidence

that this value of k (the number of steps of data augmentation
between imputed data sets) is sufficient to produce a non-
significant autocorrelation between estimates. That is, setting
k to this value will be sufficient for multiple imputation. In our
experience, this value is typically much smaller than the num-
ber of iterations it took EM to converge. In this context, we
caution that our experience is based on the use of NORM, for
which the convergence criterion is “the maximum relative
change in the value of any parameter from one cycle to the
next” (according to the NORM help documentation). That is,
the change in a parameter estimate from one iteration to the
next is scaled according to the magnitude of each parameter
estimate in question. Other software may use different conver-
gence criteria, in which case the relationship between the con-
vergence properties of EM and MCMC will be different.

In our example, it appeared that the autocorrelation plot
became nonsignificant around k = 10. That is, we would
have been justified in using k = 10 for imputing our data sets.
Thus, our original decision to use k = 50 was fully justified
and, in fact, proved to be quite conservative. Based on the
diagnostics, we retained the 20 imputed data sets without
further work.

Figure 4.1 Multiple Imputation Diagnostic Plots
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Multiple-Regression Analysis With the
Multiple-Imputation Data Sets 

The main analysis used here is one researchers use very
often. Thus, we will say only that this was a simultaneous
linear multiple-regression analysis. The dependent variable
was the composite scale for heavy alcohol use from the
November 2000 measure. The six independent variables
were described previously.

In theory, analysis with multiple imputation is extremely
easy to do. One simply runs the analysis of choice—for ex-
ample, SAS PROC REG—with one data set and then repeats
the process, changing only the input data set name. The whole
process takes only a few minutes. Because one is dealing with
raw data, it is very easy to recode the data (e.g., log transfor-
mations, reverse coding, or standardization) and to compute
new variables (e.g., averages of standardized variables).

The biggest problem one faces with multiple imputation is
saving parameter estimates and standard errors from each
analysis and combining them into a form that is usable with
NORM for hypothesis testing (MI Inference). Fortunately,
with SAS 8.2, even if one imputes the data with NORM,
analysis and MI Inference with SAS is extremely easy. This
process is outlined in the next section. With older versions of
SAS, with SPSS, and with other statistical programs, the
process is more complicated. However, SPSS and older ver-
sions of SAS do provide users with a macro language that
facilitates the process. The process of analysis and MI Infer-
ence with SPSS is described in a later section.

The SAS code we used to perform multiple imputation on
the 20 imputed data sets appears in Appendix B. SAS code
for other variations of PROC REG and for other procedures
can be found on our web site and on the SAS web site. SAS
code for the more complicated macro version (for use with
older versions of SAS) may be found on our web site. 

Preparation of NORM-Imputed Data Sets

With NORM, one creates 20 separate imputed data sets. With
SAS PROC MI, the 20 imputed data sets are stacked into a
single large data set. The special variable _imputation_ keeps
track of the 20 different data sets. In order to prepare NORM-
imputed data sets for use with SAS 8.2, one simply needs
to stack them into one large data set. A utility for this is
available at our web site. Alternatively, one could simply read
in the data sets, create the _imputation_ variable, and use
the SET statement in SAS to stack the imputed data sets.
For the example given below (statements shown in Appendix
B), we used the utility that created a stacked version of the
NORM-imputed data sets.

The SAS code (see Appendix B) reads in the _imputation_
variable and all 28 substantive variables, standardizes the
variables to be used in the analysis (to facilitate comparison
with Amos results), and performs the regression analysis.
The regression parameter estimates are written out to a data
set (named c), and the option Covout also writes out a covari-
ance matrix of estimates, the diagonal of which is the square
of the standard errors. The BY statement in PROC REG
allows the analysis to be repeated for each imputed data set.

PROC MIANALYZE reads the data set containing parame-
ter estimates and standard errors. Except for specifying which
parameter estimates are of interest (in the VAR statement), this
procedure is automatic to the user. In the output from PROC
MIANALYZE, look for the Multiple Imputation Parameter
Estimates. The usual information is all there: parameter (pre-
dictor) name, b weight, standard error, t value, degrees of free-
dom (see below), p value, and confidence intervals. These are
the values to be reported in the formal write-up of the results.

The Fraction of Missing Information (which appears
under the output section Multiple Imputation Variance Infor-
mation) is also quite useful. This fraction (presented as a per-
centage) is related to the proportion of variability that is due
to missing data. Schafer and Olsen (1998) present a table
showing the percent efficiency of multiple-imputation (MI)
estimation based on the number of imputed data sets and the
fraction of missing information. From this table one can jus-
tify choosing a particular number of imputed data sets (m).
For example, if the fraction of missing information is .5, mul-
tiple-imputation parameter estimates are 86% efficient with
only m = 3 imputed data sets. With 5, 10, and 20 imputed
data sets, the same estimates are 91, 95, and 98% efficient, re-
spectively. Thus, when the fraction of missing information
is .5, one might decide that 10 imputed data sets are suffi-
cient, because the parameter estimates are 95% efficient. 

Alternative Approach With SAS PROC MI

Although an SAS user could certainly impute with NORM
(as we have done here) and analyze the data with the proce-
dure of choice, summarizing with PROC MIANALYZE, a
second option is to impute in the first place using PROC MI.
This is indeed a desirable option for SAS users. However,
SAS users should be sure that for each decision made along
the way (described here using NORM), corresponding deci-
sions are all made with PROC MI.

Analysis of Multiple Data Sets With SPSS Regression

The SPSS version of this process was much like that just
described with SAS. However, there were some important
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TABLE 4.4 Regression Results Based on Multiple Imputation

Fraction of
Predictor b SE t df p Missing Information

religion −.160 .032 5.01 447 �.0001 21.0%
gender −.207 .034 6.00 271 �.0001 27.0%
introvert −.199 .035 5.64 158 �.0001 35.5%
defyauth .146 .036 4.07 183 .0001 32.9%
peeruse .161 .040 4.05 78 .0001 50.5%
intent −.122 .039 3.15 116 .0021 41.3%

Note. Sample size for multiple imputation was N = 1024. DV = Heavy
Alcohol Use at time 5.

differences, which we will point out here. First, the SPSS
macro language does a nice job of standardizing vari-
ables, computing the new composite scales, and performing the
regression analysis (the SPSS macro syntax for performing all
this appears in Appendix C). However, the regression results
themselves were in a form that was a bit difficult for NORM to
read directly, so a utility program, NORMSPSS.EXE, was cre-
ated to facilitate the process. This utility is available free from
our web site. The user executes NORMSPSS from the DOS
command line and is asked for a few pieces of information
along the way. In the middle of the largely automatic process,
SPSS is invoked, and the analyses are performed on the m
(e.g., 20) imputed data sets. After one (manually) closes SPSS,
the NORMSPSS utility asks how many imputations were per-
formed and then automatically performs the MI Inference for
hypothesis testing. In addition, a data set is saved that can be
used with NORM to perform a somewhat more complete ver-
sion of MI inference.

Regression Results

The summary regression results based on multiple imputa-
tion appear in Table 4.4. These are the results (after rounding)
from the output of PROC MIANALYZE, based on the SAS
PROC REG analysis. The results shown are also identical to
those obtained with the NORMSPSS utility based on the
SPSS regression results.

Meaning of Multiple Imputation Degrees of Freedom.
Degrees of freedom (DF) in the multiple-imputation analysis
are a little different from what typically appears in this sort of
analysis. It does not relate to the number of predictors, nor
does it relate to sample size. Rather, DF in the multiple-
imputation analysis relates much more closely to the fraction
of missing information in estimating a particular parameter. If
the amount of missing information is large, the DF will be
small (m � 1 is the minimum, where m is the number of
imputed data sets). If the amount of missing information

is small, the DF will be large. If the amount of missing
information is very small (e.g., if there are no missing data),
the DF will approach infinity, and the t value becomes a Z
value. Key DF values very close to the minimum (m � 1) usu-
ally imply that the estimates are still somewhat unstable and
that m should be larger.

These results show that all six predictors had a significant,
unique effect on the dependent variable, heavy drinking at the
November 2000 measure. The results are not particularly sur-
prising. Students for whom religion is important drink less.
Women students drink less. Introverts drink less. Those who
dislike authority tend to drink more. Students who perceive
their college student peers to drink more also drink more. Fi-
nally, students who would intervene to prevent harm from
coming to a friend who was drinking tend to drink less them-
selves.

Multiple Regression With Amos

Because Amos 4.0 is distributed with SPSS, a good option is
to obtain the two products as a package through your organi-
zation. For information directly from the Amos distributor,
please see http://www.smallwaters.com.

Running Amos

Running Amos is exceptionally easy. Once you have a data
set in SPSS, you can simply click on Analyze and on Amos.
When Amos comes up, you draw your model by selecting
model components from the icon list and creating the compo-
nent in the drawing area. For the regression model in our ex-
ample, we selected the box from the icon list and drew one
box. We then selected the copy machine icon to make several
copies of the box. In total, we had six boxes on the left for the
predictors and one box on the right for the dependent vari-
able. Then select the single-headed arrow icon. First, click on
a left box and drag the arrow to the right box. When all the re-
gression arrows are drawn, click on the double-headed arrow
icon. This is the part of the process during which errors are
possible with larger models. However, if you are systematic,
the risk is not substantial. Click on each box for the predictor
variables and drag the double-headed arrow to each of the
other boxes. This models the correlations among the predic-
tors. Finally, select the icon with a little box with a circle
coming out of it. Then click on the box for the dependent
variable. This models the residual variance. The final model
(without labels) is now complete, and it should look like the
model shown in Figure 4.2.

With Amos, all enclosed objects (boxes and circles) must
have labels. A nice feature when working within SPSS is that
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1

Figure 4.2

all of the variables in the SPSS data set are available for in-
clusion in the model. Select the Variables in the data set icon.
It is not easy to describe, so as an alternative, click on
View/Set and on Variables in the data set. Find the variable
names corresponding to the predictors and dependent vari-
able, and simply click and drag the variable names to the
proper boxes in the model. We had previously standardized
the seven variables to be included in order that the results of
Amos and multiple regression would be more comparable.
This would not normally be a necessary step. Finally, double-
click on the small circle connected with the dependent vari-
able box. In the Object properties dialog box that pops up,
look for the Variable name box. Enter some label. It could be
something as simple as r for residual.

Before running the job, click on the Analysis properties
icon, or find it after clicking on View/set. Click on the
Estimation tab, and click in the box for Estimate means and
intercepts. Close the box, and you are ready. Click on the aba-
cus icon, and the job will run. If it is a small job like our
example, it will run in just a few seconds. If it is a larger job,
with many parameters, it may take some time.

When the job is finished, click on the View spreadsheets
icon (or find it under View/set under Table output). The key

information for our problem will be under Regression
weights. The results for the Amos analysis are summarized
below.

Comparison of Results for MI, Amos, and
Other Procedures

For comparison, Table 4.5 presents multiple-regression
results (b weights and t values) for the same data using five
different missing data approaches. For convenience, the key
results from Table 4.4 are repeated in the leftmost column
under the MI� heading. Also presented are results based
on mean substitution, complete cases, multiple imputation on
just the seven variables included in the regression analysis
(under MI), and Amos (analysis just described). 

Time after time, simulation results involving known
parameter estimates show multiple-imputation parameter
estimates to be unbiased, that is, very close to the population
parameter values (e.g., Collins et al., 2001; Graham et al.,
1994, 1996; Graham & Schafer, 1999). In addition, in multiple
imputation, standard errors are known to perform as well as
the same analysis when there are no missing data. Finally, in-
cluding additional variables is known to improve estimation
under some circumstances. With the addition of even 20 or 30
variables, there is no known statistical down side (Collins
et al., 2001).

For these reasons, we take the multiple-imputation re-
sults (MI+) to be the standard in Table 4.5, and any differ-
ences from the MI+ values shown in Table 4.5 should be
interpreted as estimation bias or as statistical conclusion
bias. In order to provide a summary of the results for each
method, we have included two statistics at the bottom of
each column in Table 4.5. The first is the simple mean of the
absolute values of the elements in the column. The second
is the sum of the squared differences between the elements

TABLE 4.5 Comparison of Standardized b Weights and t Values

b weights t values

Mean Mean
Predictor MI+ Subst CC MI Amos MI+ Subst CC MI Amos

relig −.160 −.154 −.216 −.174 −.187 5.01 5.10 4.34 4.64 4.93
female −.207 −.162 −.156 −.220 −.206 6.00 5.24 2.92 5.71 5.14
introvrt −.199 −.148 −.142 −.181 −.177 5.64 4.89 2.79 4.97 4.64
defysep .146 .073 .114 .118 .116 4.07 2.38 2.26 2.43 2.36
pusesep .161 .089 .153 .143 .161 4.05 2.95 3.05 3.08 3.52
iintvsep −.122 −.068 −.131 −.065 −.077 3.15 2.19 2.41 1.47 1.56

mean .166 .116 .152 .150 .154 4.65 3.79 2.96 3.72 3.69
SumSq .018 .010 .005 .004 6.14 22.9 7.12 7.48

Note. MI+ = multiple imputation with 21 additional variables. Mean Subst = mean substitution. CC = complete cases (N = 357). MI = multiple imputation
with seven relevant variables only. Amos = Analysis with Amos (seven relevant variables only). Sample size for all analyses except complete cases was N =
1,024. Means shown at bottom of table are a simple average of the absolute value of the elements in that column. SumSq is the sum of squared differences be-
tween the elements in that column with those in the MI+ column. In Amos, the figure corresponding to t value is listed as CR (critical ratio).
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in that column and the corresponding elements in the MI+
column.

The results appearing in Table 4.5 show the kinds of results
that are obtained with the four other procedures. For the most
part, parameter estimates based on complete cases are similar
to those obtained with multiple imputation. However, the stan-
dard errors were consistently larger (and t values consistently
smaller) because the estimation is based on fewer cases, so that
the power to detect significant effects is reduced.

Table 4.5 also illustrates the kind of result that is obtained
with mean substitution. Note that, for all six of the predic-
tors, the b weight based on mean substitution was smaller
than that obtained with multiple imputation, sometimes sub-
stantially so. The sum of squared differences between the
mean substitution b weights and MI� b weights was the
largest of the other four methods.

Interestingly, the standard errors for the mean substitution
b weights (not shown) were smaller than what was estimated
with multiple imputation. The result was that the smallness of
the b weights was partially compensated for. However, we
view this as an example of two wrongs not making a right.
The clear bias in parameter estimates based on mean substi-
tution will be a big problem in many settings, and one cannot
count on the t values to be reasonable (although they appear
to be in this case). Thus, we continue to reject mean substitu-
tion as a reasonable alternative for dealing with missing data.

Table 4.5 also illustrates the effects of failing to include
additional variables that may be relevant to the missing data
model, even if they are not relevant to the analysis model.
Both the MI and Amos models, although having reasonably
unbiased estimates of the b weights, had noticeably lower
t values compared to the MI� analysis.

It should be noted that it is possible to include additional
variables in theAmos model (and other FIML/SEM models) in
a way that does not affect the model of substantive interest.
Graham (in press) has outlined two such models. The slightly
better of the two models, described as the “saturated correlates
model,” includes the additional variables as follows. The addi-
tional variables are all specified to be correlated with one an-
other and are specified to be correlated with all other manifest
variables in the model (or with their residuals, if they have
them). This model has been shown in simulations to perform
as well as MI+ and to have no effect on the model of substan-
tive interest when there are no missing data. This latter fact
means that any differences observed by estimating the satu-
rated correlates model are due to missing data correction, and
not to some sort of interference of the added variables. Unfor-
tunately, in the current version of Amos (4.0), this saturated
correlates model in our example with 21 extra variables would
be virtually impossible to draw with theAmos graphical inter-
face. However, it would be relatively straightforward with the

text version ofAmos, an example of which is included in Gra-
ham (in press). It is also straightforward in LISREL and other
text-based FIML procedures.

Latent-Variable Regression With Amos or With
LISREL/EQS and Multiple Imputation

A latent-variable example is beyond the scope of this chapter.
However, we would like to make a few points in this regard.
First, the extension to latent-variable analysis is trivial in
Amos (assuming prior knowledge of SEM). One simply per-
forms the analysis with individual variables as indicators of
latent variables rather than with the composite indices. Amos
handles the rest. The model for including additional variables
is the same as previously described.

With LISREL 8.50 (Mx, and the FIML aspect of Mplus),
latent-variable models with incomplete data are a trivial
extension of latent variable models with complete data. With
LISREL, one simply adds the statement “MI = −9” (assum-
ing the missing value indicator is −9) to the Data Parameters
statement. As previously mentioned, the addition of missing-
data relevant variables to the model is straightforward.

For using multiple imputation with EQS 5.x (Bentler,
1986) and Mplus (Muthén, 2001), the situation is a little more
complicated, but no more so than the analysis with SPSS pre-
viously described in this chapter. Utility programs have been
written to use these two programs with NORM (Schafer,
1997). The two utilities, NORMEQS and NORMplus, make
use of a single EQS 5.x or Mplus 2 input file to read and ana-
lyze the multiple imputed data sets, combine the results, and
provide MI inference. These utilities, along with user guides,
can be obtained free at our web site.

A FEW LOOSE ENDS

Recommendations for Quick and Dirty Analyses

In this chapter, we have said that we do not recommend pair-
wise deletion or mean substitution, even for quick and dirty
analyses. So what is the option? As we said earlier, if you do
not lose too many cases to missing data, complete cases
analysis is a quite reasonable basis for quick and dirty analy-
ses. However, what does one do if complete cases analysis is
not an option?

Perhaps the best of the quick and dirty analyses is to run
EM in NORM (or SAS) and to perform the analysis directly
from the EM covariance matrix. With NORM, this can
be done by making use of the ALPHNORM utility previ-
ously described. With SAS, the EM covariance matrix may
be used directly by certain other procedures (PROC REG,

schi_ch04.qxd  8/7/02  12:15 PM  Page 107



108 Methods for Handling Missing Data

PROC FACTOR). The sample size can be set manually
(with NORM, this is done in the EM covariance matrix
itself; with SAS, one must add a sample size line to the out-
put EM matrix). If one is wise in choosing this sample size,
reasonable quick and dirty analyses can be done this way. It
is important to realize, however, that a different sample size
may be appropriate for different parameter estimates.

It is also possible to impute a single data set from EM pa-
rameters in NORM. This does not take long in most cases and
gives reasonable parameter estimates. Of course, it is more
difficult to adjust the sample size in this case. Still, if one is
judicious in interpreting the results, it is a reasonable option
for quick and dirty analyses.

Rubin (1987) argues that analysis based on even two im-
putations provides much better inference than analysis based
on just one. Using one of the macro language procedures de-
scribed previously for SAS or SPSS, analyzing a small num-
ber of imputed data sets (say, 2–5) would often constitute a
quite reasonable quick and dirty approach.

Some Practicalities

One of the problems that arises with missing data analysis is
the following dilemma. One would prefer to include as many
variables as possible in the missing data model, but one can-
not overload the model with estimation of massive numbers
parameters. One solution to the problem is to impute intact
scales rather than individual variables and then to create
scales. The problem is that the individual items that make up
the scale are sometimes missing. The potentially reasonable
solution is to estimate the scale score based on the variables
that are nonmissing. For example, if a scale has 10 variables
but the participant has given data for only 6, it may be rea-
sonable to estimate the scale score based on the 6 variables
for which you have data. This makes most sense when the
items are rather highly correlated, that is, when the scale has
high alpha. It also makes sense only when the variables have
equal variances and means. If the latter requirement is not
met, then the scale will have a different expected value
depending upon which items are missing. Sometimes this
procedure is used only when a certain proportion (e.g., more
than half ) of scale items have data.

This procedure may be thought of as a kind of mean sub-
stitution, but it is the mean of nonmissing variables, not the
mean of nonmissing cases. This makes all the difference. In
one sense, this is a kind of regression-based single imputa-
tion, wherein the b weights are all equal. However, this
approach does not appear to present the problem of the usual
kind of single imputation (i.e., too little variability), because
in this case we are talking about the sum of items. In this

case, a scale based on the sum of 6 items will, quite appropri-
ately, have more error variability than the corresponding
scale based on the sum of 10 items.

One possible solution to the problem of having a large
number of variables is to break up the problem into two or
more subsets of variables. The general problem of excluding
a variable (say, X) from the imputation model is that the im-
putation proceeds under assumption that X has a zero correla-
tion with all other variables in the data set. This has the effect
of biasing all correlations toward zero. Thus, if you must di-
vide up a large set of variables, it makes most sense to do so
only if you can find two subsets that are relatively uncorre-
lated anyway. One approach to this might be to perform a
principal-components analysis on the overall set and examine
the two factor solution. Multiple imputation could then be
performed separately on the two sets (which are maximally
uncorrelated). There are other versions of this approach that
could be even more acceptable. For example, it might be pos-
sible to include a small number of linear composites to repre-
sent the excluded set of items (see Graham & Taylor, 2001).
More work is certainly needed in this area.

Recommendations

It should be obvious from even a cursory reading of this
chapter that we are partial to multiple imputation with
Schafer’s (1997) suite of programs. However, please do not
get the wrong idea. The best general solution to one’s missing
data problems is to have several tools available. There are
many things that multiple imputation (i.e., with NORM or
SAS) handles best. However, there are some things that EM
does best, and some things that FIML SEM procedures do
best. In fact, there are some things that the old multiple-group
SEM procedure handles best. Our general advice is to be
ready to use whichever tool is best for the particular situation.

One big reason that using one of the prescribed missing
data procedures is advisable has to do with the ability of all of
these procedures to include additional variables. Given the
recent evidence (Collins et al., 2001) and the empirical re-
sults shown in this chapter, it is obvious that you can help
yourself, in a completely acceptable way, by adding variables
to the missing data model that are highly correlated with vari-
ables containing missingness. One of the reasons that multi-
ple imputation has such appeal is that the process of adding
these variables is relatively easy.

Other Methods

One question that often arises when we discuss multiple im-
putation and FIML methods has to do with the assumptions
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underlying them. In particular, these methods assume that the
missing data mechanism is MAR but not MNAR. Pattern-
mixture methods have been developed for dealing with such
situations (e.g., see Little, 1994, 1995), but these are beyond
the scope of this chapter.

A Look at the (Near) Future

We now have several programs that help us deal with missing
data. In the future, these programs will be imbedded into
mainstream software in ways that allow the researcher to per-
form the correct analysis (or one that is very nearly correct)
without having to jump through hoops. The unveiling of
PROC MI (multiple imputation) in SAS version 8.2 is very
good news. LISREL has also unveiled multiple imputation
and FIML features in version 8.50. EQS has also added a (non-
FIML) missing data feature in its long-awaited version 6 and
is rumored to be preparing further missing data enhancements
for future release.

We have no knowledge of plans by SPSS to update its cur-
rent, very clunky missing data procedure. However, our
guess is that they will be making important updates in the
near future. SPSS has always been at the forefront of usabil-
ity, and this is a feature they simply must have to remain com-
petitive. They will have it.

Researchers around the world will continue to stay at the
forefront of research in analysis with missing data, and it is
very likely that the very latest techniques will not be avail-
able in the mainstream packages. Schafer and his colleagues
will continue to make improvements to NORM (Schafer,
1997) and its siblings CAT, MIX, and PAN. The latter three
programs will all be released as stand-alone Windows pro-
grams in the near future. The wide availability of PAN will
greatly improve the usefulness of MAR multiple-imputation
programs.

Some Final Thoughts

It is important not to draw too many generalizations from the
empirical example given in this chapter. Different analysis

situations pose different problems and potentially different
solutions. The empirical example in this chapter poses a par-
ticular challenge. Very clearly, complete cases analysis
would just not do here. Also, because of the particular nature
of the analyses described, the 21 additional variables were
extremely helpful. This was a sample of college students, and
the measures were taken at relatively close (2- to 3-month)
intervals. For both of these reasons, a variable at one
wave was very highly correlated (often with r > .90) with
the same variable measured at another wave. Under these
circumstances, the inclusion of the additional variables was
very valuable. However, if this were a sample of adolescents,
and the measures were taken at 1-year intervals, or if this
were a cross-sectional sample, we would expect the correla-
tions to be much lower. Under such circumstances, including
the additional variables might be of much less value.

The missing data patterns in the empirical example pre-
sented here were such that the value of the missing data pro-
cedures was rather obvious. In other contexts, that value will
be less clear. If one has just two waves of data—for example,
a pretest and a single posttest—and if one has essentially
complete data at the pretest, then complete cases analysis
might be nearly as good as it gets, regardless of how much
data are missing at the posttest.

We simply cannot describe all possible missing data sce-
narios here. Suffice it to say that in some instances, the sta-
tistical advantage of the prescribed procedures will be small
in comparison to more traditional approaches (e.g., com-
plete cases analysis). However, the prescribed procedures
will always be at least as good as other approaches, and in
most circumstances, there will be a clear advantage of the
prescribed procedures, in terms of estimation bias, statistical
power, or both. In many circumstances, the advantage will
be huge.

Under these circumstances, the only reason for not em-
ploying these procedures is that they are not easy to use. As
the software developers erase this objection, and make the
best analysis more and more accessible, we end users will
begin to have the best of both worlds.

APPENDIX A: SAS PROC FACTOR CODE PRODUCED BY THE ALPHNORM UTILITY

options nocenter ls=80;
data a(type=cov);infile ‘alphnorm.cov’ lrecl=5000;input
_type_ $ 1-4 _name_ $ 6-13
relig female wa242 wa222 ra215 ra246 wa186 
ra243 ra195 wa192 wa202 ra225 we15 we16 
we17 wa127 ra128 wa129 wa23 wa24 wa27 
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wa67 wa100 wa103 wa182 defynov defyfeb defyapr 
defynv0 pusenov pusefeb puseapr pusenv0 iintvnov iintvfeb 
iintvapr iintvnv0 drunksep drunknov drunkfeb drunkapr alcsep
alcnov alcfeb alcapr alcnv0 ;
run;

proc factor data=a(type=cov) method=prin rotate=promax reorder round;var

*** Use of PROC REG with this EM covariance matrix should be done with extreme
caution, because sample size has been set arbitrarily at N=500 ***;

/*
proc reg data=a(type=cov);
model . . .
*/

APPENDIX B: SAS DATA STEP AND PROC REG CODE FOR MULTIPLE IMPUTATION

data a;infile ‘jan06all.imp’ lrecl=5000;
input
_imputation_
relig female introvrt
alcsep alcnov alcfeb alcapr alcnv0
drunksep drunknov drunkfeb drunkapr drunknv0
defysep defynov defyfeb defyapr defynv0
pusesep pusenov pusefeb puseapr pusenv0
iintvsep iintvnov iintvfeb iintvapr iintvnv0;

run;

*** The following statements standardize the variables for more
direct comparison with Amos results. ***

proc standard data=a out=b mean=0 std=1;var
drunknv0 relig female introvrt defysep pusesep iintvsep;
run;

***======================================================================;

*** This analysis is a simple regression analysis with several
predictor variables of interest, but only a single DV.

The ‘by _imputation_’ statement repeats the analysis with all 20 imputed data sets.

***======================================================================;

proc reg data=b outest=c covout noprint;model

drunknv0 = relig female introvrt defysep pusesep iintvsep;
by _imputation_;
run;

***======================================================================;
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*** PROC MIANALYZE performs the MI Inference Analysis similar to what is done with NORM.
The variables listed in the VAR statement below are the predictors in the regression analysis.

***=======================================================================;

proc mianalyze;var intercept relig female introvrt defysep
pusesep

iintvsep;
run;

APPENDIX C: SPSS MACRO AND REGRESSION CODE FOR MULTIPLE IMPUTATION

Note: This code automates the process of standardizing items, computing new scales, and
performing the regression analysis for the 20 imputed data sets. However, the immediate results
of this macro are not readable by NORM.

For these analyses, we used the utility NORMSPSS to read the SPSS Regression output, create
the NORM-readable data set, and create a partial MI Inference data set (NORMSPSS.OUT)
automatically.

The NORMSPSS utility and related files can be obtained at our web site: http://methcenter.psu.edu.

DEFINE !NORMIMP() .

*** modify the following statement (number of imputed datasets)
as needed *** .

!DO !I = 1 !TO 20 .

*** modify the /FILE = line (shown as ‘jan06’) as needed *** .
*** modify the /VARIABLES = statements as needed *** .
*** NOTE that the format given behind each variables appears to
be necessary, but arbitrary *** .
***  That is, it appears that F2.2 may be used for all numeric variables *** .

GET DATA /TYPE = TXT
/FILE = !CONCAT (‘jan06_’ , !I , ‘.IMP’ ) 
/DELCASE = LINE
/DELIMITERS = “ “
/ARRANGEMENT = DELIMITED
/FIRSTCASE = 1
/IMPORTCASE = ALL
/VARIABLES =
relig F2.2
female F2.2
introvrt F2.2
alcsep F2.2
alcnov F2.2
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alcfeb F2.2
alcapr F2.2
alcnv0 F2.2
drunksep F2.2
drunknov F2.2
drunkfeb F2.2
drunkapr F2.2
drunknv0 F2.2
defysep F2.2
defynov F2.2
defyfeb F2.2
defyapr F2.2
defynv0 F2.2
pusesep F2.2
pusenov F2.2
pusefeb F2.2
puseapr F2.2
pusenv0 F2.2
iintvsep F2.2
iintvnov F2.2
iintvfeb F2.2
iintvapr F2.2
iintvnv0 F2.2
.

*** Modify the data manipulations as needed *** .
*** The following standardizes variables for better comparison
with Amos *** .

DESCRIPTIVES
VARIABLES=
drunknv0 relig female introvrt defysep pusesep iintvsep /SAVE
/STATISTICS=MEAN STDDEV MIN MAX .

*** No computations are needed for this analysis, but if needed,
they could go here, for example *** .

*** COMPUTE fuse7=mean(zwa1,zwa3,zwa5,zwa7) .
*** EXECUTE .

*** Modify the Regression analysis as needed *** .
*** As is, the output dataset names are all1.out, all2.out, etc. 
***  Keep them like this, or modify them as needed *** .

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT zdrunknv0
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/METHOD=ENTER zrelig zfemale zintrovrt zdefysep zpusesep
ziintvsep
/outfile=model(!CONCAT(‘nrmreg’ , !I, ‘.out’)) .

!DOEND .

!ENDDEFINE .

!NORMIMP .
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RATIONALE FOR PREPARATORY DATA ANALYSIS

Preparatory data analyses are conducted to locate and correct
problems in a data set prior to a main analysis. Missing data are
located and dealt with (see chapter by Graham, Cumsille, &
Elek-Fisk in this volume), and various assumptions of the
planned analyses are tested. Much of the material in this chap-
ter is adapted from Chapters 2 and 3 in Tabachnick and Fidell
(2001a) and Chapter 4 in Tabachnick and Fidell (2001b),
where more extended discussions are available.

Previous cavalier attitudes toward violation of the as-
sumptions of an analysis have given way to a growing
concern that the integrity of the inferential test depends on
meeting those assumptions (Wilkinson & the Task Force on
Statistical Inference, 1999). Inferential tests are based on es-
timating probability levels for the null hypothesis from a
sampling distribution such as F, Wilks’s lambda, or chi-
square. The distribution of a statistic (e.g., the distribution of
all possible ratios of two variances drawn from the same pop-
ulation of scores) is tested against known sampling distribu-
tions (e.g., the F ratio) to see which it most closely resembles.
If the distribution of the statistic is the same as that of a
known sampling distribution, probabilities associated with
various statistical values along the sampling distribution are
used to assess the Type I error rate. However, when the fit is

assessed, it is with assumptions about the nature of the data
that are to be processed.

For an example, it may be assumed, among other things,
that the analyzed variable has a normal distribution. When
the analyzed variable is normally distributed, the probability
value associated with the statistical test is an accurate esti-
mate of the probability under the null hypothesis. But when
the analyzed variable is not normal, the estimated probability
value may be either too conservative or too liberal. The issue,
in this example and others, is how much the distribution of
the variable can deviate from the assumption of normality
without throwing the estimated Type I probability level into
disarray.

Preparatory data analysis is usually a time-consuming and
frustrating business. It is time-consuming because numerous
features of the data need to be examined and frustrating be-
cause the main analysis that provides the answer to your main
research question is often just a few menu selections away.
Further, violation of some assumptions is more serious than
violation of others because sometimes violation leads to the
wrong inferential conclusion and other times the analysis is
correct as far as it goes but misses certain additional rela-
tionships in the data. However, a believable (and replicable)
inferential result depends on assessing the fit between the
assumptions of the analysis used and the data analyzed, with
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correction for violations applied as necessary or an alterna-
tive analytic strategy employed.

SOME CONSIDERATIONS

Screening for violation of assumptions can be conducted in
several different ways. Relevant issues in the choice of when
and how to screen depend on the level of measurement of
the variables, whether the design produces grouped or un-
grouped data, whether cases provide a single response or
more than one response, and whether the variables them-
selves or the residuals of analysis are screened.

Level of Measurement: Continuous, Ordinal, 
and Discrete Variables

One consideration in preparatory data analysis is whether the
variables are continuous, ordinal, or discrete. Continuous vari-
ables are also referred to as interval or ratio; discrete variables
are also called categorical or nominal; discrete variables with
only two levels are often called dichotomous. Continuous
variables assess the amount of something along a continuum
of possible values where the size of the observed value
depends on the sensitivity of the measuring device. As the
measuring device becomes more sensitive, so does the preci-
sion with which the variable is assessed. Examples of continu-
ous variables are time to complete a task, amount of fabric
used in various manufacturing processes, or numerical score
on an essay exam. Most of the assumptions of analysis apply
to continuous variables.

Rank-order/ordinal data are obtained when the researcher
assesses the relative positions of cases in a distribution of
cases (e.g., most talented, least efficient), when the researcher
has others rank order several items (e.g., most important to
me), or when the researcher has assessed numerical scores
for cases but does not trust them. In the last instance, the re-
searcher believes that the case with the highest score has the
most (or least) of something but is not comfortable analyzing
the numerical scores themselves, so the data are treated as
ordinal. Numbers reveal which case is in what position, but
there is no assurance that the distance between the first and
second cases is the same as, for instance, the distance be-
tween the second and third cases, or any other adjacent pair.
Only a few statistical methods are available for analysis of
ordinal variables, and they tend to have few or no assump-
tions (Siegel & Castellan, 1988). 

Discrete variables are classified into categories. There are
usually only a few categories, chosen so that every case can
be classified into only one of them. For instance, employees
are classified as properly trained or not; eggs are divided into

medium, large, and extra large; respondents answer either
“yes” or “no”; manufactured parts either pass or do not pass
quality control; or dessert choice is sorbet, tiramisu, choco-
late mousse, or apple tart. In many analyses, discrete vari-
ables are the grouping variables (treatment group vs. control)
for a main analysis such as analysis of variance (ANOVA) or
logistic regression. Assumptions for discrete variables relate
to the frequency of cases in the various categories. Problems
arise when there are too few cases in some of the categories,
as discussed later.

Grouped and Ungrouped Research Designs

Assumptions are assessed differently depending on whether
the data are to be grouped or ungrouped during analysis. The
most common goal in grouped analyses is to compare the
central tendency in two or more groups; the most common
goal in ungrouped analyses is to study relationships among
variables. Grouped data are appropriately analyzed using
univariate or multivariate analysis of variance (ANOVA and
MANOVA, including profile analysis of repeated measures),
logistic regression, or discriminant analysis. Ungrouped data
are analyzed through bivariate or multiple regression, canon-
ical correlation, cluster analysis, or factor analysis. Some
techniques apply to either grouped or ungrouped data. For
example, time-series analysis and survival analysis can be
used to track behavior over time for a single group of cases or
to compare behavior over time for different groups. Chi-
square and multiway frequency analysis can be used to com-
pare contingencies in responses among categorical variables
for a single group or to look for differences in responses
among different groups. Similarly, structural equations can
be used to model responses of a single group or compare
models among groups.

Tests of assumptions are performed differently depending
on whether data are to be grouped or ungrouped during
analysis. Basically, ungrouped data are examined as a single
set, while grouped data are examined separately within each
group or have entirely different criteria for assessing fit to
some assumptions, as discussed later. 

Single Versus Multiple Responses

Participants provide a single response in the classical between-
subjects ANOVA or chi-square designs. In other designs par-
ticipants may provide several responses, and those responses
may be measured either on the same or on different scales.
Multivariate statistical techniques deal with multiple re-
sponses on different scales and are analyzed using such
methods as MANOVA, canonical correlation, discriminant
analysis, factor analysis, and structural equation modeling.
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Multiple responses on the same scale (e.g., pretest,
posttest, and follow-up scores on a measure of depression)
are generally considered to produce univariate statistical
designs (e.g., within-subjects ANOVA), although they are
sometimes treated multivariately. Having multiple responses
complicates data screening because there are also relation-
ships among those responses to consider.

Examining the Variables or the Residuals of Analysis

Another issue is whether the examination of assumptions is
performed on the raw variables prior to analysis or whether
the main analysis is performed and its residuals examined.
Both procedures are likely to uncover the same problems. For
example, a peculiar score (an outlier) can be identified ini-
tially as a deviant score in its own distribution or as a score
with a large residual that is not fit well by the solution. 

Temptation is a major difference between these two alter-
natives. When residuals are examined after the main analysis
is performed, the results of the main analysis are also avail-
able for inspection. If the results are the desired ones, it is
tempting to see no problems with the residuals. If the results
are not the desired ones, it is tempting to begin to play with
the variables to see what happens to the results. On the other
hand, when the assumptions are assessed and decisions are
made about how to handle violations prior to the main analy-
sis, there is less opportunity for temptation to influence the
results that are accepted and reported.

Even if raw variables are screened before analysis, it is
usually worthwhile to examine residuals of the main analysis
for insights into the degree to which the final model has cap-
tured the nuances of the data. In what ways does the model
fail to fit or “explain” the data? Are there types of cases to
which the model does not generalize? Is further research
necessary to find out why the model fails to fit these cases?
Did the preparatory tests of assumptions fail to uncover vio-
lations that are only evident in direct examination of residu-
als (Wilkinson et al., 1999)? 

SCREENING CONTINUOUS VARIABLES

Univariate Assumptions

These assumptions apply to a single variable for which a con-
fidence interval is desired or, more commonly, to a single
continuous dependent variable (DV) measured for each
participant in the two or more groups that constitute the
independent variable (IV). We illustrate both statistical and
graphical methods of assessing the various assumptions.

Normality of Individual Variables (or the Residuals)

Several statistical and graphical methods are available to
assess the normality of raw scores in ungrouped data or the
normality of residuals of analysis. The next section contains
guidelines for normality in grouped data.

Recall that normal distributions are symmetrical about the
mean with a well-defined shape and height. Mean, median,
and mode are the same, and the percentages of cases between
the mean and various standard deviation units from the mean
are known. For this reason, you can rescale a normally dis-
tributed continuous variable to a z score (with mean 0 and
standard deviation 1) and look up the probability that corre-
sponds to a particular range of raw scores in a table with a
title such as “standard normal deviates” or “areas under the
normal curve.” The legitimacy of using the z-score transfor-
mation and its associated probabilities depends on the nor-
mality of the distribution of the continuous variable.

Although it is tempting to conclude that most inferential
statistics are robust to violations of normality, that conclusion
is not warranted. Bradley (1982) reported that statistical
inference becomes less robust as distributions depart from
normality—and rapidly so under many conditions. And even
with a purely descriptive study, normality of variables (as
well as pair-wise linearity and homoscedasticity, discussed in
the section titled “Multivariate Assumptions”) enhances the
analysis, particularly when individual variables are nonnor-
mal to varying degrees and in varying directions. 

Skewness and kurtosis are statistics for assessing the sym-
metry (skewness) and peakedness (kurtosis) of a distribution.
A distribution with positive skewness has a few cases with
large values that lengthen the right tail; a distribution with
negative skewness has a few cases with small values that
lengthen the left tail. A distribution with positive kurtosis is
too peaked (leptokurtic); a distribution with negative kurtosis
is too flat (platykurtic—think “flatty”). A normal distribution
is called mesokurtic. Nonnormal distributions have different
percentages of cases between various standard deviation
units than does the normal distribution, so z-score transfor-
mations and inferential tests applied to variables with non-
normal distributions are often misleading. Figure 5.1 shows
a normal curve and several that depart from normality.

In a normal distribution, skewness and kurtosis are zero.
The standard error of skewness is

sskewness =
√

6

N
(5.1)

The standard error of kurtosis is

skurtosis =
√

24

N
(5.2)
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After calculating the standard errors using Equations 5.1 and
5.2, the z score for Var_A for skewness is [0.220/0.346 =]
0.64, and the z score for kurtosis is −0.94. For Var_C (which
was generated with skewness) the z score for skewness is
3.92, and the z score for kurtosis is 2.65. (Var_D also has a z
score indicative of skewness, but it is due to the presence of
an outlier, as becomes clear in a later section.) Two-tailed
alpha levels of .01 or .001 and visual inspection of the shape
of the distribution are used to evaluate the significance of
skewness and kurtosis with small to moderate samples. There
also are formal statistical tests for the significance of the
departure of a distribution from normality such as Shapiro,
Wilks’s W statistic, and the Anderson-Darling test available
in MINITAB, but they are very sensitive and often signal
departures from normality that are not important for the
analysis.

By these criteria, Var_A is normal, but Var_C has statisti-
cally significant positive skewness. However, if the sample is
much larger, normality is assessed through inspection of the
shape of the distribution instead of formal inference because
the equations for standard error of both skewness and kurto-
sis contain N and normality is likely to be rejected with large
samples (e.g., around 300 or larger) even when the deviation
is slight. 

Graphical methods for assessing normality include
frequency histograms and normal probability plots. SPSS
FREQUENCIES produced the frequency histograms in
Figure 5.3 for Var_A, which is relatively normally distrib-
uted, and Var_C, which is not. The normal curve overlay is
selected along with the frequency histogram to assist the
judgment of normality. The positive skewness of Var_C is
readily apparent.

Normal probability plots (sometimes called normal
quantile-quantile, or QQ, plots) require some explanation. In
these plots, the scores are first sorted and ranked. Then an
expected normal value is computed and plotted against the
actual normal value for each case. The expected normal value
is the z score that a case with that rank holds in a normal
distribution; the actual normal value is the z score it has in
the actual distribution. If the actual distribution is normal, the
two z scores are similar, and the points fall along the diago-
nal, running from lower left to upper right. Deviations from
normality shift the points away from the diagonal.

When normal probability plots are inspected side by side,
the equivalence of the standard deviations is also assessed by
looking at the slope of the pattern of points for each distribu-
tion; when the slopes for several distributions are relatively
equal, so are the standard deviations (Cleveland, 1993). This
can be useful for evaluating homogeneity of variance in
grouped data.

118 Preparatory Data Analysis

Normal

Positive Skewness Negative Skewness

Positive Kurtosis Negative Kurtosis

Figure 5.1 Normal distribution, distributions with skewness, and distribu-
tions with kurtosis. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).

For the fictitious data of DESCRPT.* (downloaded from
www.abacon.com/tabachnick) where N = 50 for all vari-
ables, the standard errors of skewness and kurtosis are

sskewness =
√

6

50
= 0.346

skurtosis =
√

24

50
= 0.693

These standard errors are used to test whether a distribu-
tion departs from normal by dividing the skewness or kurto-
sis values for the distribution by their respective standard
errors and looking up the result as a z score from a standard
normal table of values. For skewness,

zskewness = skewness − 0

sskewness
(5.3)

and for kurtosis,

zkurtosis = kurtosis − 0

skurtosis
(5.4)

The output in Figure 5.2 shows, among other descriptive
statistics produced by SAS INTERACTIVE, skewness and
kurtosis values for the continuous variables in the data set.
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Figure 5.2 Syntax and descriptive statistics for VAR_A to VAR_D; produced by SAS Interactive.

Figure 5.4 contains normal probability plots (requested
as NPPLOT) for Var_A and Var_C produced by SPSS
EXPLORE.

As shown in Figure 5.4, the data points fall very close
to the diagonal for Var_A but some distance from it for
Var_C. The low values and the high values of Var_C have

z scores that are too low, whereas the z scores for the
middle values are too high. (The data point far from the
others in the upper right-hand part of the plot for Var_C
also looks suspiciously like an outlier.) If a distribution is
acceptably normal, the mean is interpreted instead of the
median.
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Normality in Grouped Data

Less stringent guidelines are used when assessing grouped
data because tests of differences in means among groups use
sampling distributions rather than raw-score distributions. If
you have several DV scores at each level of the IV, you can
estimate the mean and standard error of the sampling distrib-
ution of all possible mean differences in the population under
the null hypothesis. The central limit theorem tells us that the
shape of this sampling distribution approaches normal as
sample size increases.

The reason that the advantages of sampling distributions
(i.e., their known shapes and corresponding probabilities)
are available for grouped but not ungrouped data can be
seen in Figure 5.5. Panel A shows a potential relationship
between the IV (plotted on the x-axis) and DV scores (plot-
ted on the y-axis) for grouped data. Notice that although
each group may have a different distribution of scores (with
size of circle indicating size of sample), there are numerous
scores for each group from which to estimate the sampling
distribution. When data are not grouped, as in panel B,
some values of X (e.g., 70) have a single associated Y score;

some have no associated Y score (e.g., X = 110); and some
have two or more associated Y scores (e.g., X = 80). Thus,
it is not possible to estimate central tendency or dispersion
of a sampling distribution of scores for each value of X un-
less data are grouped.

Because the assumption of normality for grouped data
applies to the sampling distribution, and because that distribu-
tion approaches normal as sample size increases, the as-
sumption is acceptably met with large enough sample sizes. A
useful guideline for both univariate and multivariate analyses
is at least 20 deg of freedom (df ) for error. No such convenient
guideline is available for ungrouped data.

Although normality is not at issue when there are suffi-
cient df for error, it is still worthwhile to examine distribu-
tions of scores within each group for possible anomalies.
Frequency histograms may be especially interesting when
presented separately for each group on the same scale,
as in Figure 5.6, which uses the MANOVA.sas7bdat data
set (from www.abacon.com/tabachnick). The grouping
(class) variable, MASC, has two levels (high and low mas-
culinity on the Bem Sex Role Scale), and the continuous
variable ESTEEM (self-esteem) is shown for each group of

Figure 5.3 Syntax and frequency histograms with normal curve overlay for VAR_A and VAR_C; produced by SPSS
FREQUENCIES for the DESCRPT.SAV data set.
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Figure 5.4 Syntax and normal probability plots of VAR_A and VAR_C; produced by SPSS EXPLORE for the
DESCRPT.SAV data set.

women. A normal curve is superimposed over the his-
tograms by request, and the midpoints and scale intervals
(by) are defined. Remaining syntax defines the inset re-
quested for basic descriptive statistics. (This syntax also pro-
duces a great deal of statistical output that is not shown
here.)

The histograms show the lower self-esteem values for
women in group 2 (low masculinity) as well as a suggestion

of positive skewness for them, to be discussed in a later
section.

Absence of Outliers (in Variables or the Residuals)

Outliers are deviant cases with undue impact on the results of
analysis. They can either raise or lower means and, by doing
so, create artificial significance or cover up real significance.
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They almost always increase dispersion, thereby increasing
Type II errors and distorting correlations. Their inclusion in a
data set makes the outcome of analysis unpredictable and not
generalizable except to a population that happens to include
the same sort of outlier.

An outlier is a score that is far from the grand mean in un-
grouped data or from the mean of its group in grouped data,

and apparently disconnected from the rest of the scores. The
z-score (standard normal) distribution is used to assess the
distance of a raw score from its mean. In Equation 5.5, Y is
the raw score, Y is the mean, and sN−1 is the unbiased esti-
mate of the standard deviation:

z = Y − Y

sN−1
(5.5)

Figure 5.5 Grouped and ungrouped data, sampling distributions, and the central limit theorem.

1086
0

2

1

10

20

30

40

50

60
0

10

20

30

40

50

60

12 14 16 18

Self-esteem

20 22 24 26 28 30

C
o
u
n
t

C
o
u
n
t

N
Mean
Std Dev

244
16.9
3.7

N
Mean
Std Dev

125
13.5
3.3

proc univariate data�SASUSER.MANOVA;
class MASC;
var ESTEEM;

histogram ESTEEM /
normal href�16.9
midpoints�6 to 32 by 2 vscale�count;

inset n�"N" (5.0)
mean�"Mean" (5.1)

std�"Std Dev" (5.1)/
pos � ne height�3;

run;

Figure 5.6 Syntax and frequency histograms for ESTEEM on the same scale for two groups; produced by SAS
MANOVA.

schi_ch05.qxd  8/2/02  2:46 PM  Page 122



Screening Continuous Variables 123

If the sample is fairly large (e.g., 100 or more), a case with
an absolute z value of 3.3 or greater is probably an outlier be-
cause the two-tailed probability of sampling a score of this
size in random sampling from the population of interest is .001
or less. If the sample is smaller, an absolute value of z of 2.58
(p < .01, two-tailed) is appropriate. Visual inspection of the
distribution is also needed to conclude that a case is an outlier.

In DESCRIPT.*, Var_D was created with an outlying
score. Features of SPSS EXPLORE appropriate for identify-
ing outliers are shown in Figure 5.7. The PLOT instruc-
tion requests a BOXPLOT; the STATISTICS instruction

requests EXTREME values (to identify outliers) as well as
DESCRIPTIVES. Box plots from two or more groups side
by side are available through box and whisker plots under
graphing or quality control menus. The remaining instruc-
tions are default values generated by the SPSS menu system. 

The output segment labeled DESCRIPTIVES contains
most of the important descriptive statistics for a continu-
ous variable, and that labeled EXTREME values shows in-
formation relevant for identifying outliers. The case numbers
with the highest and lowest five scores are listed along
with the scores themselves. For Var_A the highest and
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a. Only a partial list of cases with the value 40 are
    shown in the table of lower extremes.

b. Only a partial list of cases with the value 62 are
    shown in the table of upper extremes.

Extreme Values

Figure 5.7 Descriptive statistics and outlier identification in VAR_A and VAR_D for the DESCRPT.SAV data
set through SPSS EXPLORE.
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lowest scores do not differ much from the scores near them,
but for Var_D the lowest score of 13 (case 12) appears
disconnected from the next higher score of 32, which
does not differ much from the next higher score of 34. The
z score associated with the raw score of 13 is extreme
[z = (13 − 50.52)/9.71 = −3.86].

Further evidence comes from the box plot in Figure 5.7 for
Var_D where case 12 is identified as below the interval con-
taining the rest of the scores. In the box plot for Var_A no
case has a score outside the interval. The box itself is based
on the interquartile range—the range between the 75th and
25th percentile that contains 50% of the cases. The upper
and lower borders of the box are called hinges. The median is
the line through the box. If the median is off center, there is
some skewness to the data. The lines outside the box are
1.5 times the interquartile range from their own hinges. That
is, the top line is 1.5 × (75th percentile − 25th percentile)
above the 75th percentile, and the lower line is 1.5 × (75th
percentile − 25th percentile) below the 25th percentile.
These two lines are called the upper and lower inner fences,
respectively. (There can be outer fences, as well, which are
three times the interquartile range from their respective
hinges, but only if there are very extreme data points.) Any
score that is above or below the inner fences, such as that for
case 12, is likely to be an outlier.

Researchers often are reluctant to deal with outliers
because they feel that the sample should be analyzed as is.
However, not dealing with outliers is, in a way, letting them
deal with you because outliers potentially limit the popula-
tion to which one can generalize and distort inferential
conclusions. Once outliers are identified and dealt with, the
researcher reports the method used to reduce their impact
together with the rationale for the choices in the results
section to reassure readers concerning the generalizability
and validity of the findings.

The first steps in dealing with a univariate outlier are to
check the accuracy with which the score was entered into the
data file and then to ensure that the missing value codes have
been correctly specified. If neither of these simple alterna-
tives corrects the score, you need to decide whether the case
is properly part of the population from which you intended to
sample. If the case is not part of the population, it is deleted
with no loss of generalizability of results to your intended
population (although problems with the analysis—such as
unequal sample sizes in treatment groups—may be created).
The description of outliers is a description of the kinds
of cases to which your results do not apply. Sometimes
investigation of the conditions associated with production of
outlying scores is even more substantive because it reveals
unintended changes in your research program (i.e., shifts in

delivery of treatment). If the case is properly part of the sam-
ple, it may be retained for analysis by transforming the distri-
bution or by changing the outlying score. 

When transformation of the entire distribution is under-
taken, the outlying case is considered to have come from a
nonnormal distribution with too many cases falling at extreme
values. After transformation, the case is still on the tail of the
distribution, but it has been pulled toward the center. The
other option for univariate outliers is to change the score for
just the outlying case so that it is one unit larger (or smaller)
than the next most extreme score in the distribution. This is an
attractive alternative to reduce the impact of an outlier if mea-
surement is rather arbitrary anyway. In the example, the score
of 12 for case 13 might be changed to a score of 30, for in-
stance. Such changes are, of course, reported.

Homogeneity of Variance and Unequal Sample Sizes
in Grouped Data 

The ANOVA model assumes that population variances in
different levels of the IV are equal—that the variance of DV
scores within each level of the design is a separate estimate
of the same population variance. In fact, the error term in
ANOVA is an average of the variances within each level. If
those variances are separate estimates of the same population
variance, averaging them is sensible. If the variances are not
separate estimates of the same population variance, averag-
ing them to produce a single error term is not sensible.

ANOVA is robust to violation of this assumption as long
as there are no outliers, sample sizes in different groups are
large and fairly equal (say, ratio of largest to smallest n is not
more than about 4 to 1), a two-tailed hypothesis is tested, and
the ratio of largest to smallest sample variance between lev-
els is not more than 10 to 1. The ratio can be evaluated by
calculating the Fmax statistic, whose value should not exceed
10. If these conditions are met, there is adequate homogene-
ity of variance:

Fmax = s2
largest

s2
smallest

(5.6)

As the discrepancy between cell sizes increases (say, goes to
9 to 1 or so), an Fmax as small as 3 is associated with an in-
flated Type I error if the larger variance is associated with the
smaller cell size (Milligan, Wong, & Thompson, 1987). If
sample sizes are discrepant, a more formal test of homogene-
ity of variance is useful; some tests are described in Winer,
Brown, and Michels (1991) and in Keppel (1991). However,
all of these tests tend to be too sensitive, leading to overly
conservative rejection of ANOVA. Except for Levene’s
(1960) test, most also are sensitive to nonnormality of the
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DV. Levene’s test performs ANOVA on the absolute values of
the residuals (differences between each score and its group
mean) derived from a standard ANOVA and is available in
SPSS ONEWAY and GLM. Significance indicates possible
violation of homogeneity of variance.

Violations of homogeneity can often be corrected by
transformation of the DV scores, with interpretation, then, of
the transformed scores. Another option is to test untrans-
formed DV scores with a more stringent alpha level (e.g., for
nominal � = .05, use .025 with moderate violation and .01
with severe violation of homogeneity).

Heterogeneity of variance should always be reported and,
in any event, is usually of interest in itself. Why is spread of
scores in groups related to level of treatment? Do some levels
of treatment affect all the cases about the same, while other
levels of treatment affect only some cases or affect some cases
much more strongly? This finding may turn out to be one of
the most interesting in the study and should be dealt with as an
issue in itself, not just as an annoyance in applying ANOVA.

Homogeneity of variance is also an assumption of planned
and post hoc comparisons where groups are often pooled and
contrasted with other groups. Details of adjustment for un-
equal sample sizes and failure of the assumption in various
types of comparisons are discussed in (gory) detail in
Tabachnick and Fidell (2001a, Sections 4.5.5, 5.6.4, 5.6.5). 

Independence of Errors and Additivity in
Between-Subjects Designs 

Two other assumptions of between-subjects ANOVA are in-
dependence of errors and additivity. The first assumption is
that errors of measurement are independent of one another—
that the size of the error for one case is unrelated to the size
of the error for cases near in time, space, or whatever. This
assumption is easily violated if, for instance, equipment drifts
during the course of the study and cases measured near each
other in time have more similar errors of measurement than
do cases measured farther apart in time. Care is needed to
control such factors because violation of the assumption
can lead to both larger error terms (by inclusion of additional
factors not accounted for in the analysis) and potentially
misleading results if nuisance variables are confounded with
levels of treatment. 

Nonindependence of errors is possible also if an experi-
ment is not properly controlled. For experimental IVs, unless
all cases from all groups are tested simultaneously, errors
within groups may be related if all cases within a group are
tested together because cases tested together are subject to
the same nuisance variables. Thus, a mean difference found
between groups could be due to the nuisance variables unique

to the group rather than to the treatment unique to the group.
If there are potentially important nuisance variables, cases
should be tested individually or simultaneously for all levels,
not in groups defined by levels. This assumption rarely is ap-
plicable for nonexperimental IVs because in the absence of
random assignment to levels of treatment, there is no justifi-
cation for causal inference to the treatments and the assump-
tion of independence loses relevance.

If cases are entered into the data set in sequential order and
the problem is analyzed through regression, the Durbin-
Watson statistic is a formal test of contingencies of errors
among scores close together in the sequence. This statistic
assesses autocorrelation among residuals. If the errors
(residuals) are independent, autocorrelation is zero. If you
suspect violation of this assumption due to contingencies in
the sequence of the cases, use of this analysis is appropriate.
If violation is found, addition of another IV representing the
source of the nonindependence (e.g., time: early, middle, and
late in the study) might account for this source of variability
in the data set.

For between-subjects designs, the assumption of additiv-
ity is that all the factors that contribute to variability in scores
are identified and their effects are properly included in the
model by summing those factors. Part of the assumption is
that there are no other cross products or powers of factors
present beyond the ones that are explicitly entered into the
general linear model (GLM) as sources of variability. The
GLM for a two-factor design (where, e.g., A is type of treat-
ment and B is type of participant) is written as follows: 

Y = � + � + � + �� + e (5.7)

The sources of variability in the DV (Y) identified in this
equation are the grand mean (�), type of treatment (�), type
of participant (�), the interaction of type of treatment with
type of participant (��), and error (e). Here the interaction
term is explicitly part of the GLM and is automatically de-
veloped during the analysis. The assumption of additivity is
violated if scores are not simple sums of their components,
factors are not additive, or if cross products or powers of fac-
tors are present but not included in the analysis. In between-
subjects designs, assessment of this assumption is mostly the
logical problem of including all of the potential factors and
their interactions in an analysis.

Independence of Errors, Additivity, Homogeneity of
Covariance, and Sphericity in Within-Subjects Designs

In within-subjects ANOVA with more than two levels of the re-
peated measures, independence of errors and additivity are
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often untenable assumptions. In these designs, scores measured
more than once for each participant are almost always corre-
lated because of consistency in individual differences among
cases. Although some kinds of individual differences are re-
moved by calculating variance due to subjects in the analysis,
there are likely still correlations among the repeated measures.
When such correlations are present, the F test for the effect of
treatment is too liberal, and the probability of Type I error is
greater than the nominal value.

The relevant assumption of sphericity is violated when
the variances of difference scores among pairs of levels of a
repeated-measure IV are unequal. That is, the variance in dif-
ference scores between two adjacent levels (e.g., a1 and a2) is
likely to differ from the variance in difference scores be-
tween, say, a1 and a5 when the IV is something like time
because scores taken at adjacent periods in time are apt to be
more like each other (lower difference scores) than are scores
taken farther apart in time. 

There is some confusion in the literature regarding as-
sumptions of sphericity, additivity, and compound symmetry
(the combination of the assumption of homogeneity of vari-
ance and the assumption of homogeneity of covariance).
Often these are discussed as if they are more or less inter-
changeable. Table 5.1 describes differences among them in
greater detail (and a yet more extended discussion is avail-
able in Tabachnick & Fidell, 2001a). 

Additivity is the absence of a true treatment (A) by partici-
pant (S) interaction (i.e., AS); this serves as the error term in
standard repeated-measures ANOVA and is supposed to rep-
resent only error. However, if treatment and participants truly
interact (i.e., if some participants react differently than other
participants to the different levels of treatment), this is a
distorted error term because it includes a true source of
variance (the interaction) as well as random error. Because
the interaction means that different cases have different pat-
terns of response to treatment, a better, more powerful, and

generalizable design takes the interaction into account by
blocking on cases that have similar patterns of response to the
levels of IV. For example, if younger participants show one
consistent pattern of response over the levels of the repeated
measures IV and older participants show a different consistent
pattern of response, age should be included as an additional
between-subjects IV. This provides an explicit test of the for-
mer nonadditivity (treatment by age) and removes it from the
error term.

The relevant assumption is of sphericity—that the vari-
ances of difference scores between pairs of levels of A are
equal. This explains why the assumption does not apply
when there are only two levels of A: There is only one vari-
ance of difference scores. With complete additivity, there is
zero variance in difference scores, and because all zeros are
equal, there is also sphericity. Thus, additivity is the most re-
strictive form of the assumption. 

The next most restrictive assumption is compound sym-
metry: that both the variances in levels of A and correlations
between pairs of levels of A are equal. In this situation the
variances in difference scores are not zero (as they are with
additivity), but they are equal. With either additivity or com-
pound symmetry, then, the assumption of sphericity is met.
However, it is possible to have sphericity without having ei-
ther additivity or compound symmetry, as demonstrated in
Myers and Well (1991).

If your data meet requirements for either additivity or
compound symmetry, you can be confident about sphericity.
However, if requirements for additivity or compound sym-
metry are not met, you may still have sphericity and have a
noninflated F test of treatment. In practice, researchers rely
on the results of a combination of tests for homogeneity of
variance and the Mauchly (1940) test for sphericity.

SYSTAT ANOVA and GLM as well as SPSS GLM offer
the Mauchly test of sphericity by default; SAS GLM and
ANOVA produce it by request. In addition, all programs in
the three packages that do within-subjects ANOVA display
epsilon factors that are used to adjust degrees of freedom
should the assumption of sphericity be violated. (MINITAB
does not recognize within-subjects designs and thus offers no
information about sphericity or correction for its violation.) If
the Mauchly test is nonsignificant, if the adjustment based on
epsilon (described below) does not alter the nominal proba-
bility of rejecting the null hypothesis, and if conditions for
homogeneity of variance are met, the F test for routine
within-subjects ANOVA is appropriate. 

The Mauchly test, however, is sensitive to nonnormality
of the DV as well as to heterogeneity of covariance.
Therefore, it is sometimes significant when there is nonnor-
mality rather than failure of sphericity. If the Mauchly test is

TABLE 5.1 Definitions of Sphericity, Compound Symmetry,
and Additivity

Assumption Definition

Sphericity Variances of difference scores between
all pairs of levels of A are equal.

Compound symmetry
Homogeneity of variance Variances in different levels of A are equal.
Homogeneity of Correlations between pairs of levels of A

covariance are equal, and variances of difference 
scores between all pairs of levels of A
are equal.

Additivity There is no true AS interaction; difference
scores are equivalent for all cases.
Variances of difference scores are zero.
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significant, then, closer examination of the distribution of the
DV is in order. If it is markedly skewed, the sphericity test
should be repeated after a normalizing transformation of the
DV. If the test is now nonsignificant, the problem with the
data set is probably nonnormality rather than failure of
sphericity. If the test is still significant, there is probably
nonsphericity. The Mauchly test also has low power for small
samples and is overly sensitive with very large samples.
Thus, with large samples it is sometimes significant when de-
parture from sphericity is slight. It is always worthwhile,
then, to consider the magnitude of the epsilon factor, even
when the test of sphericity is explicitly provided.

There are five options when the assumption of sphericity
is not tenable: (a) use comparisons on the IV in question (usu-
ally trend analysis) instead of the omnibus test; (b) use an ad-
justed F test; (c) use a multivariate test of the within-subjects
effects; (d) use a maximum likelihood procedure that lets you
specify that the structure of the variance-covariance matrix is
other than compound symmetry; or (e) use a multilevel mod-
eling approach in which the multiple responses over time are
the lowest level of analyses and are nested with subjects, the
next higher level of analysis.

The first option—comparisons—takes advantage of the
fact that sphericity is not required when there is only one df
for the within-subjects IV. This option, in the form of trend
analysis, is often a good one because questions about trends
in the DV over time are usually the ones that researchers want
answered anyway, and the assumption of sphericity is most
likely to be violated when the IV is time related. Trend analy-
sis asks, “Does the DV increase (or decrease) steadily over
time?” “Does the DV first increase and then decrease (or the
reverse)?” “Are both patterns present, superimposed on each
other?” and “Are there other, more complicated, patterns in
the data?” Before the sophisticated software was available
for other options, trend analysis (or other comparisons) was
preferred on strictly computational grounds. It is still pre-
ferred if the researcher has questions about the shape of the
patterns in the DV over time. However, a disadvantage of
trend analysis (or any set of comparisons) in within-subjects
design is that each comparison develops its own error term.
This reduces the number of df for error—and consequently
the power—available for the test of the comparison. 

The second option is to use a more stringent F test of
the IV in question. Both Greenhouse-Geisser (1959) and
Huynh-Feldt (1976) adjustments are offered by all three
software packages that recognize within-subjects designs.
Both compute an adjustment factor, epsilon (�), that is used
to reduce df associated with both numerator and denomina-
tor of the F test. Reducing df makes the F test more conser-
vative. Both Greenhouse-Geisser and Huynh-Feldt compute

an epsilon value, but Greenhouse-Geisser usually produces
a stronger adjustment (larger value) than Huynh-Feldt. The
more liberal Huynh-Feldt adjustment is usually preferred be-
cause it seems to produce results closer to nominal alpha
levels.

The third option is to use the multivariate approach to re-
peated measures (a form of MANOVA called profile analysis
of repeated measures) that does not require sphericity. De-
scription of multivariate tests is available in Harris (2001),
Stevens (2001), and Tabachnick and Fidell (2001b, chaps. 9
and 10), among others. 

A fourth option is to use a maximum likelihood strategy
instead of ANOVA, in which the variance-covariance matrix
is user-specified or left unspecified. SAS MIXED, SYSTAT
MIXED REGRESSION, and SPSS MIXED MODEL pro-
duce this type of analysis. The appropriate variance-covari-
ance matrix structure for a time-related within-subjects IV,
for example, is first-order autoregressive—AR(1)—in which
correlations among pairs of levels decrease the farther apart
they are in time.

The fifth option, multilevel modeling (MLM), circum-
vents the assumption of sphericity by viewing individuals as
levels of an IV, with repeated measurements nested (and
modeled) separately within each subject. An advantage of
MLM over repeated-measures ANOVA is that there is no re-
quirement for complete data over occasions (although it is as-
sumed that data are missing completely at random); nor need
there be equal intervals between measurement occasions for
any units. That is, there is no need for equal numbers or
intervals of measurements for each case. Another important
advantage of MLM for repeated-measures data is the oppor-
tunity to test individual differences in growth curves (or
any other pattern of responses over the repeated measure).
Are the regression coefficients the same for all cases? Each
case gets its own regression equation, and it is possible to
evaluate whether individuals do indeed differ in pattern of re-
sponses over the repeated measure or in their mean response.

ANOVA programs in all three packages that recognize
within-subjects designs give trend analyses, multivariate
tests, and Huynh-Feldt adjustment by default, so the re-
searcher can easily choose any of those three options. The
fourth and fifth options, maximum likelihood analysis and
multilevel, are included in special “mixed” programs.

Multivariate Assumptions

Multivariate analyses differ from univariate analyses by
simultaneously considering two or more variables. For exam-
ple, MANOVA is the multivariate extension of ANOVA
where all participants provide scores for two or more DVs
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(e.g., speed and accuracy of response). Multiple regression is
the extension of bivariate regression to predicting the DV
from several (potentially correlated) IVs instead of from a
single IV. Most multivariate analyses have all the assump-
tions of the univariate analysis plus others due to the rela-
tionships between multiple DVs or multiple IVs. For the
most part, these assumptions are a logical extension of their
univariate counterparts.

Multivariate Normality

Multivariate normality is the assumption that all variables and
all linear combinations of those variables are normally dis-
tributed. When the assumption is met, the residuals of analy-
sis are normally distributed and independent. The assumption
of multivariate normality is not readily tested because it is im-
possible to test all linear combinations of variables for nor-
mality. Those tests that are available are overly sensitive.

The assumption of multivariate normality is partially
checked by examining the normality of individual vari-
ables and the linearity and homoscedasticity of pairs of
variables (discussed later) or by examining the residuals
of analysis. The assumption is certainly violated, at least to
some extent, if the individual variables are not normally dis-
tributed (or lack pair-wise linearity and homoscedasticity) or
the residuals are not normally distributed. Figure 5.8 shows
scatter plots of some idealized residuals from a regression
analysis in which residuals for a group of IVs are plotted
against predicted scores on a DV (Y ′). When there is multi-
variate normality, the envelope of residuals is roughly the
same width over the range of the predicted DV, and the rela-
tionship is linear. Similar residuals plots are available in
many programs of all major statistical packages.

Transformations that improve univariate normality also
facilitate multivariate normality. The analysis is likely to be
enhanced when variables are transformed to more nearly
normal, especially if the variables have different amounts and
directions of skewness and kurtosis.

Linearity and Homoscedasticity Between Pairs
of Variables

The assumption of multivariate linearity is that there are
straight-line relationships between all pairs of variables.
Multivariate analyses based on correlation capture only the
linear relationships among variables, so nonlinear relation-
ships among variables are ignored unless specifically added
into the analysis by the researcher. 

The assumption of homoscedasticity for ungrouped data is
that the variability in scores for one continuous variable is

roughly the same at all values of another continuous variable.
Failures of linearity and homoscedasticity of residuals are il-
lustrated in Figure 5.8 (panels C and D).

Heteroscedasticity, the failure of homoscedasticity, oc-
curs because one of the variables is not normally distributed
(i.e., one variable is linearly related to some transformation
of the other), because there is greater error of measurement
of one variable at some levels, or because one of the vari-
ables is spread apart at some levels by its relationship to a
third variable (measured in the design or not), as seen in Fig-
ure 5.9. An example of true heteroscedasticity is the rela-
tionship between age (X1) and income (X2), as depicted in
Figure 5.9, panel B. People start out making about the same
salaries, but with increasing age, people spread farther apart
on income. In this example, income is positively skewed,
and transformation of income is likely to improve the ho-
moscedasticity of its relationship with age. An example of
heteroscedasticity caused by greater error of measurement at
some levels of an IV might be weight. People in the age
range of 25 to 45 are probably more concerned about
their weight than are people who are younger or older. Older
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Figure 5.8 Plots of predicted values of the DV (Y ′) against residuals,
showing (A) assumptions met, (B) failure of normality, (C) nonlinearity, and
(D) heteroscedasticity. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).

schi_ch05.qxd  8/2/02  2:46 PM  Page 128



Screening Continuous Variables 129
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Figure 5.9 Bivariate scatter plots under conditions of homoscedasticity
and heteroscedasticity. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).
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Figure 5.10 Curvilinear and curvilinear plus linear relationships.
Reprinted with permission of Tabachnick and Fidell (2001b), Using multi-
variate statistics (Boston: Allyn and Bacon).

and younger people, then, are likely to give less reliable
estimates of their weight, increasing the variance of weight
scores at those ages.

Nonlinearity and heteroscedasticity are not fatal to an
analysis of ungrouped data because at least the linear com-
ponent of the relationship between the two variables is
captured by the analysis. However, the analysis misses the
other components of the relationship unless entered by
the researcher.

Nonlinearity and heteroscedasticity are diagnosed either
from residuals plots or from bivariate scatter plots. As seen in
Figure 5.8 (for residuals) and Figure 5.9 (for bivariate scatter
plots), when linearity and homoscedasticity are present, the
envelope of points is roughly the same width over the range
of values of both variables and the relationship is adequately
represented by a straight line. Departures from linearity and
homoscedasticity distort the envelope over certain ranges of
one or both variables. Normalizing transformations improve

linearity and homoscedasticity of the relationship and, usu-
ally, the results of the overall analysis. 

Sometimes, however, skewness is not just a statistical
problem; rather, there is a true nonlinear relationship between
two variables, as seen in Figure 5.10, panel A. Consider, for
example, the number of symptoms and the dosage of drug.
There are numerous symptoms when the dosage is low, only
a few symptoms when the dosage is moderate, and lots of
symptoms again when the dosage is high, reflecting a qua-
dratic relationship. One alternative to capture this relation-
ship is to use the square of the number of symptoms instead
of the number of symptoms in the analysis. Another alterna-
tive is to recode dosage into two dummy variables (using lin-
ear and then quadratic trend coefficients) and then use the
dummy variables in place of dosage in analysis. Alterna-
tively, a nonlinear analytic strategy could be used, such as
that available through SYSTAT NONLIN.

In panel B of Figure 5.10 two variables have both linear and
quadratic relationships. One variable generally gets smaller
(or larger) as the other gets larger (or smaller), but there is also
a quadratic relationship. For instance, symptoms might drop
off with increasing dosage, but only to a point; increasing
dosage beyond the point does not result in further change of
symptoms. In this case, the analysis improves if both the linear
and quadratic relationships are included in the analysis.

Assessing linearity and homoscedasticity through bivari-
ate scatter plots is difficult and tedious, especially with small
samples and numerous variables, and more especially when
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subjects are grouped and the search is conducted separately
within each group. If there are only a few variables, screening
all possible pairs is possible; but if there are numerous vari-
ables, you may want to use statistics on skewness to screen
for only pairs that are likely to depart from linearity. Think,
also, about pairs of variables that might have true nonlinear-
ity and heteroscedasticity and examine them through bivari-
ate scatter plots. Bivariate scatter plots are produced by
PLOT procedures in SPSS, SYSTAT, MINITAB, and SAS,
among other programs. You could also detect nonlinearity
and heteroscedasticity through residuals (cf. Figure 5.8).

Absence of Multivariate Outliers in Variables
and the Solution

A multivariate outlier is a case with a peculiar combination of
scores on two or more variables. For example, a person who
is 5 feet 2 inches tall is within normal range, as is a person
who weighs 230 pounds, but a short person who is that heavy
has an unusual combination of values. A multivariate outlier
such as this may have more impact on the results of analysis
than other cases in the sample. Consider, for example, the bi-
variate scatter plot of Figure 5.11, in which several regression
lines, all with slightly different slopes, provide a good fit to
the data points inside the swarm. But when the data point la-
beled A in the upper right-hand portion of the scatter plot is
also considered, the regression coefficient that is computed is
the one from among the several good alternatives that pro-
vides the best fit to the extreme case. The case is an outlier
because it has much more impact on the value of the regres-
sion coefficient than do any of those inside the swarm. 

One statistic used to identify multivariate outliers is
Mahalanobis distance, the distance of a case from the centroid
of the remaining cases where the centroid is the intersection of
the means of all the variables in multidimensional space. In
most data sets the cases form a swarm around the centroid in
multivariate space. Each case is represented in the swarm by a

single point at its own peculiar combination of scores on all of
the variables. A case that is a multivariate outlier lies outside
the swarm, some distance from the other cases. Mahalanobis
distance is one measure of that multivariate distance, and it
can be evaluated for each case using the chi-square distribu-
tion with a very conservative probability estimate for a case
being an outlier (e.g., p < .001).

Other statistical measures used to identify multivariate
outliers are leverage, discrepancy, and influence. Although
developed in the context of multiple regression, these mea-
sures are now available for some other analyses. Leverage is
related to Mahalanobis distance (or variations of it in the hat
matrix) and is variously called HATDIAG, RHAT, or hii.
Although leverage is related to Mahalanobis distance, it is
measured on a different scale so that significance tests based
on a chi-square distribution do not apply. Lunneborg (1944)
suggested that outliers be defined as cases with leverage
greater than 2 (k/N ), where k is the number of variables.
Equation 5.8 shows the relationship between leverage B(hii)B
and Mahalanobis distance:

Mahalanobis distance = (N − 1)(hii − 1/N ) (5.8)

Or, as is sometimes more useful if you want to find a critical
value for leverage at � = .001 by translating the critical chi-
square value for Mahalanobis distance:

hii = Mahalanobis distance

N − 1
+ 1

N
(5.9)

Cases with high leverage are far from the others, but they
can be far out along the same line as the other cases, or far away
and off the line. Discrepancy measures the extent to which
a case is in line with the others. PanelAof Figure 5.12 shows a
case with high leverage and low discrepancy; panel B shows a
case with high leverage and high discrepancy. Panel C is a case
with low leverage and high discrepancy. In all of these figures,
the outlier appears disconnected from the remaining scores.

Influence is a product of leverage and discrepancy (Fox,
1991). It assesses the change in regression coefficients when
a case is deleted; cases with influence scores larger than 1.00
are suspected of being outliers. Measures of influence are
variations of Cook’s distance and are identified in output as
Cook’s distance, modified Cook’s distance, DFFITS, and
DBETAS. Fox (1991, pp. 29–30) described these statistics in
more detail.

Leverage or Mahalanobis distance values are available as
statistical methods of outlier detection in several statistical
packages. However, some studies (e.g., Egan & Morgan,
1998; Hadi & Simonoff, 1993; Rousseeuw & van Zomeren,
1990) indicate that these methods are not perfectly reliable.

Figure 5.11 Bivariate scatter plot for showing impact of an outlier.
Reprinted with permission of Tabachnick and Fidell (2001b), Using multi-
variate statistics (Boston: Allyn and Bacon).
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Figure 5.12 The relationships among leverage, discrepancy, and influence. Reprinted with permission of Tabachnick
and Fidell (2001b), Using multivariate statistics (Boston: Allyn and Bacon).

Unfortunately, methods with greater reliability are currently
unavailable in popular statistical packages. Therefore, multi-
variate outliers are detected through Mahalanobis distance,
or one of its cousins, but cautiously.

Statistics assessing the distance for each case, in turn,
from all other cases are available through SPSS REGRES-
SION (among others) when you specify some arbitrary
variable (e.g., the case number) as DV and the set of variables
of interest as IVs. Outliers are detected by evoking
Mahalanobis, Cook’s, or Leverage values through the Save
command in the Regression menu (where these values are
saved as separate columns in the data file and examined using

standard descriptive procedures) or by examining the 10
cases with largest Mahalanobis distance printed out by SPSS
REGRESSION through the RESIDUALS subcommand. A
number of other regression programs, including those in SAS
and SYSTAT, provide a leverage value, hii, for each case that
converts easily to Mahalanobis distance (Equation 5.8).
These values are also saved to the data file and examined
using standard statistical and graphical techniques.

Figure 5.13 shows syntax and output for identifying multi-
variate outliers for ungrouped data using the downloaded
SCREEN.SAV data set (available from www.abacon.com/
tabachnick). In this data set (described more fully in

Figure 5.13 Syntax and Mahalanobis distance for ungrouped data produced by SPSS
REGRESSION for the SCREEN.SAV data set.
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Tabachnick & Fidell, 2001b), the TIMEDRS variable has been
logarithmically transformed to become LTIMEDRS. SUBNO
(case label) and is used as a dummy DV, convenient because
multivariate outliers among IVs are unaffected by the DV.
(The COLLIN instruction requests collinearity diagnostics,
described in a later section.) Mahalanobis distance is evalu-
ated as χ2 at p < .001 with degrees of freedom equal to
the number of variables, in this case five: LTIMEDRS,
ATTDRUG, ATTHOUSE, MSTATUS, and RACE. Any case
(such as cases 117 and 193) with a Mahalanobis distance
greater than 20.515 (χ2 value at α = .001 with 5 df ), then, is a
probable multivariate outlier.

In grouped data, multivariate outliers are sought sepa-
rately within each group. SYSTAT DISCRIM can be used
to print out Mahalanobis distance for each case with grouped
data. Use of other programs, including SPSS and SAS
REGRESSION, requires separate runs for each group. How-
ever, different error terms are developed, and different cases
may be identified as outliers when separate runs for each group
are used instead of a single run for within-group outliers.

Figure 5.14 shows syntax and output using SYSTAT
DISCRIM with the SCREEN.SAV data set. Mahalanobis
distance may be shown either in output or added to the data
file. Figure 5.14 shows part of the section that provides
Mahalanobis distance for each case from the centroid of
each group. The grouping variable, EMPLMNT, has two
levels, 0 (paid workers) and 1 (housewives).

Mahalanobis distance is shown first for the paid workers
(group 0) with case sequence number in the first column. The
next two columns show Mahalanobis distance (and posterior
probability) for those cases from their own group. The last
two columns show Mahalanobis distance (and posterior
probability) for those cases from the other group (group 1).
Using χ2 = 20.515 (α = .001 with 5 df ) as the criterion,
Figure 5.14 shows that case 40 (identified as SUBNO = 48 in
the data set) is a multivariate outlier among paid workers.

Sometimes multivariate outliers hide behind other multi-
variate outliers (Rousseeuw & von Zomren, 1990). When the
first few cases identified as outliers are deleted, the data set be-
comes more consistent so that other cases become extreme.

Figure 5.14 Syntax and Mahalanobis distance for grouped data produced by SYSTAT
DISCRIM for the SCREEN.SAV data set.

schi_ch05.qxd  8/2/02  2:46 PM  Page 132



Screening Continuous Variables 133

Robust approaches to this problem have been proposed (e.g.,
Egan & Morgan, 1998; Hadi & Simonoff, 1993; Rousseeuw &
von Zomren, 1990), but these are not yet implemented in pop-
ular software packages. These methods can be approximated
by screening for multivariate outliers two or more times, each
time dealing with cases identified as outliers on the previous
run, until finally no new outliers are identified. But if there
seem to be too many outliers, do a trial analysis with and with-
out later-identified outliers to see if they are truly changing re-
sults. If not, retain them in the analysis. (This is also a worth-
while strategy to apply for early-identified outliers if there
seem to be too many of them.)

Once multivariate outliers are identified, you need to dis-
cover why the cases are extreme. (You already know why
univariate outliers are extreme.) It is important to identify the
variables on which the cases are deviant to help you decide
whether the case is properly part of your sample and to pro-
vide an indication of the kinds of cases to which your results
do not generalize. If there are only a few multivariate out-
liers, it is reasonable to examine them one at a time through
multiple regression in which a dichotomous DV is formed on
the basis of the outlying case. If there are several outliers, you
may want to examine them as a group to see if there are any
variables that consistently separate the group of outliers from
the rest of the cases. These procedures are illustrated in
Tabachnick and Fidell (2001b). 

First, identify potential univariate outliers and then begin
the search for multivariate outliers. The solutions that elimi-
nate univariate outliers also tend to reduce the number of
multivariate outliers, but sometimes not completely because
the problem with a true multivariate outlier is the combina-
tion of scores on two or more variables, not the score on any
one variable. To deal with multivariate outliers, first consider
the possibility that one variable is implicated for many of
them. If so, and the variable is highly correlated with others
in a multivariate design or is not critical to the analysis, dele-
tion of it is a good alternative. Otherwise, multivariate out-
liers are usually deleted.

After the analysis is complete, look for outliers in the
solution as a hint to the kinds of cases for which the solution
does not work very well. Outliers in the solution for un-
grouped data are found through examination of residuals.
Outliers in the solution for grouped data are available as
Mahalanobis distance through SPSS DISCRIMINANT. This
program produces Mahalanobis distance based on discrimi-
nant function scores (with df = number of discriminant func-
tions) rather than raw scores and so provides information
about outliers in the solution. The lists of outliers produced
by SYSTAT DISCRIM are not the same because the program
identifies outliers among the original variables. Or you can

visually examine residuals produced by running each group
separately through any multiple regression program.

Absence of Collinearity and Singularity

Problems with collinearity and singularity occur when two or
more variables are too highly or perfectly correlated. With
collinearity, the variables are very highly correlated—for ex-
ample, scores on the Wechsler Adult Intelligence Scale
(WAIS) and scores on the Stanford-Binet Intelligence Scale.
With singularity, the variables are redundant because one
variable is a combination of two or more other variables (e.g.,
total WAIS score is a combination of subscale scores). In sta-
tistical terms, a singular correlation matrix is not of full rank
because there are not as many variables as columns.

Collinearity and singularity cause both logical and statisti-
cal problems. The logical problem is that redundant variables
are not needed in the same analysis unless you are analyzing
structure (through factor analysis, principal components
analysis, or structural equation modeling), dealing with
repeated measures of the same variable, or dealing with in-
teractions or powers of variables along with the original
variables in the same analysis (Aiken & West, 1991). Before
including two variables with a bivariate correlation of, say,
.70 or more in the same analysis, consider omitting one of the
variables or creating a composite score from the correlated
variables.

Statistical problems with a singular correlation matrix
occur because matrix inversion (the equivalent of division in
scalar algebra) is impossible and the determinant is zero.
Therefore, runs for an analysis requiring matrix inversion are
aborted until the redundant variable is eliminated. With
collinearity, the determinant is not exactly zero, but it is zero
to several decimal places. Division by a near-zero determi-
nant produces very large and unstable numbers in the in-
verted matrix that fluctuate considerably with only minor
changes (e.g., in the second or third decimal place) in the
sizes of correlations. The portions of a multivariate solution
that follow this matrix inversion are unstable. In regression,
for instance, standard error terms for the regression coeffi-
cients get so large that none of the coefficients is significant
(Berry, 1993). When r is .9 or above, the precision of estima-
tion of weighting coefficients is halved (Fox, 1991). 

Statistical problems are also present when there is
collinearity caused by interactions among continuous var-
iables or variables taken to powers. The remedy is to center
those continuous variables by replacing raw scores for
those variables with scores that are deviations from their
means (see Aiken & West, 1991, for further discussion of
centering).
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Both bivariate and multiple correlations can be collinear
or singular. A bivariate collinear relationship has a correla-
tion of .90 or above and is resolved by deletion of one of
the two variables. With a multivariate collinear relationship,
diagnosis is more difficult because the collinearity is not
necessarily apparent through examination of bivariate cor-
relations. Instead, multivariate statistics are needed, such as
squared multiple correlations (SMCs, in which each vari-
able, in turn, serves as the DV with the others as IVs), tol-
erances (1 − SMC), or collinearity diagnostics. SMCs are
available through factor analysis and regression programs
in statistical software packages. However, SMCs are not
evaluated separately for each group if you are analyzing
grouped data. PRELIS provides SMCs for structural equa-
tion modeling.

Most modern programs automatically protect against sin-
gularity. Screening for collinearity that causes statistical in-
stability is also routine with most programs because they
have tolerance criteria for inclusion of variables. If the toler-
ance is too low, the variable does not enter the analysis. De-
fault tolerance levels range between .01 and .0001, so SMCs
are .99 to .9999 before variables are excluded. You may wish
to take control of this process, however, by adjusting the tol-
erance level (an option with many programs) or deciding
yourself which variables to delete instead of letting the pro-
gram make the decision on purely statistical grounds.

SAS, SYSTAT, and SPSS have recently incorporated
collinearity diagnostics proposed by Belsley, Kuh, and
Welsch (1980) in which both a condition index and variance
proportions associated with each standardized variable are
produced for each root (dimension, factor, principal compo-
nent). Variables with large variance proportions are those
with problems. 

Condition index is a measure of tightness or dependency of
one variable on the others. The condition index is monotonic

with SMC, but not linear with it. A high condition index is as-
sociated with variance inflation in the standard error of a para-
meter estimate for a variable. As the standard error increases,
parameter estimation becomes more and more uncertain.
Each root (dimension) accounts for some proportion of the
variance of each parameter estimated. There is a collinearity
problem when a root with a high condition index contributes
strongly (has a high variance proportion) to the variance of
two or more variables. Criteria for collinearity suggested by
Belsely et al. (1980) are a condition index greater than 30 for
a given root coupled with at least two variance proportions for
individual variables greater than 0.50.

Figure 5.15 shows output of SPSS REGRESSION for
assessing collinearity for the SCREEN.SAV data set. Al-
though the last dimension (root) has a Condition Index that
approaches 30, no variable (column) has more than one
Variance Proportion greater than .50. Therefore, no collinear-
ity is evident.

Homogeneity of Variance, Homoscedasticity,
and Homogeneity of Variance/Covariance Matrices
in Grouped Designs 

The assumption of homoscedasticity for ungrouped data
becomes the assumption of homogeneity of variance for
grouped data where the variability in a DV is expected to be
about the same at all levels of an IV. As previously discussed,
heterogeneity of variance affects the robustness of ANOVA
and ANOVA-like analyses. 

In multivariate ANOVA-like analyses, homogeneity of
variance becomes homogeneity of variance-covariance
matrices because more than one DV is measured each time.
Within each cell of the design, there is a matrix of variances
and covariances for the several DVs. Homogeneity of
variance is present if each of the DVs has an Fmax value

Attitudes
toward

medication

Attitudes
toward

housework

Whether
currently
married RACE

Variance Proportions

Collinearity Diagnosticsa

TIMEDRSModel Dimension

a. Dependent Variable: Subject number

Eigenvalue
Condition

Index (Constant)

1 1
2
3
4
5
6

5.656
.210

.026E-02

.271E-02

.476E-02

.785E-03

1.000
5.193
9.688

11.508
15.113
28.872

.00

.00

.00

.00

.00

.99

.00

.00

.00

.03

.53

.43

.00

.00

.01

.29

.41

.29

.00

.01

.29

.46

.06

.18

.00

.02

.66

.16

.04

.12

.01

.92

.01

.06

.00

.00

Figure 5.15 Collinearity diagnostics produced by SPSS REGRESSION for the SCREEN.SAV data set. Syntax in
Figure 5.13.
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(Equation 5.6) of less than 10 across the cells of the design
(when there is nearly equal n). Further, within each cell, the
DVs covary (are correlated with each other) to varying
extents, and the pattern of those correlations should be about
the same across the cells. There is homogeneity of the
variance/covariance matrices, then, when the DVs have
about the same variability and are related to each other to
similar extents in all cells.

Box’s M is a formal test of homogeneity of variance/
covariance matrices, but it is too strict with the large sample
sizes and the roughly equal n often associated with multivari-
ate analyses. The researcher can, with confidence, assume
homogeneity of variance/covariance matrices if Box’s M is
not significant, if sample sizes are equal, or if larger sample
sizes are associated with larger variances. But Monte Carlo
studies by Hakstian, Roed, and Lind (1979) show that ro-
bustness is not guaranteed if Box’s M is significant, if there is
substantial unequal n, and if the larger variances are associ-
ated with smaller samples. The greater the discrepancy in cell
sample sizes is, the greater the potential Type I error rate. One
remedy is to use an alternative criterion for testing the multi-
variate significance of differences among group means such
as Pillai’s criterion instead of the more common Wilk’s
lambda (Olson, 1979). Another is to equalize sample sizes by
random deletion of cases if power can be maintained at rea-
sonable levels.

Normalizing Transformations for Minimizing
Violation of Assumptions

Transformations are often undertaken because a variable vio-
lates normality, has outliers, has heterogeneity of variance, or
has heteroscedasticity and nonlinearity in its relationship
with other variables. Transformation is a sensible practice
when variables are assessed on scales that are more or less ar-
bitrary anyway, as are many scales in psychology. However,
interpretation is of the transformed variable and may be both-
ersome for scores measured on well-known scales or scales
with carefully developed psychometric properties.

If you decide to transform, check that the distribution is
improved by transformation. If a variable is only moderately
positively skewed, for instance, a square root transformation
may make the variable moderately negatively skewed so
nothing is gained. Often, you need to try first one transforma-
tion and then another until you find the transformation that
reduces skewness and kurtosis values to near zero, has the
fewest outliers, or produces homogeneity of variance and
linearity.

The type of transformation necessary to improve the fit to
assumptions also conveys substantive information. For ex-

ample, a transformation that makes an IV-DV relationship
linear also conveys information about how much the DV is
changing with the same-sized changes in the IV. That is, the
DV may grow exponentially with linear changes in the IV,
the DV may grow linearly with exponential changes in the
IV, or there may be a linear relationship between the IV-DV
exponents. If the IV-DV relationship is linear, DV scores go
from 1 to 2 to 3 as the IV goes from 1 to 2 to 3; if the rela-
tionship is a square root, the DV scores go from 1 to 4 to 9 as
the IV goes from 1 to 3; and if the relationship is log10, the
DV scores go from 10 to 100 to 1,000. 

The log is probably the easiest transformation to under-
stand because in the simplest, most familiar situation (log10

and, e.g., a DV score of 10 associated with a score of 1 on the
IV), a change in the IV from 1 to 2 changes the DV from 10
to 100, whereas a change in the IV from 2 to 3 changes the
DV from 100 to 1,000. Two therapy sessions are 10 times
more effective than one, and three therapy sessions are
100 times more effective than one (and three therapy sessions
are 10 times more effective than two). That is, each change of
one unit in the IV increases the DV by a factor of 10. If log2

is used instead, a one-unit change on the IV changes the DV
by a factor of 2 (i.e., doubles it).

With square root transformations, the change is not as
rapid as with logs. For example, a change in the IV from 1 to
2 changes the DV from 3.16 (square root of 10) to 10 (square
root of 100) while a change from 2 to 3 changes the DV from
10 to 31.6 (square root of 1,000). That is, three therapy
sessions are 10 times more effective than one (instead of
100 times more effective than one), and two sessions are
about 3 times as effective as one. 

Figure 5.16 presents distributions of single variables that
diverge from normality to different degrees, together with
the transformations that are likely to render them normal. If
the distribution differs moderately from normal, a square
root transformation is tried first. If the distribution differs
substantially, a log transformation is tried. If the distribu-
tion differs severely, the inverse is tried; or if preserving
order is desired, the negative of the inverse is used (Tukey,
1977). According to Bradley (1982), the inverse is the best
of several alternatives for J-shaped distributions, but even it
may not render the distribution acceptably normal. Finally,
if the departure from normality is severe and no transfor-
mation seems to help, you may want to try dichotomizing
the variable.

The direction of the deviation is also considered. When
distributions have negative skewness, the best strategy is to
reflect the variable and then apply the appropriate transfor-
mation for positive skewness. To reflect a variable, find the
largest score in the distribution and add 1 to it to form a
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constant that is larger than any score in the distribution. Then
create a new variable by subtracting each score from the con-
stant. In this way, a variable with negative skewness is con-
verted to one with positive skewness prior to transformation.
When you interpret a reflected variable, be sure to reverse the
direction of the interpretation as well. For instance, if big
numbers meant good things prior to reflecting the variable,
big numbers mean bad things afterward.

Instructions for transforming variables in four software
packages are given in Table 5.2. Notice that a constant is
added if the distribution contains zero or negative numbers.
The constant (to bring the smallest value to at least 1) is
added to each score to avoid taking the log, square root, or in-
verse of zero.

This section on transformations merely scratches the sur-
face of the topic about which a great deal more is known. The

Figure 5.16 Shape of distributions and common transformations to produce normality. Reprinted
with permission of Tabachnick and Fidell (2001b), Using multivariate statistics (Boston: Allyn and
Bacon).
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TABLE 5.2 Original Distributions and Common Transformations to Produce Normality

MINITAB SPSS SAS SYSTAT
LETa COMPUTE DATA DATA TRANSFORM

Moderate positive skewness LET NEWX = SQRT(X). NEWX = SQRT(X) NEWX = SQRT(X); LET NEWX = SQR(X)
Substantial positive skewness LET NEWX = LOGTEN(X). NEWX = LG10(X) NEWX = LOG10(X); LET NEWX = L10(X)

with zero LET NEWX = LOGTEN(X + C). NEWX = LG10(X + C) NEWX = LOG10(X + C ); LET NEWX = L10(X + C)
Severe positive skewness, LET NEWX = 1/X. NEWX = 1/X NEWX = 1/X ; LET NEWX = 1/X

L-shaped
with zero LET NEWX = 1/(X + C). NEWX = 1/(X + C) NEWX = 1/(X + C); LET NEWX = 1/(X + C)

Moderate negative skewness LET NEWX = SQRT(K − X). NEWX = SQRT(K − X) NEWX = SQRT(K − X); LET NEWX = SQR(K − X)
Substantial negative skewness LET NEWX = LOG(K − X). NEWX = LG10(K − X) NEWX = LOG10(K − X); LET NEWX = L10(K − X)
Severe negative skewness, LET NEWX = 1/(K − X). NEWX = 1/(K − X) NEWX = 1/(K − X); LET NEWX = 1/(K − X)

J-shaped

a Calc provides transforms in the MINITAB Windows menu system. 
Note. C = a constant added to each score so that the smallest score is 1. K = a constant from which each score is subtracted to that the smallest score is 1; usually
equal to the largest score +1.
Source: Reprinted with permission of Tabachnick and Fidell (2001b), Using multivariate statistics (Boston: Allyn and Bacon).

interested reader is referred to Emerson (1991) or the classic
Box and Cox (1964) for a more flexible and challenging
approach to the problem of transformation. 

DISCRETE DATA AND LOG-LINEAR ANALYSES

Several analytic techniques are available for discrete vari-
ables, or data sets with a combination of discrete and contin-
uous variables. The most familiar example is chi-square, an
inferential test of the relationship between two discrete vari-
ables (where one of them may be considered a DV). An ex-
tension is multiway frequency analysis, which provides a test
of relationships in a data set with several discrete variables;
sometimes the researcher is simply interested in which of
them are related to which others, and sometimes the re-
searcher seeks to examine whether a discrete DV is related to
several other discrete IVs. Logistic regression is available to
examine whether a discrete (or ordinal) DV is related to sev-
eral other IVs, both discrete and continuous. 

Multiway frequency analysis and logistic regression de-
velop a linear equation that weights the IVs according to their
relationship with the discrete DV and with each other, similar
to the general linear model of Equation 5.7. In Equation 5.10,
Y 1

i is the predicted value on the DV for the ith case, A is the
intercept (the value of Y when all the X values are zero), the
Xs represent the various IVs (of which there are k), and the Bs
are the coefficients assigned to each of the IVs during
regression:

Y 1
i N = A + B1 X1 + B2 X2 + · · · + Bk Xk (5.10)

Equation 5.10 is the familiar equation for multiple regres-
sion, but in analyses for discrete variables the equation is
called the logit and is found in the exponents of the equation

for predicting the DV (Ŷi ). In Equation 5.11, Ŷi is the esti-
mated probability that the ith case is in one of the cells. That
is, there is a linear relationship among the IVs but it is in the
logit of the DV, and the goal of the equation is to predict the
frequencies (or probabilities) of cases falling into various
combinations of levels of variables rather than predicting the
DV score itself for each case. 

Ŷi = eA+B1 X1+B2 X2+···+Bk Xk

1 + eA+B1 X1+B2 X2+···+Bk Xk
(5.11)

These analyses have many fewer assumptions than the
corresponding analyses for continuous variables and are
therefore sometimes preferred. In this context, recall that you
always have the option of rescaling a poorly behaved contin-
uous variable into a discrete one.

Adequacy of Expected Frequencies

Thefitbetweenobservedandexpected frequencies isanempir-
ical question in tests of association among discrete variables.
Sample cell sizes are observed frequencies; statistical tests
compare them with expected frequencies derived from some
hypothesis, such as independence between variables. The re-
quirement in chi-square and multiway frequency analysis and
for discrete variables in logistic regression is that expected fre-
quencies are large enough. Two conditions produce expected
frequencies that are too small: a small sample in conjunction
with too many variables with too many levels, and rare events.

When events are rare, the marginal frequencies are not
evenly distributed among the various levels of the variables.A
cell from a low-probability row or a low-probability column
will have a very low expected frequency. One way to avoid low
expected frequencies is to attempt to determine the levels that
are likely to be rare in advance of data collection and then sam-
ple until obtained frequencies on the margins are adequate.
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For chi-square and multiway frequency analysis, examine
expected cell frequencies for all two-way relationships to
ensure that all are greater than 1 and that no more than 20%
are less than 5. Except in some applications of chi-square,
inadequate expected frequencies do not lead to increased
Type I error but rather to reduction in power, which can be-
come notable as expected frequencies for two-way associa-
tions drop below 5 in some cells (Milligan, 1980).

If low expected frequencies are encountered, several
choices are available. First, you can simply choose to accept
reduced power. Second, you can collapse categories for vari-
ables with more than two levels. For example, you could
collapse the categories “three” and “four or more” into one
category of “three or more.” The categories you collapse
should be carefully considered because it is quite possible that
associations will disappear as a result. Because this is equiva-
lent to a complete reduction in power for testing those associ-
ations, nothing has been gained.

Finally, you can delete variables to reduce the number of
cells as long as care is taken to delete only variables that are
not associated with the remaining variables. For example, in
a table with three discrete variables you might consider delet-
ing a variable if there is no three-way association and if at
least one of the two-way associations with the variable is
nonsignificant (Milligan, 1980). The common practice of
adding a constant to each cell is not recommended because it
has the effect of further reducing power. Its purpose is to sta-
bilize Type I error rate, but as noted earlier, that is generally
not the problem, and other remedies are available when it is.
Some of the programs for multiway frequency analysis, such
as SPSS LOGLINEAR and HILOGLINEAR, add the con-
stant by default anyway under circumstances that do not
affect the outcome of the analysis.

In logistic regression, when a goodness-of-fit inferential
test is planned to compare observed with expected frequen-
cies in cells formed by combinations of discrete variables, the
analysis also has little power if expected frequencies are too
small. When inference is desired, the guidelines for chi-square
and multiway frequency analysis are applicable together with
the remedies for low expected frequencies.An additional rem-
edy in logistic regression is use of a goodness-of-fit criterion
that is not based on observed versus expected frequencies, as
discussed in Hosmer and Lemeshow (1989) and Tabachnick
and Fidell (2001b, Sections 7.3.2.2, 12.6.1.1).

Absence of Collinearity

Like their counterparts for continuous variables, these analy-
ses are degraded by inclusion of collinear variables. Signals
of the presence of collinearity include failure of the analysis

to converge or extremely large estimates of standard error for
one or more parameters. The solution is to identify and elim-
inate one or more redundant variables from the analysis.

Independence of Errors

In most circumstances, these analyses are used only for
between-subjects designs in which the frequency of cases in
each cell is independent of the frequencies in all other cells. If
the same case contributes a hash mark to more than one cell,
those cells are not independent. Verify that the total N for the
analysis is equal to the number of cases before proceeding.

McNemar’s test provides chi-square analysis for some
types of repeated measures when each case is in a particular
combination of “yes-no” cells. For example, in a 2 × 2 de-
sign, a person attends karate classes but does not take piano
lessons (yes on karate, no on piano), does neither (no on
both), does both (yes on both), or takes piano lessons but not
karate (no on karate, yes on piano). Independence of errors is
preserved because each case is in only one of four cells, de-
spite having “scores” on both karate and piano.

Absence of Outliers in the Solution

Multiway frequency analysis and logistic regression often
proceed by developing a model that provides the tightest fit
between the observed frequencies and the frequencies ex-
pected from the model in the many cells of the design. Along
the way, some variables are deleted because they do not con-
tribute to the fit. After the best model is chosen, there are
sometimes still substantial differences between observed fre-
quencies and the expected frequencies for some cells. If the
differences are large enough, there may be no model that
adequately fits the data until levels of some variables are re-
defined or new variables are added. Examination of the resid-
uals of the analysis reveals the adequacy of the analysis, as
discussed in Hosmer and Lemeshow (1989) and Tabachnick
and Fidell (2001b, Sections 7.4.3.1, 7.7.2.3, 12.4.4).

SPECIAL ASSUMPTIONS FOR SPECIAL ANALYSES

ANCOVA: Homogeneity of Regression 

Analysis of covariance (ANCOVA) and multivariate analysis
of covariance (MANCOVA) are ANOVA-like analyses that
include covariates as well as the usual IVs and DVs. Covari-
ates (CVs) are variables known to be related to the DV that
increase the variability in DV scores. When CVs are assessed
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and their effects on the DV accounted for in the analysis, the
error term for the test of the effect of the IV is usually smaller
because there is less spread in the DV; this increases the
power of the analysis. In some disciplines (and software pro-
grams), all continuous predictors are called covariates. That
is, continuous IVs are labeled covariates.

Covariates are usually continuous variables. One or sev-
eral of them may be in an analysis, and they may be measured
once or more than once during the course of a study. Use of
CVs is not controversial in experimental research when care
is taken to keep assessment of the CV uncontaminated by the
effects of the IV, but their use is problematic in other research
settings. These issues and others are discussed in Myers and
Well (1991), Tabachnick and Fidell (2001a, 2001b), and
elsewhere.

The special assumption of homogeneity of regression is
that the slope of the relationship between the DV and the CVs
is the same for all cells of a design. Put another way, the
assumption is that the DV and the CV have the same rela-
tionship in all levels of the IV—that there is no CV by IV in-
teraction. Both homogeneity and heterogeneity of regression
are illustrated in Figure 5.17. During analysis, slope is com-
puted for every cell of the design and then averaged to pro-
vide the value used for overall adjustment of DV scores. It is
assumed that the slopes in different cells will differ slightly
due to chance, but they are really all estimates of the same
population value. If the null hypothesis of equality among
slopes is rejected, the analysis of covariance is inappropriate,
and an alternative strategy, such as blocking on the CV to
turn it into an additional IV, is required.

The most straightforward programs for testing homogene-
ity of regression in between-subjects designs are SYSTAT
GLM or ANOVA and SPSS MANOVA. The general strategy
involves inclusion of the IV by CV interaction in a preliminary
ANCOVA run; homogeneity of regression is signaled by a
nonsignificant interaction. Syntax for accomplishing this test

is available in the SYSTAT manual (SPSS Inc., 2000, p. I-463)
and in the SPSS Base manual (SPSS Inc., 1999, pp. 159–160);
syntax for the test through SAS GLM and SPSS MANOVA is
available in Tabachnick and Fidell (2001a). Tabachnick and
Fidell also illustrated syntax for simultaneously testing homo-
geneity of regression for multiple, pooled CVs and syntax for
testing homogeneity of regression for covariates measured re-
peatedly, both through the SPSS MANOVA program.

Logistic Regression: Linearity in the Logit

Logistic regression investigates the predictability of group
membership from a set of both discrete and continuous
predictors. Although there is no assumption that the continuous
predictors themselves have pair-wise linear relationships, there
is the assumption that each of the continuous predictors has a
linear relationship with the logit. (Recall that the logit is the
GLM prediction of Equation 5.10 in the exponent of the solu-
tion.) Using the Box-Tidell approach (Hosmer & Lemeshow,
1989), the assumption is tested by forming interactions between
each continuous variable and its own natural logarithm and
adding the interaction terms to the equation. There is linearity in
the logit when these interaction terms are not significant.

Significance for one or more of the interaction terms leads
to transformation of the continuous variable. A test of this as-
sumption through SYSTAT DATA and LOGIT is provided in
Tabachnick and Fidell (2001b).

Survival Analysis

Survival analysis is a set of techniques for analyzing the
length of time until something happens and for determining if
that time differs for different groups or for groups offered dif-
ferent treatments. An approach similar to logistic regression
is used when assessing group differences. In medical settings
survival analysis is used to determine the time course of

Figure 5.17 DV-CV regression lines for three groups plotted on the same coordinates for conditions of
(A) homogeneity and (B) heterogeneity of regression. Reprinted with permission of Tabachnick and Fidell
(2001b), Using multivariate statistics (Boston: Allyn and Bacon).
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various medical conditions and whether different modes of
treatment produce changes in that time course. In industry the
same analysis is called failure analysis and is used to deter-
mine time until failure of a specific part and whether parts
manufactured differently have different rates of failure.

An advantage of survival analysis over traditional logistic
regression is that the analysis can handle censored cases. These
are cases for which the time is not known at the conclusion of
the study either because the case is still apparently well (or the
part is still functioning) or the case has been lost to follow-up.
However, there are special assumptions related to such cases,
as well as other assumptions particular to the analysis.

Differences Between Withdrawn and Remaining Cases 

The first assumption is that the cases that have been lost to
follow-up do not differ from the cases with complete data at
the conclusion of the study. If there are systematic differences
between the two types of cases, you have a missing data
problem with nonrandom loss of cases. If the study was ini-
tially an experiment with random assignment to treatment
conditions, the advantages of random assignment have been
lost due to nonrandom loss of cases.

Change in Survival Conditions Over Time

Because these data are collected over time, it is assumed that
the factors that influence survival at the beginning of the study
are the same as the factors that influence survival at the end of
the study. Put another way, it is the assumption that the condi-
tions have not changed from the beginning to the end of the
study. If, for example, a new medical treatment is offered to
patients during the course of the study and that treatment in-
fluences survival, the assumption is violated.

Proportionality of Hazards 

If the Cox proportional-hazards model, one of the more pop-
ular models, is used to evaluate the effects of various predic-
tors on survival, there is the assumption that the shape of the
survival function over time is the same for all cases and for
all groups. That is, the time until failures begin to appear may
differ from one group to another, but once failures begin to
appear, they proceed at the same rate for all groups. This as-
sumption is violated when there is interaction between time
and group. To test the assumption, a time variable is con-
structed and its interaction with groups tested. A test of
the assumption through SAS PHREG is demonstrated in
Tabachnick and Fidell (2001b).

Time Series: Analysis of Residuals

Time series analysis is used when numerous observations
(50 or more) are made of the same event over time. The event
can be the behavior of a single case or aggregated behavior of
numerous cases. One goal is to find patterns, if any, in the
behavior of the cases over time. A second goal is to determine
if an intervention (naturally occurring or an experimental
treatment) changes the pattern over time. A third goal may be
to forecast the future pattern of events.

The overall pattern of scores over time is decomposed into
several different elements. One element is random shocks,
conceptually similar to the random errors in other analyses. A
secondelement isoverall trends (linear,quadratic) in thescores
over time; is the average generally increasing (or decreasing)
over time? A third element is potential lingering effects of ear-
lier scores. A fourth element is potential lingering effects of
earlier shocks. One popular time series model isARIMA(auto-
regressive, integrated, moving-average). The auto-regressive
part represents the lingering effects of previous scores. The in-
tegrated part represents trends in the data; the moving-average
part represents lingering effects of previous shocks.

Patterns in the data (which may be completely random or
any combination of auto-regressive, integrated, or moving-
average) produce different patterns of autocorrelations (and
partial autocorrelations) among the scores. That is, scores at
adjacent time periods correlate differently with each other
depending on the types of contingencies present. The goal is
to provide an equation that mimics the patterns in the data
and reduces the residuals to random error. When the assump-
tions are met, the residuals have a normal distribution, with
homogeneous variance and zero mean over time, and no out-
liers. There are also no lingering autocorrelations (or partial
autocorrelations) among the residuals remaining to be ana-
lyzed. Tests of the assumptions and other issues in time series
analysis are discussed in McCleary and Hay (1980) and
Tabachnick and Fidell (2001b).
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A major task of science is to develop theoretical constructs
that bring together many observed phenomena. Historical
examples of doing this include both ability and personality
research. In the former, the moderate to high correlations
observed among ability measures have led to the theoretical
construct of general intelligence. In the latter, the moderate to
high correlations among personality variables such as emo-
tionality and frustration have led to the theoretical construct
of anxiety (also called neuroticism). The construct validity
of these theoretical constructs has been examined by factor
analyses. Factor analysis is a statistical technique that repro-
duces the data by as few factors (potential theoretical
constructs or latent variables) as possible.

A popular current use for factor analysis is scale develop-
ment. When selecting a subset of the items for a scale, one
needs to know how many constructs might be measured from
the item pool and which items could measure each construct.
This information is provided by a factor analysis. The items
are factor analyzed to find the fewest number of factors that
can represent the areas covered by the items. The relationship
of each item to the factors indicates how it might be used in
measuring one of the factors.

Whereas a factor analysis might result in a scale to mea-
sure a theoretical construct in a future study, confirmatory
factor analysis and extension analysis in exploratory factor
analysis allow another option. Factor analysis can be used in
a new study to confirm or disconfirm the relationships be-
tween factors themselves or with other variables not in the
factor analysis. No sales or factor scores are needed.

Although no factor analysis is ever completely ex-
ploratory—there is always an underlying theoretical model
by which the data are collected—some factor analyses are
primarily exploratory with no hypotheses, and others are pri-
marily confirmatory, specifically testing hypotheses. Both
types of factor analysis are examined in this chapter.

The purpose of this chapter is to provide a basic but com-
prehensive treatment of factor analysis. The intention is to
give the reader the background to read, appreciate, and cri-
tique research from a factor analytic perspective, whether it
be an article using factor analysis, an article using factor
analysis inappropriately, or an article that could be strength-
ened if factor analysis were used. While no particular statisti-
cal package is assumed, this chapter also provides material
needed to select the options for a factor analysis that are most
appropriate to the purpose of the study.

The chapter starts with the basic equations and definitions
of factor analysis. This section introduces the terms needed
to understand factor analytic models and variations in the
models. The second section of the chapter presents factor
models, including component analysis (CA) and common
factor analysis (CFA). CFA includes both exploratory
(ECFA) and confirmatory (CCFA) factor analysis. In addi-
tion, all of these variants can be used with correlated or un-
correlated factor models. Presented with each model is the
essential theoretical information to understand the model and
the essential practical information to use the model.

Rather than reviewing all the possible procedures that
could apply to each model, each section includes the
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procedures that now have sufficient empirical and theoretical
support to be the generally desired procedures for that model.
In some cases, however, there are still minor variations in
what procedure is used, and these are discussed with the
model to which the variations apply.

Although the last decades have led to clear choices of
some procedures over others for one or more models, several
areas in factor analysis still present major unsolved problems.
Three such problems are addressed after the models have
been presented. The first is the continuing debate between ad-
vocates of two types of exploratory analysis: components and
common factor. Second is the issue of how many factors to
extract from a particular data set. Third is the question of how
the factors in one data set can be related to other variables
that were in the data set but were not included in the factor
analysis, and how factors may be related across studies.

The concluding section points to elements of all good re-
search designs that need to be remembered in designing a
factor analytic study. Included in this section are discussions
of the need for high-quality variables and how many cases
are needed.

Three examples are used to illustrate factor analysis. The
first example is of six psychological tests for which the struc-
ture is easily seen in the correlation matrix (Gorsuch, 1983).
Three of the variables are related to verbal ability and three to
anxiety. The second example is a case in which we know
what the factors should be: boxes (Gorsuch, 1983). Graduate
students took 10 measures from ordinary boxes they found in
their homes. Because these are all measures within three-
dimensional space, we expect the factors to be those three
dimensions: length, height, and width.

The third example uses the Canadian normative sample
for the Wechsler Adult Intelligence Scale–III (WAIS-III;
Gorsuch, 2000). The published correlation matrix among the
scaled scores form the basis of analysis. The factor structure
of the WAIS, and its children’s version, the WISC (Wechsler
Intelligence Scale for Children), have been extensively ana-
lyzed. (Detailed discussions of factor analytic topics are in
Gorsuch, 1983; when no other references are provided,
please consult that reference.)

BASICS OF FACTOR ANALYSIS

The purpose of factor analysis is to parsimoniously summa-
rize the relationships among that which is being factored, re-
ferred to here as variables, with a set of fewer constructs, the
factors. The analysis serves as an aid to theory development
and scale construction. The term variables is used because
most factor analyses are of scales and measures to which that
term is immediately applicable; however, other types of data,

such as people, can be used (see Gorsuch, 1983; Thompson,
2000).

Understanding is aided when several variables are found
to correlate sufficiently so that they are measuring the same
construct (i.e., factor). In the area of intelligence, for exam-
ple, scales with labels of vocabulary and similarities corre-
late highly together and can be considered manifestations of
verbal ability. Because vocabulary and similarities have been
found to relate to the same factor, theoretical development
may account for vocabulary and similarities simultaneously
by accounting for the factor.

Scale construction is aided when the correlations among
items show the items to fall into a certain number of clusters
or groups. In psychology of religion, motivation items, for
example, fall into groups of items representing an intrinsic
motivation (e.g., the main reason I go to church is to worship
God) and extrinsic motivations (e.g., the only reason to go to
church is to meet friends). The items fall into several groups
so that within a group the items correlate with one factor and
not with the other factors. Items can then be picked by their
correlations with the factors to form scales.

Note that there is little generalization across factors (be-
cause the variables of one factor do not correlate with the
variables of another factor) and so factor analysis identifies
qualitatively different dimensions. Within a factor there is
generalization identified with quantitative differences (i.e.,
how each variable correlates with the factor).

In addition to the classical factor analysis of scales, there
are other uses of factor analysis. It can be used to reduce sev-
eral problems encountered in data analysis.

One problem in data analysis is the multiple collinearity
problem. This occurs when several scales that are designed to
measure the same construct are used in the same study. Such
scales correlate so well that it affects the statistics, such as
multiple correlation. First, with multiple collinearity, multi-
ple regression beta weights are unstable, and therefore are
difficult to replicate. Second, another degree of freedom is
used for each additional scale that measures what one of the
other scales also measures. Yet having the additional mea-
sures is desirable because they increase the overall accuracy
of the study. Multiple collinearity can be among either the in-
dependent or dependent variables.

A solution to the multiple collinearity problem is to factor
the variables; then the factors are used instead of the variables.
The same domains are covered with the factor analysis as the
ones covered by the variables, and the factor analysis also
shows the overlap among the scales. The multiple collinearity
among the factors will be low.

Another problem with statistics such as multiple correla-
tion is that the regression weights have all the covariation
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among the variables eliminated. It does this by partialing out
the other variables from the weights. The common—that is,
predictive variance that two or more variables have in com-
mon—may not be seen at all in the beta weights. Hence, a
multiple regression can be significant even though none of
the weights are significant; it is the variance that the vari-
ables have in common that predicts the dependent variable.
The solution is to extract as many factors as there are vari-
ables and restrict the solution so that the factors are uncorre-
lated. These are then orthogonalized versions of the original
variables. When these are used as the predictors in a multiple
regression, all of the covariation is distributed among the
variables and appears in the weights.

Development of factor analysis as a statistical procedure
proceeds from the generalized least squares (GLS) model
used in regression and other least squares analyses. Assuming
all variables to be in Z score form for convenience, the model
is based on this set of equations:

Xi1 = w1A Ai + w1B Bi + w1CCi + w1D Di + · · · + ui1

Xi2 = w2A Ai + w2B Bi + w2CCi + w2D D2 + · · · + ui2

Xi3 = w3A Ai + w3B Bi + w3CCi + w3D Di + · · · + ui3

· · ·
Xiv = wvA Ai + wvB Bi + wvCCi + wvD Di + · · · + uiv

(6.1)

where, for the first line, X is the score for person i on variable
1, w is the weight for variable 1 for factor A, and A is the score
for person i on factor A. The equation shows factors A through
D and indicates that there may be more. Additional variables
are indicated, for a total of v variables in the analysis.

The last element of each equation, u, is that which is
unique to that particular variable, often called error or resid-
ual. Each u is in a separate column to indicate that each is dis-
tinct from any other u. There are as many distinct us as there
are variables. It is important to note that each variable’s
uniqueness (us) includes two sources of variance. First is ran-
dom error due to unreliability and second is that variance in
the variable that is not estimable from the factors.

When the preceding equation is solved for each dependent
variable, the multiple correlation of the factors with that vari-
able can be computed. In factor analysis, the square of that
multiple correlation is called the communality (h2) because it
is an index of how much that variable has in common with
the factors.

How high can the communality be? The absolute maxi-
mum is 1.0, because then all the variation of the variable
would be reproduced by the factor. But the psychometric
maximum is the variable’s reliability coefficient, which by de-
finition is the maximum proportion of the variable that can be

reproduced from a perfect parallel form, although occasional
capitalization on chance may produce a sample communality
slightly above the reliability. (Note: The reliability referred to
in this chapter is always the reliability in the sample for the
factor analytic study.) Of course, the reliability gives the com-
munality only if all the nonerror variance is reproduced by the
factors. The more likely result is that the factors reproduce
only part of the reliable variance, and so the communalities
are expected to be less than the reliabilities.

While Equation 6.1 gives the mathematical definition of
factor analysis in terms of the data matrix (X), the analysis
itself can, as in regression analyses, proceed mathematically
from the Pearson correlations among the variables. Factor
analysis can be presented as an analysis of correlations with-
out reference to actual scores, but that can be misleading.
Some techniques that proceed from the correlation matrix
(e.g., cluster analysis) have no direct mathematical relation-
ship to the observed variables. Factor analysis does; it is an
analysis of the observed data using correlations only as a con-
venient intermediate step. (Note that phi, Spearman rank, and
point-biserial correlations are all special cases of the Pearson
correlation coefficient and so are appropriate for factor analy-
sis. Although other coefficients, such as biserial correlations,
have been tried, they do not proceed directly from Equa-
tion 6.1 and can produce matrices that cannot be factored.)

Factor analysis could proceed from covariances instead of
correlations. If covariances are used, then the variable with
the largest variance is given more weight in the solution. For
example, if income were measured in dollars per year and
education measured in number of years spent in schooling,
the former’s variance would, being in the tens of thousands,
influence the results much more than would the latter, whose
variance would be less than 10. With social science data in
which the variances are arbitrary, weighting the solution to-
wards variables with higher variances is seldom useful. How-
ever, do note that correlations are affected by restriction of
range. When the range is less than is normally found with a
variable, the correlations are lower. When such restriction
does occur, the factor loadings will be lower than when the
range is larger. In such a situation, it is appropriate to either
correct the correlations for the restriction of range or use
covariances. Factoring covariances produces factor weights
that are the same despite restrictions of range. However, they
may, in addition to the inconvenient weighting, be more dif-
ficult to interpret because they are not in the range of �1 to 1
as are correlations. The discussion here assumes that correla-
tions are being factored unless stated otherwise.

Table 6.1 gives a simple example of six variables (Gorsuch,
1983). The left part of the table gives the observed correlation
matrix, and the second part gives the factors’correlations with
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TABLE 6.1 Factor Analysis of 6 Variables

r with Variables r with Factors

Variable 1. 2. 3. 4. 5. 6. I. II. h2

1. Information — .76 �.09 .59
2. Verbal ability .67 — .81 �.07 .66
3. Verbal analogies .43 .49 — .58 �.07 .34
4. Ego strength .11 .12 .03 — .06 �.67 .45
5. Guilt proneness �.07 �.05 �.14 �.41 — �.05 .59 .35
6. Tension �.17 �.14 �.10 �.48 .40 — �.12 .66 .45

Note. Correlation between factors � �.14.

the variables. They show that the first three variables form one
factor and the second three form another. The reason the
communalities are small is because these are all brief forms
with low to moderate reliabilities in this sample.

The results of a factor analysis includes the degree to
which each factor relates to each variable. When a factor re-
lates to a variable, the common usage is to say that the factor
loads the variable. Loading refers to the relationship of a fac-
tor to a variable in general but not to one particular numeric
values. It is appropriate to use the term loading when one
wishes to refer to whether the factor contributes to a variable.
However, whenever a number is referred to, the type of factor
loading must be reported. Thus it is appropriate to ask Does
factor A load variable 3? and appropriate to respond Yes, it
correlates .58 with the variable. There are three types of fac-
tor loadings. First are the weights for each factor’s z scores to
estimate the variable z scores. Second are the correlations of
each factor with each variable. The last, and least used, is the
partial correlation of each factor with each variable with the
other factors partialled out. (These are discussed more in this
chapter’s section on correlated factor solutions.)

There is an assumption in least squares analyses of Equa-
tion 6.1, including factor analysis. Use of the model assumes
that each equation applies equally to each person. It is difficult
for these analyses to work well if the X is a function of Factors
A and B for half the sample but a function of Factors C and D
for the other half. Such may occur, for example, when there
are multiple ways in which the variable can be changed. Con-
sider a hypothetical situation in which children in poor com-
munities only receive high exam scores if they are innately
bright (because poor communities, we shall assume, cannot
contribute much to their scores). Then those in rich communi-
ties would receive high exam scores less related to innate
brightness because of the resources that led to a strong learn-
ing environment. Because different influences are at work in
different parts of the sample, the factor analysis will be an
averaged one and not represent either community well.

In factor analysis, the desire is to find a limited number of
factors that will best reproduce the observed scores. These
factors, when weighted, will then reproduce the observed
scores in the original sample and, in new samples, will

estimate what the observed scores would be if measured. Of
course, the reverse may also be of interest: using the observed
scores to measure the factor. But in the latter case, the factor
is measured not to estimate the observed scores, but rather to
generalize to other variables that also are correlated with the
factor. These two approaches are seen in the examples. The
boxes are analyzed to identify the factors: length, height, and
width. Knowing the factors, we can in the future just measure
length, height, and width directly and compute other vari-
ables such as a diagonal. The reverse is of interest in intelli-
gence testing; scales such as Similarities and Vocabulary
are used to measure verbal capability. Psychologists then
examine, for example, a person’s college grades in courses
demanding high verbal capability to see whether they are as
expected, given the person’s verbal ability.

Note that in factor analysis, only the observed scores, the
Xs in Equation 6.1, are known; the factor scores (A, B, etc.),
the weights (the ws), and the uniquenesses (us) are unknown.
With one known and three unknowns, it is mathematically
impossible to solve for them without further restrictions. The
restrictions adopted to allow solving for both factors and
weights are a function of the factor model.

FACTOR ANALYTIC MODELS AND
THEIR ANALYSES

To solve Equation 6.1 for both the factors and the weights,
restrictions must be made. The restrictions can be minimal or
extensive. The former—minimal restrictions—includes the
class of models known as exploratory factor analysis (EFA).
Mathematical principles are selected for the restrictions but
there are no restrictions that take into account any theory that
the investigator might have. The results are based solely on the
observed data. The latter—extensive restrictions—includes
the models known as confirmatory factor analysis (CFA).
Based on theory or past research, a set of weights is proposed
and tested as to whether the weights adequately reproduce the
observed variables. Note that restrictions are not necessarily a
dichotomy between minimal and extensive. Some forms of
EFA are more restricted than others and some forms of CFA
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are less restricted than others. These variations arise out of
what the investigator is willing to or needs to specify.

Component Analysis

Component analysis (CA) restricts Equation 6.1 by dropping
the uniqueness term, u. Thus the interest is in factors (also
called components when using CA) that reproduce all of each
and every variable, and so have expected communalities of
1.0. Of course, CA users would never argue their variables
have reliabilities of 1.0 and so the actual maximum commu-
nality is generally much lower than 1.0. And CA users know
the variables will not have multiple correlations of almost 1.0
with the other variables (needed for the factors to have a mul-
tiple correlation of 1.0 with each variable). Therefore no vari-
able can, except by capitalization on chance, actually have a
communality of 1.0. But proponents feel CA gives, with solid
variables that correlate well, a reasonable approximation,
with negligible distortion from the ignored unreliability and
ignored multiple correlations less than 1.0.

Derivations easily show that the first step in all exploratory
factor analyses is to compute the correlations among the ob-
served variables. It is important to note that technically it is a
covariance matrix among Z scores that is being factored. The
main diagonal contains the variances—which are 1.0 by the
definition of Z scores. The off-diagonal elements are techni-
cally the covariances among the Z scores which, because
Z scores have variances of 1.0, are also the correlations among
the variables. Procedures mentioned below are then applied to
the correlation matrix to extract the components.

To extract factors from the data matrix, more restrictions
need to be made than just assuming the us are zero. The restric-
tions are mathematical and use one of two procedures. The
first, principal components, has the restriction that the first fac-
tor is the largest possible one, the second is the largest one after
the first has been extracted, and so forth for all the factors. The
second, maximum likelihood, adds the restriction that each
should have the maximum likelihood of that found in the pop-
ulation. The latter is more difficult to compute, but both are
quite similar—and both become more similar as the N in-
creases. It would be surprising if there were any interpretable
difference between these two procedures with a reasonable N.

The factors as extracted are seldom directly interpretable.
Hence the factors are rotated (a term which comes from a
geometric development of factor analysis; see Gorsuch,
1983, particularly chapter 4)—that is, are transformed to
meet some criterion while keeping the same communalities.
The usual criterion for rotation is simple structure, which can
be briefly defined as the maximum number of variables load-
ing only one factor with a side condition that these loadings
be spread among as many factors as possible. Table 6.1

shows excellent simple structure. Each variable is loaded by
only one factor and each factor loads a distinct set of vari-
ables. Because rotation applies to all EFA methods but has
correlated and uncorrelated models in terms of how the fac-
tors are restricted, it is discussed further in the section of this
chapter entitled “Restricting to Uncorrelated Factors” after
the other EFA methods are noted.

CA is more parsimonious than are other models based on
Equation 6.1 in that the equations are simpler when the unique
term is dropped from Equation 6.1. One of the effects is that
factor scores can be directly calculated (which, as noted
below, is not true for the other major exploratory model, com-
mon factor analysis). These factors are linear combinations of
the observed variables that can serve as summaries of the func-
tion represented by the factor. Such factors appeal to those
who wish to stay close to the data and who philosophically
hold that all constructs are just convenient summaries of data.
(This is a discussion to which we return later.)

CA has been considered to be only an EFA procedure, with
no CFA version. That is true within the narrower definition of
factor analysis generally employed. But in terms of the model
of Equation 6.1 and the logic of CA, a confirmatory compo-
nents analysis is technically possible. The problem is that no
significance tests are possible because the CA model has no
place for errors.

Common Factor Analysis

Common factor (CFA) models use Equation 6.1, including
the uniqueness term. Each uniqueness is the sum of several
types of variance not in the factor analysis. These include
random error (from unreliability and sampling error) and
residual error in the sense that part of the variable is unrelated
to the factors. The term uniqueness is used for all error be-
cause the random error, sampling error, and that which can-
not be estimated from the factors can be considered unique to
each variable. In CFA models, the focus is on the commonly
shared variance of the variables and factors, hence the name
common factor analysis.

Having the uniquenesses in the equations requires as-
sumptions to restrict the analysis sufficiently for there to be a
solution. These assumptions parallel those of residual-error-
uniqueness in regression analysis. The uniquenesses are
assumed to be both

• Uncorrelated with each other.

• Uncorrelated with the common factors.

Because nontrivial uniqueness may exist for each vari-
able, the variance associated with the factors is reduced
for each variable. The variables’ Z scores have an original
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variance of 1.0, but the part of each variable’s Z scores that
can be accounted for by the common factors is 1.0 minus u2,
and so will be less than 1.0. The importance of this for CFA
is that the correlation matrix of the observed scores needs to
be altered to take this into account. This is done by estimating
the expected communality of each variable (because that is
the squared multiple correlation of the factors with that vari-
able and so is the variance of the reproduced variable) and re-
placing the 1.0 in the main diagonal of the correlation matrix
with the communality. This is appropriate because the matrix
is technically a covariance matrix, with the main diagonal
elements being the variances of the variables.

Common factor analysis generally attracts those who wish
to acknowledge the fact that all psychological variables have
error and who prefer a model that is consistent with other
methods of analysis, such as regression analysis and struc-
tural equations modeling. Factor scores, they originally felt,
were not an issue because the factor score estimates correlate
so high with the factors that the problem of factor scores’
being only close approximations is minor; now proponents of
common factor analysis suggest that factor scores are seldom
needed because extension analysis can be used instead, and
so the factor score issue is a moot question. (We return to the
issue of CA vs. CFA later in this chapter.)

Common factor analysis has both an exploratory and a
confirmatory model. An exploratory common factor analysis
(ECFA) is one in which the restrictions are minimal both in
number and in regard to the investigator’s theories. It is an
inductive analysis, with the results coming from the data as
undisturbed by the investigator’s thinking as possible. The
advantage of not specifying an expectation is that the analy-
sis is a multitailed test of any theory or expectation the inves-
tigator might have. If the investigator’s expectations are
found by ECFA, then they would certainly be found by a con-
firmatory analysis. However, due to the lack of restrictions
and the complexities of the analyses, significance tests are
not available for ECFA, so large Ns are to be used to reduce
the need for significance tests.

Communalities could be calculated exactly if the factors
were known and vice versa: The factors could be calculated
exactly if the communalities were known. To cut this Gordian
knot, the communality can be estimated and then the factors
extracted. The observed communalities should differ only
slightly from the estimated communalities.

Communality estimation is readily done by several meth-
ods. The following are four:

• SMC: Use the squared multiple correlation (SMC) of all
other variables with that variable. This generally works
well and is independent of the number of factors.

• Pseudoiteration: Use anything as the initial estimate,
solve for the number of factors (see the following discus-
sion for how to estimate the number of factors), and cal-
culate the communalities from these factors. Then use the
observed communalities as new estimates of the commu-
nalities, extract factors again, and calculate the commu-
nalities from these factors. Continue the process until little
change is noted from one pass to the next or a maximum
number of passes has made. Note that this is not true iter-
ation. True iteration occurs when it has been proven both
that the iterated values necessarily converge and that they
necessarily converge to the right values. But neither nec-
essarily happens with pseudoiteration. Gorsuch (1974,
1983) has noted a case in which the process would not
converge, so the requirement for true iteration that the val-
ues converge is not met. The condition that they converge
to the right values is not met because they sometimes con-
verge to an impossibly large value. For example, in prac-
tice, communalities computed by this process often ex-
ceed 1.0. (Values greater than 1.0 are referred to as
Heywood cases after the author of the first published dis-
cussion of the situation. Actually, those using the criterion
of 1.0 to conclude the estimates are incorrect are opti-
mists; the actual upper limit for communalities are the re-
liabilities of the variables, which are almost always less
than 1.0. Thus, more violations of the upper limit occur
than just the Heywood cases.) The fact that the process
need not converge to values that are possible means this
process is not an iterative process in the mathematical
sense. In mathematics a procedure is iterative if and only
if it is found to converge on the population value. There-
fore the so-called iteration for communalities is only
pseudoiteration. Why is pseudoiteration widely used? I
suspect that there are two reasons. First, mathematical it-
eration is an excellent procedure, so iteration was cer-
tainly worth a try even though there is no mathematical
proof it meets mathematical criteria for iteration. Second,
when starting from 1.0 as the initial communality esti-
mate, we see that the first few pseudoiterations obviously
lower the communality estimates from the too-high value
of 1.0 to a more reasonable estimate.

• SMCs with two to three iterations: This procedure starts
with the SMC noted previously. Then the solution is iter-
ated two or three times and stopped. Although it is still a
pseudoiteration, it has never in my usage produced an
estimate over 1.0. Snook and Gorsuch (1989) found the
resulting communalities to not differ significantly from
the communalities designed into the study. This is a good
procedure.
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TABLE 6.2 EFA Communalities Using Different Initial Values

Estimation: 1.0 SMR SMR � 2 Iterations

Psychological Variables (2 Factors)
1. .73 .55 .59
2. .77 .61 .66
3. .56 .34 .34
4. .65 .41 .45
5. .57 .33 .35
6. .64 .41 .45

Boxes (3 Factors)
1. .95 .93` .91
2. .96 .93 .93
3. .93 .97 .98
4. .96 .98 .98
5. .97 .99 .99
6. .98 .98 .99
7. .91 .90 .88
8. .87 .84 .82
9. .98 .97 .97

10. .90 .73 .68

WAIS-III (4 Factors)
1. .65 .59 .60
2. .70 .51 .54
3. .76 .42 .46
4. .81 .44 .49
5. .79 .65 .66
6. .65 .52 .55
7. .69 .40 .43
8. .63 .34 .35
9. .77 .68 .69

10. .76 .51 .56
11. .84 .74 .77

• Minres analysis: This procedure minimizes the off-
diagonal elements while using no communality estimates.
Communalities result from the analysis. It is an excellent
procedure if exact communalities are desired.

Some of the concern with communality estimates has been
found to be an overconcern. Any reasonable estimate (plus
several other similar ones, including special adaptations of b.
in CFA) produces a final solution that is indistinguishable
from the others. This is probably the reason that Minres is
seldom used.

Note that the number of elements of the main diagonal of
the correlation matrix—which are replaced with the commu-
nality estimates—increases linearly with the number of vari-
ables, while the number of nondiagonal elements increases
much faster. For example, with six variables the communal-
ity estimates form 29% of the values being analyzed. With
30 variables, the communalities form only 7%. With 60 vari-
ables, the percentage is down to 4%. The impact of the com-
munality estimates becomes increasingly unimportant as the
number of variables increases.

In addition to the number of variables, a second parameter
that is important in evaluating the importance of the commu-
nality estimates is how high the communalities are. The
higher they are, the narrower the range of estimates for the
communalities. With higher communalities, it is less likely
that using a different communality estimation procedure
would result in an interpretable difference.

Table 6.2 contains communalities for the box, WAIS, and
psychological variable examples. They were computed from
three initial estimates, 1.0, SMC, and SMC plus two itera-
tions. The resulting communalities from the factors based on
each estimation procedure are given. (The 1.0 column con-
tains the actual communities from component analysis even
though they were assumed to be 1.0.)

For the psychological variables—where the communality
estimates are low to moderate and form 29% of the coeffi-
cients being analyzed—using 1.0 as the initial communality
estimate makes a difference, but there is little difference be-
tween the other two initial estimates. In both the box and the
WAIS examples, the communalities are high, so the estimates
give quite similar results. Table 6.2 contains the factor load-
ings for the SMR plus the two-iterations solution for the six
psychological variables data set.

Any of the parameters of Equation 6.1 can be zero. Now
note what happens if the variables have high multiple corre-
lations with the other variables. As the multiple correlations
increase, the uniquenesses, us, approach zero. If they were
zero, then the us would drop out and it would be a CA.
Hence, CA is a special case of ECFA. An unrestricted ECFA

will give CA if the variables have high multiple correlations
with each other. (It is for this reason that CA and ECFA are
part of the same statistical model even though it they may be
used for different purposes.)

As is the case with CA, ECFA proceeds by extracting
factors by principal or maximal likelihood methods. The re-
strictions are then changed in the rotation of the factors
(mentioned in the discussion of CA and discussed further
later in this chapter). For example, the rotation reduces the
number of factors loading each variable so that the relation-
ships will be simpler than if most factors loaded most
variables.

Confirmatory Common Factor Analysis 

Confirmatory common factor analysis (CCFA) has been
developed and used within the common factor model. It
proceeds directly from equation 6.1 and includes the unique-
nesses. But unlike ECFA, which uses mathematical restric-
tions to gain a solution, confirmatory methods use theory to
develop appropriate restrictions.
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The restrictions can be placed on any or all of the follow-
ing of Equation 6.1:

• The number of factors.

• The weights of a factor to reproduce a variable.

• The uniqueness for each variable.

• The means and standard deviations of the factor scores.
These are generally set to either Z scores (mean = 0,
SD = 1) or the mean and SD of a particular variable.

It is possible also to place restrictions in addition to the ele-
ments of equation 6.1. The prime such restrictions are on the
following:

• The correlations (or covariances, if covariances are being
analyzed) among the factors.

• The correlations (or covariances) among the unique-
nesses. These are generally restricted to 0, but they can be
placed at other values. If non-zero, they can represent cor-
related method or errors.

The restrictions vary in the values that can be used. The more
useful variations are to restrict a parameter to 1 or 0. When
the means and standard deviations of the factors are set to 0
and 1, respectively, the factors are then Z scores. The correla-
tions among the factors are set to 0 to restrict the factors to
being uncorrelated.

The weights can be restricted in multiple ways. Here are
the usual weight restrictions:

• The most widely used weight restriction is to set some
weights to 0. This means that the variable is defined with-
out regard to that factor.

• A predefined weight may be used; this is useful in evalu-
ating whether the weights from another study are cross-
validated in the current study. 

• Several weights can be restricted to being the same value,
with the value not predefined; for example, this is used if
one has two parallel forms of the same measure.

If the weight is unrestricted, then the factor extracted is
expected to have a nonzero weight on that variable, and the
investigator wishes to know if that is so. The number of re-
strictions must be sufficient to identify a unique solution.
Identification can be a problem in that no one has yet devel-
oped a formula to say when a unique solution is identified. It
has been impossible to give a specific answer because the
value depends on not just the number of restrictions but also
their location. However, a correlation-based CCFA is gener-
ally sufficiently restricted if each variable is only allowed to
be loaded by one factor and each factor has at least three

such variables. Usually the computer program reports any
problems occurring that could be caused by insufficient
restricting, referred to as underidentification.

For a CFA example, consider the six psychological vari-
able example. From general psychological knowledge, we
would expect that any factor of the verbal ability measures
would not load the psychological distress variables, and vice
versa. Hence, the hypothesized pattern would have six values
set to zero. The other three values for each factor would be al-
lowed to vary (i.e., would be set by the program). The corre-
lation between the factors is unrestricted (see Table 6.3).

Consider just the first factor in Table 6.3. What the restric-
tions in the hypothesized weights say is that the last three
variables are not to be considered in the solution of that
factor. But it does not say how the weights for the first three
variables are to be found. What is needed is the factor that
best reproduces the scores of these three variables. Note that
this is the same question asked in ECFA, and the same
restriction is used so that a solution can be found: principal
factoring (maximizing the variance that is reproduced) or
maximum likelihood factoring (maximizing the variance with
the further restriction of maximizing the generalization to the
population). To illustrate this connection with ECFA, one
principal factor was extracted from the first three variables;
then, separately, one factor was extracted from the last three
using an ECFA program (communalities were started at reli-
abilities and then iterated nine times). That is the second part
of Table 6.3. It gives the weights for each of the factors to
reproduce each of the variables. Using extension analysis
(discussed later in this chapter), the correlation between these
two so-called exploratory factors was found to be −.12.

And what if a real CCFA is computed from these data?
Using the original maximum likelihood program for CCFA
gives the final two columns of Table 6.3. The very slight
differences may be a function of the differences between
principal and maximum likelihood factors or the number of
iterations for communalities. (It does illustrate how few

TABLE 6.3 Confirmatory Common Factor Analysis of
6 Psychological Variable Problem

Hypothesized ECFA Principal Factor CCFA Weights
Weights Weights (maximum likelihood)

1. ? 0 .77 0 .77* 0
2. ? 0 .87 0 .86* 0
3. ? 0 .57 0 .57* 0
4. 0 ? 0 �.70 0 �.70*
5. 0 ? 0 .58 0 .58*
6. 0 ? 0 .69 0 .70*

r � ? r � �.12 r � �.21*

Note. * p � .05. ? means the value is left free to vary.
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differences there can be between principal and maximum
likelihood factors.)

There is a warning in the use of CCFA: Changing the
parameters of the model after looking at the data may well
lead to a nonreplicable solution. The model needs to be set
before the analysis begins. If more than one model needs to
be tested, then all models need to be completely specified in
advance.

If a hypothesized CCFA model gives a less-than-desired
fit to the data, investigators occasionally make some adjust-
ments to produce a better fitting model. This is a dangerous
practice because it capitalizes on chance. The literature sug-
gests such changes often lead the model away from the pop-
ulation model, not towards it. None of the significance tests
nor the goodness-of-fit measures take this capitalization into
account. If any changes are made to improve the fit, the report
needs to explicitly state the original model, give the basis for
all changes, and warn that some capitalization on chance will
have occurred. It is recommended that a cross-validation
sample be used to test any model containing data-based
changes.

What is the advantage of a real CCFA over just extracting
factors from subsets of the variables? The answer is signifi-
cance tests. In Table 6.3, the CCFA found all the loadings to
be statistically significant. These significance tests are possi-
ble because the solution is sufficiently restricted to be mathe-
matically tractable.

Restricting to Uncorrelated Model Factors

The previous discussion of component and common factor
models fits the general case in which there are no restrictions
on the correlations among the factors. This is appropriate in
most cases because either the variables are all drawn from the
same domain, or how the domains relate is of interest. But
allowing for correlations among the factors adds some
complexity.

The simplicity introduced by uncorrelated factors is the
same as with uncorrelated predictors in multiple regression.
Multiple regression analysis simplifies if the predictors are
uncorrelated with each other. With uncorrelated predictors,

• The correlation of the independent variable with the de-
pendent variable is also its Z score weight, and its correla-
tion when all the other predictors are partialed out (the
partial correlation).

• There is no overlapping variance among the independent
variables, so the correlation is unchanged if one of the
other independent variables is partialed out or is not in the
equation.

• The multiple correlation is the square root of the sum of
the squared correlations of the independent variables with
the dependent variable.

In factor analysis, the factors are the predictors or independent
variables, the observed variables are the dependent variables,
and the communalities are the squared multiple correlations
of the factors with the observed variables. Thus, with uncorre-
lated factors,

• The correlation of the factor with an observed variable is
also its Z score weight, and its correlation when all the
other factors are partialled out (the partial correlation).

• There is no overlapping variance among the factors, so the
correlation is unchanged if one of the other factors is par-
tialled out or is not in the equation. However, because the
uncorrelated restriction is applied to this specific set of
factors, dropping a factor from the solution can change the
weights.

• The communality is the square root of the sum of the
squared correlations of the factors with the variable.

Because the correlation is equal to the weight and is equal to
the partial correlation, there is only one interpretation for the
term loading when the factors are uncorrelated. With corre-
lated predictors or factors, the three conditions previously
noted do not hold. Instead the beta weight (in regression
analysis; factor weight in factor analysis) differs from the cor-
relation, and those differ from the partial correlation (when
the other predictors/factors are held constant). The multiple
correlation/communality is computed by a more complex for-
mula that takes the correlations among the variables/factors
into account.

In factor analysis with correlated factors, each type of
loading is put into a separate matrix. These have been named

• The factor pattern that contains the beta weights given to
the factor Z scores to reproduce the variable Z scores.

• The factor structure that contains the correlations of the
factors with the variables.

• The reference vector structure that contains the correla-
tions of each factor with the variables with all other factors
partialled out.

The factor pattern is generally considered to be the one to
interpret, but the other matrices can be of interest also. Often
the reference vector structure is clearer than that of the others
because the correlations of factors with variables solely due
to how the factors intercorrelate have been removed.
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Because uncorrelated factors are easier to work with, why
not restrict all factor solutions to being uncorrelated? The
answer is that it may lead to a misleading representation of
the data. For example, ability scales are all generally corre-
lated together. This is true of the WAIS-III data; the lowest
correlation is .22 (Digit Span with Digit Symbol) but correla-
tions in the .50s and .60s are common. This is true not only
among the scales, but also among the IQ and Index scores.
Restricting to uncorrelated factors fails to inform us that the
abilities are highly related.

Solutions restricted to uncorrelated factors are also re-
ferred to as orthogonal, a term from the geometric represen-
tation of factors. In the same manner, unrestricted solutions
are also referred to as oblique. However, that term can be
misleading. It implies that the solution is restricted to having
correlated factors, which is not the case. Unrestricted rotation
is just that: unrestricted. Factors can and often are uncorre-
lated when unrestricted factor rotation is used.

Many procedures exist for rotating factors, but the deci-
sion usually is just whether the factors will, on an a priori
basis, be restricted to being orthogonal or will be unre-
stricted. If restricted, the program of everyone’s choice is
Varimax. For unrestricted rotation, there are several options,
with most giving reasonable solutions. Some such as Obli-
max have a parameter to set that influences the degree to
which the solution is forced towards orthogonality. The most
elegant unrestricted rotation is to start with Varimax, and then
use Promax to provide an unrestricted version of the Varimax
solution. Like other unrestricted solutions, there is a parame-
ter to be set, referred to as k. Part of Promax’s advantage is
that the value of k is no longer a choice to be made because it
makes little difference . It can always set to 4. With this set-
ting, uncorrelated factors will result if appropriate, because
orthogonal rotation is a special case of unrestricted rotation.

Note that Promax may produce factors with correlations so
trivial that they can be treated as uncorrelated factors, as in
Table 6.1 in which the correlation was a trivial �.14. Milliron
(1996) found in a simulation study that Promax was good not
only for correlated factors, but also replicated the known factor
pattern better than Varimax did for factors uncorrelated in the
population. In the samples, Varimax had to slightly distort the
loadings to keep the factors correlating exactly zero, whereas
Promax allowed for chance correlations among the factors.

Occasionally there are unexpected results with Varimax.
Not only is an obvious general factor completely missed, but
also the zero correlations among the factors can disappear at
the next calculation. Several studies have used Varimax
and then estimated factor scores. The factor scores were
obviously correlated, indicating that the restriction could not
be applied through all the calculations because the restricted
rotation fit the data so poorly. Other studies have used the

orthogonal factors of a prior study in a new sample, only to
find the factors correlating .6 to .8. Highly correlated data
will not be denied. It is best to be forewarned about this situ-
ation by leaving the rotation unrestricted.

If the factors are correlated, then those correlations can be
factored (just as the original variable correlations were fac-
tored). The factors from the variables themselves are called
the primary factors, whereas those extracted from the primary
factors are called secondary factors; third-order factors would
be factors from the second-order factors, and so forth. All fac-
tors after the primary factors are referred to as higher-order
factors. Conceptually, the primary factors are more specific
than are the secondary factors and so should predict more spe-
cific variables better than do the secondary factors. With more
general variables, the secondary factors should predict better.
Using the results of a higher-order factor analysis and the de-
sired dependent variables, it is possible to show (Gorsuch,
1984) and even test (Mershon & Gorsuch, 1988) when the
primary or second-order factors are more useful.

An example of higher order factoring is the WAIS-III. The
primary factors are in Table 6.4. The four primary factors
were correlated, and a general second-order factor was ex-
tracted. This factor, the last column of Table 6.4, represents
the classical g, or general ability factor (IQ). The correlations
of the individual scales with g were computed by extension
analysis (discussed later in this chapter). It is g that has a long
history of relating to many areas of achievement.

TABLE 6.4 Higher-Order Analysis of the WAIS-III (Canadian)
First-Order Factors and Correlations of the Primary Factors

1. Verbal 2. Processing 3. Working 4. Perceptual g
Variables Comprehension Speed Memory Organization

Arithmetic .25 .02 .38 .26 .69
Block design �.08 .11 .03 .70 .63
Digit span �.01 �.02 .70 �.01 .47
Digit symbol .05 .69 .00 �.03 .46
Information .75 �.05 .09 .04 .63
Matrix reasoning .07 �.03 .05 .68 .64
Letter number �.03 .07 .61 .03 .48

cancellation
Picture .10 .01 .01 .51 .41

completion
Similarities .69 .05 �.08 .22 .46
Symbol search �.01 .68 .04 .09 .54
Vocabulary .85 .06 .03 �.03 .66

Correlations of the primary factors
1. 1.00 .44 .51 .67 .73
2. .44 1.00 .50 .56 .65
3. .51 .50 1.00 .60 .71
4. .67 .56 .60 1.00 .85

Note. The first-order and second-order factors used SMRs plus 2 iterations
as communality estimates for the ECFA using principal factors extraction
and Promax rotation. The correlations of g (i.e., the general factor) with the
scales was by extension analysis (Gorsuch, 1997).
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If one suspects that there is a general factor and CA or
ECFA is used, that general factor will usually be found if and
only if a higher-order analysis is computed from unrestricted
rotation.

Item analysis is probably the most common situation in
which a rotation restricted to orthogonality is misleading.
The author of a scale includes items that each measure the
underlying characteristic; then a total score is computed by
adding the items together. So the author is assuming that
there is a general factor—that is, one that loads all of the
items. What happens when the scale is factored? Because
factor analysis is a sensitive tool, it will take into account
the almost universal fact that some items will correlate more
highly with each other than with the rest of the items. There
are generally several subsets of items that correlate slightly
higher among themselves than with the other items because
they have the same distributions or use similar words. Then
several factors will be found. These factors may, for example,
be one for the easy items, one for the medium-difficulty
items, and one for the hard items. None of these factors will
be a general factor because, as in Table 6.4, the general factor
is found in the correlations among the factors. Varimax,
however, never allows such correlations to occur. The deci-
sion to restrict item analysis rotation to orthogonality is a
decision with major implications. It is far better to use
Promax, an unrestricted rotation, and see whether a general
factor happens to occur among the factors.

An instructive example can be drawn from the factor
analyses of the Beck Depression Inventory (BDI). Chan
(Gorsuch & Chan, 1991) ran analyses in Chinese and U.S.
samples, and computed the relationships of previous U.S. and
Canadian factor analyses to her factors. The table clearly
showed that (a) primary factors did not replicate, whether
within or across countries; (b) all primary factors correlated
highly; and (c) the second-order depression factor replicated
both within and across countries. That general factor is the
same as the total score. The prior studies missed this fact
because they only provided first-order analyses, and the erro-
neous conclusion from those would have been that there were
no replicable factors. Chan showed the correct conclusion to
be that there is one factor in the BDI, just as the author
designed it.

MAJOR UNRESOLVED ISSUES

In the previous discussion, suggestions have been made for
computing a factor analysis using reasonable and generally
accepted solutions. These include using Promax unrestricted
rotation. Also widely acceptable are squared multiple corre-
lations with two iterations for communality estimation

(although pseudoiteration is most widely used, and is alright
until it gives communalities higher than the observed
reliabilities). But some major issues are currently being
debated with little common agreement on their resolution,
although there is evidence to evaluate the usefulness of dif-
ferent methods.

Two methods are used to evaluate the usefulness of a
factor analytic technique. These are simulation studies and
plasmodes (Cattell, 1978). Simulation studies start with a
population factor pattern and factor correlations as givens
(they are selected by the investigator to be sensitive to the pa-
rameter being investigated). The pattern and correlations may
be systematically varied. Then hundreds to thousands of
samples are derived using the population parameters, but al-
lowing chance variations due to sampling. These multiple
samples are analyzed, and the conditions under which the
selected parameters are best recovered are noted.

Plasmodes are data sets in which it can be reasonably
assumed that we know what the results should be. The
examples used in this chapter fit that category. The history
of psychology suggests that verbal ability and emotional dis-
tress are separate factors (the six psychological variables),
and who would question the need for factors of length,
height, and width to underlie boxes? The WAIS family of
ability measures, of which the WAIS-III Canadian data set is
one example, has a long history of factor analysis; the four-
factor solution presented previously was replicated with
multiple samples across both the WISC and WAIS. Which of
several competing factor analytic techniques most ably find
the expected results?

Although it is easy to vary parameters in simulation stud-
ies, there is always the question of generalization to the type
of data commonly analyzed. And although plasmodes are data
like those commonly analyzed, it is difficult to systematically
vary parameters. Hence, our discussion of the problem areas
relies heavily on both simulation studies and the plasmodes
already presented as examples in this chapter.

What is the final arbitrator of factor analytic methodology?
The ultimate arbitrator in science is well established: replica-
tion. Any procedure that produces replicable results is worthy
of consideration. If several procedures lead to replicable
results, then the choice is based on fit to the investigator’s
theory and situation. If there is still a choice, then parsimony
and elegance are the deciding factors.

Component Versus Common Factor Models for
Exploratory Factor Analysis

Both CA and CFA are used for EFA. Although the existence
of two models is not surprising, the level of debate has been
extensive. For detailed discussions of the pros and cons of
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these two models, see the special issue of Multivariate Behav-
ioral Research, 1990, Volume 25, Issue 1 (also see 1996, Vol-
ume 31, Issue 4 for discussion of indeterminacy per se).

In understanding this debate, it is important to note that all
procedures for CA and ECFA are the same except for one:
CA starts with 1.0 in the main diagonal of the correlation ma-
trix and CFA starts with a communality estimate (thus taking
into account the existence of variance unique to the single
variable). This is the only mathematical difference between
the two. Everything else is the same (which is why they are
both special cases of the general factor analytic model).

The Case for Common Factor Analysis 

The rationale for CFA comes from Equation 6.1 and assump-
tions about data. Including the uniqueness term in the
equation makes it a CFA. The uniqueness term includes all of
the variable’s variance not associated with the factors, part of
which is random error. So, the CFA rationale goes, CFA
should be used whenever at least some reliabilities are less
than 1.0—that is, whenever some variables contain any ran-
dom error. Of course, this argument runs, who can show, or
assume, that all their variables are without random error?
Where is the evidence for such variables in the social sci-
ences? And if we know the variables have error, is it not ra-
tional to build that into our mathematical models?

Dropping the uniqueness term also means that the factors
and only the factors underlie the scores for each variable.
Hence in the population, the communality is to be 1.0. This is
the justification for using 1.0 in the main diagonal of the cor-
relation matrix. This means that the multiple correlation of
the factors with each of the variables is also 1.0. Unfortu-
nately, the derivative is that the variables, being sets of linear
combinations of a fewer number of factors, will form a non-
Gramian correlation matrix. Such a matrix has an infinite
number of solutions and so cannot be factored at all. There-
fore, CA is a self-contradictory model. (The only reason that
CA works is that the model is wrong for the data—no two of
the variables being analyzed have a multiple correlation of
1.0 with the same factors, so none truly fit the model.)

Although component advocates raise the problem of esti-
mating communalities and factor scores, such estimates are
consistent and easily made. The variations on factor scores
are variations among scores that generally correlate .9 or
better in simulation and plasmode studies. This is much bet-
ter than in other areas. For example, major ability tests often
correlate .7 to .8, yet are seen as interchangeable. Also the
correlation between CA factor scores from one study to the
next is much less than 1.0 and is probably no greater then that
from one CFA to another, so where is the added precision

from CA? And with extension analysis (discussed later in this
chapter), there is no need to compute factor scores because
the correlations of variables not in the factor analysis with the
factors can be mathematically computed.

The ECFA versus CA is a real question because the results
vary dramatically in a few special situations. Table 6.5 pre-
sents the results of a CA. Factor 1 has two to four good mark-
ers, Factor 2 has two excellent and one good loading, and
Factor 3 has one excellent and two moderate loadings. The
loadings are clear and both the author and the reader would
interpret them.

Unfortunately the matrix from which Table 6.5 was com-
puted has not a single significant correlation. Each and every
multiple correlation of one variable with the rest is, when
shrunken for capitalization on chance, zero. The high load-
ings come from the assumption that all the variance of each
variable is to be reproduced by the factors. Although this may
be an unusual case, ECFA is better at protecting the discipline
from such data than is CA.

There is also the principle of parsimony and elegance.
That mathematical model is more elegant when it accounts
for a wider range of situations. Equation 6.1 with the unique-
ness term is using the same model as regression analysis,
CCFA, structural equations modeling, and all other least
squares techniques. To introduce a new model is to reduce
parsimony and elegance among our statistical models.

The Case for Component Analysis 

CA is more parsimonious because its equation is simpler.
That makes it easier to teach and easier to program.

But the major arguments for CA go beyond having a
simpler equation. One such rationale is a philosophical one.
Factors are abstractions from data that we make for our con-
venience, not to be reified into realities. Factors are just

TABLE 6.5 Component Analysis of 10 Variables: Promax
Factor Pattern

Factors

Variable 1 2 3

1. Length squared .34 �.72 .09
2. Height squared .57 �.26 �.14
3. Width squared .13 .51 .16
4. Length � width .49 �.12 .26
5. Length � height .07 .61 �.06
6. Width � height .40 .18 .14

Inner diagonals
7. Longest �.24 �.12 .44
8. Shortest .59 .08 �.07
9. Space .10 �.04 �.48

10. Edge thickness .26 �.02 .80

Note. N � 100.
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TABLE 6.6 Component Analysis of WAIS-III Canadian Data

Components

Variables 1 2 3 4

Arithmetic .39 .04 .36 .21
Block design �.09 .13 .02 .81
Digit span .00 �.06 .91 �.04
Digit symbol .06 .93 �.04 �.08
Information .91 �.05 .04 �.03
Matrix reasoning .14 �.03 .04 .71
Letter-number �.06 .06 .83 .01

cancellation
Picture completion �.01 �.09 �.07 .86
Similarities .80 .04 �.10 .16
Symbol search �.04 .82 .03 .12
Vocabulary .93 .04 �.01 �.04

TABLE 6.7 Correlations Between Component Analysis and
Exploratory Common Factor Analysis Solutions

CA Solution

Psychological
Variables Boxes WAIS-III

1. 2. 1. 2. 3. 1. 2. 3. 4.

ECFA Solution
Psychological
Variables 
1. .88 �.20
2. �.18 .82

Boxes
1. .99 .67 .65
2. .60 .95 .62
3. .70 .74 .96

WAIS-III
1. .93 .45 .54 .68
2. .38 .81 .44 .49
3. .42 .43 .81 .52
4. .59 .51 .55 .85

Note. ECFA was with SMRs plus 2 iterations for communities. Correlations
computed by extension analysis (Gorsuch, 1997).

that—convenient constructs that help our generation relate
to the data consistencies we find in our discipline. And be-
cause they are our constructs, we choose to define them by
the CA model.

Another rationale for CA is a set of pragmatics. One such
pragmatic is that using CA instead of CFA seldom makes
much difference. Many factor analyses are of 25 or more
variables with, if the study is designed well, reasonably high
communalities. In such cases, the results of CA and CFA lead
to the same conclusions. Compare the CA in Table 6.6 against
the CFA of Table 6.4. Is there really an interpretable differ-
ence? And in fact do not the high loadings stand out better
from the low ones in the CA?

Other rationales for CA arise as much from classical limi-
tations of CFA as from the CA model. A major limitation
arises from the communality problem. Because we never
know the communalities but only estimate them, there are a
set of solutions that fit the data equally well. And iterating for
communalities can produce Heywood cases.

As the communalities can only be estimated, the further
mathematical conclusion is that there are an infinite number
of factor scores that could be computed that would fulfill the
ECFA model equally well for any given data set (a result of
what is called the indeterminacy problem). With CA, the fac-
tor scores are a linear combination of the variables of which
there is only one set. 

The Ongoing Debate 

While the existence and use of two models is not surprising,
the level of debate is surprising. The results from both are,
except in special cases, quite similar. Table 6.7 gives the cor-
relations between the factors of CA and ECFA for the three
examples. Particularly instructive is the psychological vari-
ables example. It has the fewest variables and the lowest

communalities, which are the conditions under which the CA
and CFA might be expected to differ. It seems that the repli-
cation of factors between CA and ECFA are good for the six
psychological variables and excellent for the other two data
sets. These are so high that we would be delighted to get them
if testing for replication from one sample to another within
either CA or CFA.

Personally, I had the good fortune both to study with a major
exponent of CFA (Cattell, 1978) and to work with a major ex-
ponent of CA (Nunnally, 1967), both scholars I respect highly.
The former was my mentor in graduate school; I was employed
by the latter to calculate all the examples for his book and gave
paragraph-by-paragraph feedback on it. (Nunnally returned
the favor by providing paragraph-by-paragraph feedback on
the first edition of my Factor Analysis; Gorsuch, 1974.) So I
heard both arguments multiple times. And in following the di-
alogue for the past 30 years, the only major change seems to be
that the heat of the debate has increased.

Professional debates are good, but the search is (should
be?) for procedures that address the critiques of both sides. I
proposed such in the Multivariate Behavioral Research spe-
cial issue (Vol. 25(1); Gorsuch, 1990): image analysis. Image
analysis is a special case of common factor analysis, which
factors the part of the variable that correlates with the other
variables. Thus, it is oriented toward the common factors
(i.e., factors that load at least two variables). The part that
does not relate to another variable is dropped from the model.
Thus, image analysis includes all that the supporters of ECFA
want. This should satisfy the proponents of ECFA. For the
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proponents of CA, image analysis answers their critiques of
ECFA because there is no communality problem and factor
scores can be calculated, not estimated. Thus image analysis
should satisfy both the common factor and component advo-
cates. Except for Velicer and Jackson (1990), this suggestion
was ignored.

Personally, I opt for CFA for two reasons. First, including
the uniqueness term means that the same equation is used for
factor analysis as is used for regression and SEM (structural
equations modeling). Second, a procedure should be as fail-
safe as possible, which means that loadings based on random
correlations (Table 6.5) should look low to reduce the chance
of believing there are significant loadings when there are no
significant correlations. The issues of estimating communali-
ties and estimating factor scores are, with contemporary pro-
cedures, trivial issues; the results correlate so highly that these
are not problems. I do find it interesting that CFAwas the orig-
inal mode of factor analysis. Little if any consideration of CA
is found before 1960. Instead common factor analysis was as-
sumed and that was the only model presented. Insomuch as
component analysis appeared at this point, it was just a special
case of common factor analysis.

In 1960 computers entered psychology, but they were sim-
ple and slow. In illustration, the 1960 computer was slower
and had less memory than the first Apple personal computer.
Hence all programs had to be kept simple—very simple. It
was then Henry Kaiser at the University of Illinois introduced
the simplest complete computer package, called “Little
Jiffy.” It was doable in those computers because it was
CA and had no communality estimation procedure (pseudo-
iterated communalities would have literally taken too long
for students to run). In his later discussions of this, he indi-
cated that it was an oversimplified model. In 1970 (Kaiser,
1970) he introduced “A Second Generation Little Jiffy” but
then it was too late. The computer packages had already
picked up the runable “Little Jiffy” and that is still often the
default in major statistical packages. My personal opinion is
that the rationales for CA developed as a post hoc explanation
because so many used a computer package which had “Little
Jiffy” as the default. BUT NOTE: the origin of any construct
in science is not judged by its history but only by its merits.

An important point to me is that CA versus CFA is a minor
point with a reasonable number of variables and reasonable
communalities. They give the same conclusions regardless of
the philosophical or theoretical model the investigator wishes
to assume. Only with a limited number of variables is there a
difference, and then the best solution seems to be CFA be-
cause CA can make insignificant correlations into loadings
that appear major. Much more important are issues such as
variable selection, sample of cases, the number of factors to

extract, whether there is warrant to restrict the solution to un-
correlated factors, and whether to run confirmatory or ex-
ploratory analyses. Particularly important is underestimating
the number of factors (see the next section) and any decision
to restrict the rotation to uncorrelated factors.

Number of Factors Issue

In the proceeding discussions, the number of factors has been
assumed. That was to enable the major points of the models
to be presented. Unfortunately, there is no adequate way of
determining the number of factors in either exploratory or
confirmatory factor analysis. It is not for want of trying, for
numerous proposals have been made and numerous simula-
tions studies have been run (Velicer, Eaton, & Fava, 2000,
summarizes the results of the simulation studies for CA and
EFA). Generally, it is recommended that the user examine
several of the following procedures in setting the number of
factors.

The following tests are only a sample of the total available
and include the most widespread and those with the best sim-
ulation results.

Eigenvalue/Characteristic Root Criteria. From a cor-
relation matrix eigenvalues can be extracted (formerly the
common name for eigenvalues was characteristic roots,
which is why the criteria in this section use the term roots so
often). These have many characteristics, with the important
one (for the present purposes) being that they are the sum of
squared correlations of the variables with a principal or max-
imum likelihood factor. Each of these factors accounts for the
maximum amount of the variance of the correlation matrix.
They are extracted in order of size. Hence, the set of roots for
a problem gives the sizes of the extracted factors from the
largest to the smallest. (Note: Rotated factors have no roots;
the term and theory apply only to factors extracted from the
correlation matrix with 1.0 in the main diagonal because the
estimated communalities depend on the number of factors.
All were originally developed for the CF model.) 

The roots for each of our examples are in Table 6.8. They
are ranked in order of size, and show the pattern typical of
roots of correlation matrices.

To put the roots into perspective, consider what the roots
would be if there were no factors at all. In that case, the cor-
relation matrix would have the variable correlations (off-
diagonal elements) all equal to zero while the diagonal
elements would be 1.0. A legitimate solution would be with
the first extracted factor loading the first variable 1.0, with all
other loadings being zero. This root, the sum of the squared
loadings, would be 1.0. The second factor would be the
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second variable, with a loading of 1.0 and a root of 1.0. The
rest of the factors would follow the same pattern, and all roots
would be 1.0.

Roots Greater Than 1.0

Because all roots would be 1.0 in a matrix with no factors,
one suggestion is that any root greater than 1.0 will reflect a
value greater than zero in the off-diagonal elements and so
will be variance that can be attributed to a common factor. In
actuality, smaller roots may also reflect correlations, so tech-
nically roots greater than 1 is the minimum number of factors
to extract, but common usage treats it as the number of fac-
tors to extract. This has been the most widely programmed,
and so the most widely used, of all the criteria. Unfortunately,
the simulation studies have found it to be the prime candidate
for the worst criterion ever tried (Gorsuch, 1983; Velicer
et al., 2000). In our examples, it is only correct with the psy-
chological variables.

Parallel Analysis 

The rationale of roots greater than 1 is for the population
matrix, not for a sample matrix. All sample matrices will have
random correlations that will produce roots greater than 1.
Parallel analysis consists of doing parallel analyses of ran-
dom data. They are parallel in that the same number of cases
and variables are used as in the factor analytic study, but they
consist of random data only. Fifty to 100 of these are run, and
the roots are averaged to show what the roots would be if the
data were only random. The roots always start over 1.0 and
then drop fairly sharply. The larger the N, the flatter the slope
of the roots.

Tables (Lauhenschlagen, Lance, & Flaherty, 1989) have
been provided so that each person does not need to compute
multiple analyses of random data. Equations can also be used
(Velicer et al., 2000). In each of these cases, the parallelism is
established by having the same number of variables and

cases. It may be more appropriate to base the parallel analy-
ses on matrices that also match the observed data in skew and
kurtosis as well.

All roots from the factors of the study that are larger than
the same numbered averaged random root are considered
valid roots. For example, for the psychological problem with
six variables and N � 147, the closest tabled values give the
first parallel roots as 1.2, 1.1, and 1.0. The first observed root
of Table 6.8 is larger than 1.2 and the second is larger than
1.1, but the third is less than 1.0. Therefore, parallel analysis
indicates that two factors should be extracted because there
are only two roots that exceed their randomly based equiva-
lent. For the box problem, it gives one factor instead of three.
The number of WAIS factors is also underestimated, giving
two instead of four. It has serious problems with small but
replicable factors.

Simulation studies have found parallel analysis to be a
prime candidate for the best procedure for estimating the
number of exploratory factors.

Scree Test

The scree test has a somewhat different logic for use of the
roots. It is assumed that the variables cover a domain of inter-
est and have at least moderately strong correlations. That
means the factors of interest should be noticeably stronger than
the factors of little interest, including random correlations. So
when the roots are plotted in order of size, the factors of inter-
est will appear first and be obviously larger than the trivial and
error roots. The number of factors is that point at which the line
formed by plotting the roots from largest to smallest stops
dropping and levels out.

The name is from an analogy. Scree refers to the rubble at
the bottom of a cliff. The cliff itself is identified because it
drops sharply. The last part of the cliff that can be seen is where
it disappears into the scree, which has a much more gradual
slope. Note that the cliff is still seen at the top of the rubble; in
the same way the number of factors includes the last factor
associated with the drop.

Following the suggested use of the scree test gives three
factors for the psychological variables and four for the boxes.
That is one more than are assumed to exist in these two data
sets. For the WAIS, the scree gives three factors, a number
that does not lead to replicable factors (Gorsuch, 2000).

The suggestion to define the number of factors as the first
factor among the trivial roots is what gives three factors for
the psychological variables instead of two. This has been
controversial in what some would see as extracting one too
many factors. That leads to the question of whether extracting
too many or too few factors would be more harmful. The

TABLE 6.8 Roots for Example Problems

Extracted Psychological
Factor Variables Boxes WAIS-III

1 2.30 8.22 5.36
2 1.63 .78 1.06
3 .71 .39 .86
4 .53 .31 .80
5 .51 .18 .64
6 .32 .05 .60
7 — .03 .43
8 — .02 .40
9 — .02 .35

10 — .01 .26
11 — — .23
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simulation studies have found that extraction of one too many
factors seldom does any harm, but extracting one too few
distorts the factors that are extracted.

The extraction of an extra factor in the psychological vari-
ables leaves the first two with only minor changes and the
third factor has two small loadings in the .20s. The box prob-
lem is more interesting. The fourth factor brings in a variable
not loaded highly by the previous length, height, and width
factors: thickness of the edge of the box. The fourth factor
loads thickness highly, and also width to some degree. (There
is still a factor with width as its major variable.) It seems
that boxes in our culture are likely to be stronger if they are
wider, a finding that extends the understanding of this exam-
ple. Even so, the so-called extra factor does not seem to be
a handicap in that the first three factors are essentially
unchanged.

Simulation studies have generally found the scree test to
be one of the better tests. We assume that the scree plots were
by someone with training who knew nothing about how
many factors were designed into the study, but this informa-
tion is missing from most articles. (If the scree rater or raters
were not blind as to the number of factors, that would invali-
date the ratings.) Do note that it is often a choice between
several possible screes, and several investigators may come
to a different conclusion from the same roots. This suggests
that training may be usefully investigated in future simulation
studies.

Evaluation Via Plasmodes of Roots-Based Criteria 

The three examples being used are plasmodes in the sense
that the actual number and nature of the factors are estab-
lished. The correct number of factors is two, three, and four
for the three examples.

Given the correct number of factors and the roots in
Table 6.8, it is apparent that both the criteria of roots greater
than 1 and the parallel analysis criteria are incorrect two out
of three times. The former always treat all roots less than 1 as
nonfactors and the latter usually suggests even fewer factors,
and yet two of the examples have clear and replicable factors
with roots less than 1. And the scree test suggests three fac-
tors for the first example, three or four for the second, and
three for the third, meaning it is correct for the first two
examples but misses the third.

With the different results for the simulation studies com-
pared to the three plasmodes here, what is to be concluded?
The most likely conclusion is that the simulations used fac-
tors stronger than those found in the last two examples. This
suggests that an assumption for the use of parallel analysis is
that the factors of interest are assumed to have loadings of .8

or so by at least two or three variables. That may be doable
in areas with well-established factors, but that is seldom
the case in exploratory factor analyses of little-researched
areas.

Two conclusions can be reached. The first is that simula-
tion studies should contain more small factors. The second is
that root-based criteria may be a dead end for procedures for
establishing the number of factors in EFA. (These conclu-
sions apply to both CA and CFA.)

Residual Based Criteria

The purpose of all models of factor analysis is to reproduce the
variables. The better that is done, the better the correlations
among the variables and the better the variable scores are re-
produced. When the reproduced correlation matrix is sub-
tracted from the observed correlation matrix, the result is
referred to as the residual matrix. In the perfect data set with
the perfect analysis, all of the residual correlations would be
zero. To the degree that the residuals are nonzero, then either
another factor is needed or these are the chance variations in
the correlations due to sampling error. A number of proposals
have been made for basing an index for the number of factors
on functions of the residuals.

Although the root tests have been for EFA number of fac-
tors, residual-based indices of the adequacy of the factors ex-
tracted have also been developed for CCFA. In the case of
CCFA, an index is evaluating not only the number of factors
(as in EFA), but also the adequacy of the specified factors.
Two different hypothesized patterns may produce sufficiently
different residuals so that one of the hypothesized patterns is
obviously better than the other. Hence, for CCFA the criteria
evaluate the total solution.

Statistical Significance 

The residual matrix can be tested for significance. If the test
is significant, there is more nonrandom variance that can be
extracted. If it is nonsignificant, then the extracted factors as
a set account for all the correlations among the variables. As
with all significance tests, a larger N allows detection of
smaller differences.

The psychological variables whose CCFA is presented in
Table 6.3 also had a chi-square of 5.53 with df of 8. That has
a p � .10, so the residual matrix after the hypothesized two
factors had been extracted has no covariance that could be
considered nonchance. Hence, the conclusion is that these
two factors account for all the correlations among these six
variables. Note an unusual characteristic of testing the resid-
uals for significant: A nonsignificant result is desirable.
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TABLE 6.9 Tests for the Adequacy of Fit in CCFA: WAIS-III

Chi-square RMS

Model df Value Chi/df Residual Square

Two factors 43 324.4 7.52 .051 .088
Four factors 38 232.1 6.11 .041 .075
Chi-square 5 92.3
difference

So the problems of predicting a null hypothesis occur, pri-
marily that there are many ways of getting nonsignificant re-
sults. These include having variables of low reliability and
too small an N.

The significance test of the residuals tests whether the ex-
tracted factors do account for everything. There is no other
commonly used test of significance that operates in this man-
ner; all others test whether the hypothesis accounts for some
of the variance, not all of it.

The significance test used gives a chi-square. Chi-squares
are additive, and two approaches to analyzing the goodness
of fit are based on this additivity. First, a suggestion has been
to divide the chi-square by the degrees of freedom, giving the
average chi-square (which is also F because df � 1). The ad-
vantage of the average chi-square is that it allows a compari-
son across models that have used a different number of para-
meters. The averaged chi-square for the six-variable example
is .69, because any chi-square/F this small shows no chance
of anything significant. It further reinforces the conclusion
that these two factors are sufficient to account for all the cor-
relations among the six variables.

The second use of chi-square, using the knowledge that
chi-squares are additive, notes that the chi-square can be
broken down to give a direct comparison between two mod-
els when one of the two models is a subset of the other. This
is useful because it changes the test from one that tests
whether we know everything to one that tests whether
adding the hypothesized factor helps. For example, the
WAIS began with two factors, Verbal and Performance. And
three factors is a solution suggested by the Scree test. Does
adding a third and fourth factor account for significantly
more of the correlations? That can be tested by running two
CCFAs, one for the two factors and one for the four factors
(which includes the same parameters for the first two factors
as the two-factor model). Each will give a chi-square; the
four-factor chi-square is subtracted from the two-factor chi-
square to give the chi-square of the two additional factors
(the df of the difference is computed by subtracting the
larger df from the smaller). The chi-squares and difference
for the WAIS are in Table 6.9. Using the difference chi-
square and the difference degrees of freedom allows a sig-

nificance test of adding the further specification. It does not
have the problems of the significance test of residuals,
wherein the test is of a null hypothesis. The difference in
Table 6.9 is highly significant, showing the four-factor solu-
tion to be better significantly than the two-factor solution.
But also note that, with the N of 1,105, even the four-factor
model does not account for all the significant variance. No
one has proposed more than four factors because they would
be so small that they could not be interpreted. Although a
chi-square test has been proposed for EFA, it has seldom
been found to be useful.

Size of the Residuals 

Because both EFA and CFA are to reduce the residuals to
zero, measuring the size of the residuals is another method of
evaluating the adequacy of the factor solution. There are two
major approaches, one based on the residuals themselves and
another based on the results when they are converted to par-
tial correlations. The former is used with CCFA and the later
with EFA.

Two residual-based tests are given in Table 6.9 for the
WAIS-III analyses. RMS can be interpreted as root mean
square because it is, roughly, the square root of the mean of
the squared residuals. Two varieties of this criterion are in the
table (Steiger & Lind, 1980); as can be seen, they generally
proceed in the same direction because both are related to the
same residuals. By these, it can be seen that the two addi-
tional factors do reduce the residuals. (Bentler & Bonett,
1980 give another set of useful indices for CCFA; for
overviews of the many indices available for CCFA, see
Bentler, 1989.)

An index of the residuals in EFA is Velicer’s MAP (mini-
mum averaged partial). Instead of using the residuals, MAP
standardizes the residuals by converting them to partial cor-
relations by dividing by the variances of the two variables
involved (the residuals are the variances and covariances
with the factors partialled out). These are then, in the origi-
nal MAP, squared and averaged. The logic is that each factor
that accounts for covariation among the variables will reduce
the residual covariances. As long as the main diagonal ele-
ments remain relatively stable, then each factor extracted
will lower the averaged partial. But when a factor is ex-
tracted that is based less on the covariances, then it will be
more specific to one variable and lower the variance (in the
main diagonal) of that variable. Because this is divided into
the residual covariance, dropping the variance without drop-
ping the covariance increases the partial correlations for that
variable. So the minimum averaged partial is used for the
number of factors. Minor shifts in MAP suggest that two
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solutions are about the same. The principle noted previously
that one too many factors is better than one too few suggests
that the minimum with the greater number of factors be cho-
sen. MAP is still evolving in that a version that raises the par-
tial to the fourth power (instead of the original second power)
is being tried. Evaluative studies suggest it is often helpful
(Velicer, Eaton, & Fava, 2000).

The MAPs for the three examples were computed (using
the fourth power). For the six psychological variable data, the
first three MAPs were .03, .03, and .11, thus giving two fac-
tors. For the box data, the five MAPs were .07, .08, .11, .07,
and .11, thus suggesting four factors. For the WAIS-III, they
were .002, .002, .008, .027, and .061, suggesting two or three
factors.

Simulation studies are supportive of MAP in its fourth-
power form, but it misses the WAIS factors by suggesting one
too few.

How to Select the Number of Factors 

The procedures noted previously are typical of the possibili-
ties for establishing the number of factors. Dozens of others
have been suggested. As yet, they provide no clear solution to
deciding the number of factors. For example, parallel analy-
sis has been one of the best in the simulation studies and yet
was clearly inadequate in the plasmode examples used in this
chapter. What, then, shall be done?

There are two principles that can guide in establishing the
number of factors. First, the prime criterion is the replication
of the factors. The fact that the WAIS-III four-factor solution
has been often replicated in children and adults and in the
United States and in Canada is the convincing rationale for
the number of factors. What the criteria for the number of
factors suggest is much less important than whether the fac-
tors can be replicated. The replication of EFA results can

occur through a CCFA in a new sample as long as it is ac-
cepted that the CCFA will not help in the development of the
model, only in its confirmation. More impressive is the con-
firmation of the EFA factors in new EFA analyses. EFA pre-
sents the best possible solution regardless of past results,
whereas CCFA analyzes whether the hypothesized solution is
one appropriate solution (there could be others, some even
better). Both types of confirmation are useful.

The second principle for establishing the number of fac-
tors is the interest of the investigator. In the WAIS data, one
factor gives g, general intelligence, which has been histori-
cally of considerable usefulness. Two factors gives the classi-
cal Verbal and Performance IQs. And four factors adds two
smaller factors that may be of special interest to some inves-
tigators, but without rejecting the other two factors.

Consider the three solutions for the box data in Table 6.10.
The one-factor solution is technically good. The factor, Vol-
ume, accounts for a surprising amount of the variance. It
seems that the prime difference among boxes graduate stu-
dents had available to measure was overall size. The three-
factor solution is as expected: length, weight, and height.
That also is a good solution. With the four-factor solution, the
factors are length, thickness of edge, height, and width. This
also could be a useful solution. It depends on the context of
the study and the investigator’s intent as to which solution is
preferable.

In the two examples that can have different numbers of
factors extracted, nothing is lost by going to the solution with
the greater number of factors. The four-factor box solution
still contains length, height, and width factors, and the vol-
ume factor occurs at the second-order level. The four-factor
WAIS solution still contains verbal and performance types of
factors, with g occurring at the second-order level.

It appears that taking out more factors and doing a higher-
order analysis is the best answer to the number of factors.

TABLE 6.10 Alternate Solutions for the Box Data

Factor Solutions

Variable 1 Factor 3 Factor 4 Factor

1. Length squared .84 1.02 �.08 �.02 1.07 .01 �.03 �.07
2. Height squared .85 .05 .17 .81 .05 .15 .83 .03
3. Width squared .85 .02 .98 .01 �.03 .67 .03 .51
4. Length � width .96 .73 .46 �.13 .64 .27 �.12 .38
5. Length � height .96 .69 �.04 .43 .66 �.01 .45 .00
6. Width � height .96 .18 .58 .41 .11 .77 .12 �.01

Inner diagonals
7. Longest .92 .74 .18 .11 .68 .11 .12 .17
8. Shortest .91 .49 .27 .26 .36 .05 .29 .41
9. Space .97 .76 .15 .16 .66 .03 .18 .26

10. Edge thickness .74 .03 .71 .14 .11 .77 .12 �.01

Note. The values greater than 1.0 are because the loadings are weights, not correlations, and the factors have high
intercorrelations.
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Rotate several different numbers of factors with only causal
use of the criteria suggested for the number of factors. Repli-
cation will ultimately decide which factors are useful. 

My current conclusion is that the appropriate number of
factors is, and will be for the immediate future, a semisubjec-
tive decision—partially because our attempts to create a
universal rule for the number of factors has failed so far.
Investigators may well rotate several different numbers of
factors and pick the one that they feel is most interpretable,
just so long as it has a greater, rather than lesser, number of
factors. Indeed, it may be desirable to report the several solu-
tions that replicate. However, this position means that one
can never say that one number of factors is the only number
that can be, just that it is one of the possible replicable solu-
tions. In the WAIS-III data, one factor gives g, two factors
give the classical verbal and performance, three factors are
not replicable, and four factors give verbal, perceptual orga-
nization, working memory, and processing speed. Which
solution is best depends on the work at hand, but only the so-
lution with the greater number of factors and a higher-order
analysis gives the total story.

Relating Factors

Relating Factors to Other Available Variables 

Not all variables that may be available from the sample
should be included in a factor analysis. Nonfactored variables
may be from another domain or have correlated error with
variables being factored (as when scoring the same responses
two different ways). How do the factors relate to other data
available from the sample but that have not been included in
the factor analysis?

There are several major reasons for relating factors to
variables not in the factor analysis: Some variables cannot be
included in a factor analysis. First, variables that are a linear
combination of other variables cannot be included (principal
factor and maximum likelihood extraction methods give an
infinite number of solutions if a linear combination is in-
cluded). An example is the total score from a set of items. The
total score is a linear combination of the items and so must be
excluded. Second, any variable that has correlated error with
another variable would adversely affect a factor analysis.
One example is scoring the same items for several scales. An-
other example is including the power of a variable to test for
curvilinear relationships, which has correlated error with the
original variable. The correlated error can be modeled in a
CCFA but not in an exploratory factor analysis. The relation-
ship of factors to total scores, scores that have one or more
items in common, and powers of variables can only be ana-
lyzed using extension analysis.

Nominal variables cannot be included in a factor analysis,
but how the factors relate to such variables may be of inter-
est. Whether the nominal variable be gender, ethnicity, exper-
imental versus control groups, or some other variable, the
relationship of nominal variables can be statistically analyzed
by extension analysis.

What is the relationship of the factors to ordinal or better
variables excluded from the factor analysis? Is a factor re-
lated to age or education? Assuming that one is not interested
in an age or education factor, it is more appropriate to use ex-
tension analysis than to include such variables in the factor
analysis.

The need to relate to other variables also occurs when a
factor analysis is computed to reduce multiple colinearity or
to orthogonalize a set of variables. If the factors are of the in-
dependent variables, then those factors need to be entered
into the appropriate statistical analysis to relate them to the
dependent variables, which were not in the factor analysis. If
the dependent variables were factored, then these factors
need to be related to the independent variables. If both
independent and dependent variables were factored, then the
independent variable factors would be tested to see how they
correlate with the dependent variable factors.

Another need for extension analysis is in evaluating
proposed scales from factor analysis. The factor analysis
identifies the dimensions or constructs that can be measured.
It also provides the correlations of each item with each factor.
Items are then selected for a proposed scale for Factor A
from those items that correlate highly with Factor A but not
with the other factors. The item set for the scale would con-
tain those that show the highest correlation with the factor—
that is, have the highest factor validity. In practice, the first
several items for a proposed scale are obvious due to their
high correlations. But does adding a moderately correlated
item increase or decrease the factor validity of the proposed
scale? That question is answered by scoring the items to mea-
sure the factor both without and with the moderate item to de-
termine which version of the proposed scale gives the highest
factor validity. The set of items with the best factor validity
with Factor A is then recommended to be the scale to measure
Factor A. (Note that this cut-and-fit item selection method
requires a large N to avoid capitalizing on chance, and the
observed factor validities will shrink when computed in a
new sample. A cross-validation sample is recommended for
reporting factor validity correlations.) Relating factors to
variables not in the factor analysis is called extension analy-
sis because it extends the factors to new variables. The older
procedure for extension analysis has been based on comput-
ing factor scores (formulas can be used so the actual scores
need not be computed), and then analyzing these factor
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scores with the extension variables. There are several meth-
ods for computing factor scores, but the choice is usually be-
tween only two variations. The first is multiple regression
analysis. The variables loaded by a factor are the predictors
and the factor is the dependent variable. The regression
analysis provides the beta weights, which are then used to
calculate the factor scores. However, regression weights have
the bouncing beta problem: Unless the sample is over 400,
they bounce around when a new sample is collected or when
the variable mix is changed slightly.

The instability of beta weights has led to the other recom-
mended procedure for computing factor scores: unit weight-
ing. Unit weighing is defined as adding together the scores
of the variables that have high weights in the multiple regres-
sion from the variables to the factors, after the variables have
been converted to the same metric, e.g., Z scores. Each of
the variables clearly related to the factor is weighted �1 if the
weight is positive or –1 if the weight is negative. With sam-
ples less than 400, unit weights have higher factor validities
when cross-validated than do multiple regression weights
(due to the latter’s capitalization on chance).

Factor scores have problems. In addition to indeterminacy
of CFA scores, each variable weighted in the scoring equation
has its unique part added to the score as well as the part
loaded by the factor. This is the same problem that occurs
when the items are correlated with the total score from the
items. The item-total correlations are inflated because that
part of the item not measuring the construct is included both
in the total score and in the item. To avoid correlations in-
flated by correlated error, item-remainder correlations have
been suggested. Correlating the item with a total score from
the remaining items eliminates the inflated correlation. How-
ever, it also ignores the valid part of the item that should be
part of the total score, and so gives an underestimate of the
correlation. The same is true with factor scores: Items or vari-
ables contributing to that factor score will have higher corre-
lations due to the shared error.

In the past, extension analysis has been by factor scoring,
even when called extension analysis. For that reason it has
the problems previously noted for variable–factor score (or
item-total and item-remainder) correlations.

However, a new extension analysis procedure has been
developed without these problems (Gorsuch, 1997). The
new extension analysis can find the effect size and signifi-
cance levels between factors and any variable collected from
the same sample but not in the factor analysis. These may be
variables such as gender or age and age squared to check for
curvilinear relationships with age. For item development, it
gives the factor validity of any proposed scale (without infla-
tion from correlated error).

Extension analysis allows factor analysis to be used as a
scoring procedure. The dependent variables (or the indepen-
dent variables, or both) can be factored and then the other
variables of interest related directly to the factors. 

Extension analysis is only available at this time in one
statistical package (Gorsuch, 1994). However, a detailed
example in the original article (Gorsuch, 1997) shows how it
can, with patience, be computed even with a hand calculator.

Relating Factors to Prior Studies 

Do the factors of Study B replicate those of Study A? This
question is addressed by CCFA, which applies when the vari-
ables are the same in the two studies. The test is of the over-
all solution.

But not all situations can be solved by CCFA. What if only
part of the factors are included in the new study? Or what if
the population sampled is so different that new factors could
occur and that would be important information? In these
types of situations, some prefer another EFA as a multitailed
test that allows unexpected factors to occur. Then it is appro-
priate to use a factor score procedure. The factor score
weights from the first sample are used in the new sample to
produce first study factor scores. They are correlated with the
new study factors through the Gorsuch extension analysis
(not by new study factor scores because they would have
correlated error with the first study factor scores and so
have inflated correlations). This extension analysis extends
the factor analysis of the second study to the factor scores
created with the weights from the first study.

The only appropriate measure of how factors relate is how
they correlate. (Coefficients of congruence remain a poor
choice and cannot be recommended except in rare cases
when no estimate of the factor correlations is possible.)

RELEVANT RESEARCH DESIGN PRINCIPLES

The preceding discussion has dealt with the general models
and proceedings for factor analysis, whether it be by compo-
nents or maximum likelihood, exploratory or confirmatory
methods. There are, however, some aspects of crucial impor-
tance that have not been directly germane to the specifics of
the discussion to this point. These are mostly the same issues
as in any research study and can be summarized briefly.

The variable and case sampling are crucial to a quality so-
lution. Here is a remainder of aspects to be noted for a factor
analysis that hold true of all good research studies:

• Each variable should be interpretable so that a factor’s
loading or not loading is meaningful.
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• The higher the reliability of the variables, the higher the
correlations and the communality.

• The higher the validity of the variables, the more mean-
ingful the results.

• For significance testing, uniqueness scores should be nor-
mally distributed.

Variables should have similar distributions in the sample for
maximum correlations. They need not be normally distrib-
uted, but a variable with a skew incompatible with the major-
ity of the other variables should be avoided.

All variables need to have some cases that score high and
some that score low. Normal distribution is fine, but it is not
desired if it obscures true highs and true lows. This avoids re-
striction of range, which lowers observed correlations and so
weakens the factor structure. The sample size needs to be
large enough for stable correlations. Before the plasmode and
simulation studies, the best guess was that the N needed
would be a function of the number of variables being ana-
lyzed. Unlike multiple regression analysis and many previ-
ous discussions (e.g., Nunnally, 1967; Gorsuch, 1974, 1983),
factor analytic accuracy appears to be relatively independent
of the number of variables (with the exception that, for math-
ematical reasons, the total N must always be larger than the
total number of variables). However, both plasmode and sim-
ulation studies suggest that the N and the purpose of the study
are crucial. The N gives the stability of a correlation, and sta-
bility increases as the square root of the N decreases. A zero
correlation with an N of 100 has a standard error of .10, 150
is .08, 200 is .07, 300 is .06, and 400 is .05. This is a reason-
able guide to sample size. Because the purpose of a study is
generally to distinguish between observed correlations of .30
and .40, for example, the safe sample size is 400. If one just
wishes to determine which correlations are different from
zero and is only interested in correlations .30 and higher, an
N of 150 is reasonable. A larger sample is needed for item
factor analysis because one needs to differentiate between
correlations differing by only .10 (N � 400) and to reduce
capitalization on chance in item selection.

The number of variables that each factor is expected to
load should be in the range of three to six. Fewer than three
variables makes a factor difficult to define, so using four to
six is better. Simulation studies have suggested more vari-
ables be used, but these are only when there are available new
variables that are truly different from the original ones, ex-
cept for being loaded by the same factors. Experience sug-
gests that such a situation seldom occurs, and the variables
added after the first six lead to minor factors.

More than six variables can lead to problems due to the
sensitivity of factor analysis. In EFA, a factor with more than

six variables often gives two subfactors. Unless the factors
are restricted to being uncorrelated (in which case there is no
recovery), the factor of interest tends to be recovered as a
higher-order factor. That higher-order factor may relate well
to another analysis which, using fewer variables, finds the
factor among the primary factors. In CCFA, more than six
variables per factor often leads to statistically significant
residuals—even when they are not relevant—due to minor
factors found within the six variables.
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The purpose of this chapter is to provide a review of the cur-
rent state of knowledge in the field of clustering and classifi-
cation as applied in the behavioral sciences. Because of the
extensive literature base and the wide range of application
areas, no attempt or assurance can be made that all domains
of study in this area have been covered. Rather, the main re-
search themes and well-known algorithms are reviewed. In
addition, the chapter includes a survey of the issues critical to
the analysis of empirical data with recommendations for the
applied user. 

Clustering and classification methods as discussed here are
within a context of exploratory data analysis, as opposed to
theory development or confirmation. Some methods or strate-
gies useful for theory confirmation are included as appropriate.

One difficulty in this area is that no unifying theory for
clustering is widely accepted. An interesting result in the field
of clustering is that the standard statistical assumption of
multivariate normality as a basis for the derivation of such
algorithms has not automatically led to a superior cluster-
ing procedure. Because of derivational difficulties and empir-
ical experience with various approaches, we have today a
plethora of methods. Some of these methods work well in
certain circumstances, and some of these appear seldom if
ever to work as intended. Often, applied users of the method-
ology are unaware of various issues concerning the perfor-
mance of clustering and classification methods.

A second problem faced by researchers new to the field is
that the literature base is indeed vast and spans virtually all
fields of human endeavor. The Classification Society of
North America is now in its third decade of publishing an
annual bibliographic review called the Classification Lit-
erature Automated Search Service (Murtagh, 2000). Each
issue includes references of upwards of 1,000 scientific
articles.

The wide range of application areas creates an additional
problem for the applied researcher. Reading scientific articles
and textbooks outside of one’s own area of expertise can be
difficult yet essential to get a good mastery of the topic. Some
of the best work in this area has been published in engineering
and the biological sciences in addition to outlets normally
used by the social sciences community. The reader will see
the diversity of disciplines represented in the references sec-
tion for this chapter. It is useful to note that much of the
development of this methodology has appeared in applied
journals and less so in the mainstream statistical and mathe-
matical journals.

This chapter continues with a section on data preparation,
data models, and representation, including a discussion of dis-
tance and similarity measures. Three illustrative applications
of classification methods are presented in turn. A section on
clustering algorithms covers a wide range of classification
methods. In addition, this section includes a discussion of the

schi_ch07.qxd  9/6/02  12:12 PM  Page 165



166 Clustering and Classification Methods

recovery performance of clustering methods. The fourth
section covers a variety of issues important for applied
analyses such as data and variable selection, variable stan-
dardization, choosing the number of clusters, and postclassi-
fication analysis of the results. The chapter concludes with a
section that covers a variety of extensions and issues in
classification.

DATA PREPARATION AND REPRESENTATION 

The basic data for input to a cluster analysis can consist of
either a square or rectangular matrix, with or without replica-
tions. For a typical cluster analysis scenario, assume there is
a matrix of n objects measured on m features. Depending on
the context, the objects have been denoted in the literature as
items, subjects, individuals, cases, operational taxonomic
units (OTUs), patterns, or profiles, whereas the features have
been denoted variables, descriptors, attributes, characters,
items, or profiles (Legendre & Legendre, 1998). Thus, the
reader of multiple articles must be careful in interpretation, as
the same terminology has been used in the literature to refer
to both the n rows or the m columns in the data matrix, de-
pending on the specific context of the classification problem.

While is it possible for a cluster-analytic approach to ana-
lyze the data in the rows and columns of the rectangular matrix
directly, it is more typical first to transform the n × m rectan-
gular matrix into an n × n symmetric proximity matrix. Each
entry xij in the transformed matrix represents either similarity
of item i to j, in which case we call it a similarity matrix, or the
dissimilarity of item i to j, in which case we call it dissimilarity
or distance matrix. Alternatively, one could convert the n × m
rectangular matrix to an m × m symmetric matrix to measure
the similarity between features. Sneath and Sokal (1973)
denoted the analysis of an n × n matrix R analysis, whereas
the analysis of an m × m matrix was denoted Q analysis.

It is also possible to collect similarity or dissimilarity mea-
sures directly. For example, Shepard (1963) uses a confusion
matrix (Rothkopf, 1957) for the identification of Morse code as
an indication of the perceptual similarity of each pair of codes.
A matrix entry xab would indicate how many times the trans-
mitted code for letter a is perceived as letter b. Note that such a
matrix would most likely be nonsymmetric. Thus, the re-
searcher would first want to construct a symmetric matrix
through the average or weighted average of the two cells xaband
xba, unless the clustering method explicitly represents asymme-
tries in the solution (Furnas, 1980; Hirtle, 1987; Okada, 1996).

Carroll and Arabie (1980, 1998) denote the n × n matrix
as two-way, one-mode data, whereas the n × m matrix is re-
ferred to as two-way, two-mode data. That is, the number of

ways reflects the number of dimensions in the data set, while
the number of modes reflects the number of conceptual cate-
gories represented in the data set. Examples of two-way, one-
mode data include confusions, correlations, and similarity
ratings (in psychology); frequency of communication be-
tween individuals (in sociology); or the subjective distance
between locations (in behavioral geography). Examples of
two-way, two-mode data include individual responses to
questionnaire items (in psychology), n specimens measured
on m characteristics (in biology), or ratings of products by
consumers (in marketing). This terminology can be extended
to include three-way, two-mode data, for which two-way,
one-mode data is replicated for individual subjects or groups
of subjects. Examples of three-way, two-mode data include
individual ratings of similarity (in psychology), or the buying
patterns of consumer groups (in marketing).

Ultrametric and Additive Inequalities

The results of classification analyses are often represented
by tree diagrams, which reflect the inherent relationships in
the underlying model. The most common representation is a
rooted, valued tree, also called a dendrogram, as shown in
panel A of Figure 7.1. Here, each node in the tree is joined at a
specific height, as indicated by the scale on the right side of the
figure. In this case, the set of heights can be shown to satisfy
the ultrametric inequality (Johnson, 1967). Specifically, if hij

is the smallest value for which items i and j cluster, then

hij ≤ max(hik, hjk) for all i, j, k.

That is, the three heights between each pair of a triple of
points can be thought of as an isosceles triangle, with the
equal sides being at least as long as the third side.

An alternative tree model is the path-length, or additive,
tree shown in panel B of Figure 7.1. Here, the dissimilarity

Figure 7.1 Example of two rooted trees. Panel A shows an example of an
ultrametric tree, whereas panel B shows an example of a path-length or
additive tree.
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between items is reflected in length of the paths between the
terminal nodes (Buneman, 1971; Corter, 1996; Dobson,
1974). An additive tree is governed by the additive inequality,
which states that if dxy is the path length between x and y, then 

dij + dkl ≤ max(dik + djl, dil + djk) for all i, j, k, l.

The ultrametric tree is therefore a special case of the additive
tree, where the leaf nodes are all equally distant from the root
node. In an additive tree, this restriction does not hold. For
example, in the tree shown in panel B of Figure 7.1, dab = 15,
dac = 20, and the dbc = 25, whereas in panel A the dac = dbc.

In all cases just discussed, only the leaves are explicitly
labeled. The researcher may often label the internal nodes on
an ad hoc basis to assist in the readability and interpretation
of the clusters. The reader, however, should be warned that
in such cases the internal labels are arbitrary and not defined
by the clustering algorithm.

Classification Data as Tree Models

Corter (1996) argued for the acknowledgment of clustering
and trees as models of proximity relationships, rather than as
the result of an algorithm for fitting data. The distinction here
is subtle but important. Cluster analysis can begin with the
notion of some existing underlying clusters. The clusters
might be subject to noise and error and vary in dispersion and
overlap. The clusters are sampled with measurements taken
on a variety of attributes, which are then subjected to a clus-
ter analysis to recover the true clusters. This approach is
described in many of the general references in cluster analy-
sis, such as Aldenderfer and Blashfield (1984), Hartigan
(1975), or Jain and Dubes (1988).

An alternative framework proposed by Corter (1996) con-
siders the problem of representing a similarity matrix by a
structure, such as an additive or ultrametric tree. That is, the
information within a matrix has a structure that can alterna-
tively be captured in a representation with fewer parameters
than are found in the original data matrix. Pruzansky,
Tversky, and Carroll (1982), using this approach, examined
the properties of data matrices that would lead to the best fit
of spatial or tree representations. Their approach was based
on two distinct analyses. First, artificial data were generated
by choosing points either randomly from a two-dimensional
space or from a randomly generated tree. Noise, at various
levels, was then added to some of the data matrices. Not
surprisingly, they found that multidimensional scaling
algorithms, such as KYST (Kruskal & Wish, 1978), which
generated a two-dimensional solution, resulted in a better fit
for the spatially generated data, whereas a clustering method,

such as ADDTREE (Sattath & Tversky, 1977), resulted in a
better fit for the tree-generated data.

The next step was more interesting. Are there patterns in
the data matrix that would lead one to adopt one method or the
other? As diagnostic measures, they calculated the skewness
of the distances and the number of elongated triples.Atriple of
distances was said to be elongated if the medium distance was
closer to the longer distance than to the shorter distance. The
analysis by Pruzansky et al. (1982) showed that spatially gen-
erated data tended be less skewed and had fewer elongated
triples, while the tree-generated data were more negatively
skewed and had a larger percentage of elongated triples. As a
final step, these diagnostic measures were confirmed using
various empirical data sets, which were thought to be best
modeled by a tree or by a spatial representation. Thus, for de-
ciding between spatial and tree-based representations, the
analyses of Pruzansky et al. (1982) suggest that appropriate
diagnostic techniques might suggest which class of models is
more appropriate for a given a data set.

EXAMPLES

At this point, it is useful to consider three examples of cluster
analysis from the literature. The first example is based on kin-
ship data from Rosenberg and Kim (1975), which has been an-
alyzed in detail by Carroll and Arabie (1983), De Soete and
Carroll (1996), and others. The task that the subjects per-
formed in the initial study was to sort kinship terms into any
number of piles so that each pile consisted of related terms and
there were at least two piles. By taking the total number of
times that a subject put two terms in the same pile, one can con-
struct a similarity matrix between terms. Rosenberg and Kim
(1975) asked some subjects to sort the terms once, while others
were asked to sort the terms multiple times. Using the data
matrix from female subjects, De Soete and Carroll (1996) con-
structed a dendrogram, as shown in Figure 7.2, using a least-
squares ultrametric tree-fitting procedure called LSULT
(De Soete, 1984). The resulting ultrametric tree representation,
which accounts for 96.0% of the variance in the original data
matrix, encapsulates the standard anthropological model of
kinship terms (Carroll & Arabie, 1983). The tree divides direct
kin, such as grandparents, from collaterals, such as cousins. It
further divides the direct kin into the immediate family versus
±2 generations. Within these clusters, further groupings occur
on the basis of generation (e.g., mother and father are clus-
tered). In this case, there is great benefit in considering the
entire representation. That is, if one were to truncate the tree
and declare that kin terms are best represented as three clusters
or seven clusters, much information would be lost.
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Figure 7.2 Dendrogram for kinship data as produced by a least-squares
ultrametric tree-fitting procedure by De Soete and Carroll (1996).

Another example where the entire tree is important is
shown in Figure 7.3, which comes from De Soete and Carroll
(1996). Figure 7.3 displays an additive tree representation of
data collected by Arabie and Rips (1973), based on an earlier
study by Henley (1969). In the study, 53 American students
were asked to judge the similarity among 30 animals. The
representation was generated by LSADT (De Soete, 1984),
which is a least-squares additive tree-fitting procedure, and
accounts for 87.3% of the variance in the data. As in the pre-
vious example, the entire tree representation is interesting,
and truncating the tree would be misleading. In addition,
some relationships represented by the additive tree would not
be represented in an ultrametric tree. For example, dog and
cat are closer to each other in the representation than tiger
and wolf, even though dog and wolf are in one cluster of ca-
nine animals and cat and tiger are in another cluster of feline
animals. An ultrametric representation would force dog and
cat to be the same distance apart as tiger and wolf, assuming
they remained in the canine and feline clusters.

It is also worth emphasizing in both of these examples
that only the terminal nodes are labeled. However, implicit la-
bels could be generated for the internal nodes, such as grand-
parents or felines. Carroll and Chang (1973) developed one of
the few clustering methods for generating a tree representa-
tion with labeled internal nodes from a single data set. How-
ever, the method has not been widely used, in part because of

the limited number of stimulus sets that contain both terminal
and nonterminal item names.

One final example is based on a cluster analysis by
Lapointe and Legendre (1994). In their study, they produced
a classification of 109 single-malt whiskies of Scotland. In
particular, the authors of the study were interested in deter-
mining the major types of single malts that can be identified
on the basis of qualitative characteristics as described in a
well known connoisseur’s guide (Jackson, 1989). The pri-
mary data consisted of 68 binary variables, which repre-
sented the presence or absence of a particular descriptive
term, such as a smoky palate, a salty nose, bronze in color.
The 109 × 68 matrix was transformed into a 109 × 109
lower triangular matrix of proximities using the Jaccard
(1901) coefficient of similarity, which is based on the number
of attributes that a pair of items has in common. The proxim-
ity matrix was used to construct the dendrogram using
Ward’s method, which is described in the next section. The
resulting dendrogram in shown in Figure 7.4. In contrast with

Figure 7.3 Additive tree representation for the animal similarity data as
produced by De Soete and Carroll (1996).
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Figure 7.4 The Lapointe and Legendre (1994) classification of single malt scotch whiskies.
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the previous examples, the authors are less interested in the
structure of the entire tree. Instead, the goal of the study was
to identify an unknown number of distinct groups. As a result
of the analysis, the dendrogram was truncated to generate 12
identifiable classes of whiskeys, each labeled with a letter of
the alphabet in Figure 7.4.

ALGORITHMS

There are several fundamental issues relating to the selection
of a suitable clustering algorithm. First, the method must be
appropriate for the type of cluster structure that is expected to
be present in the data. Different clustering criteria and cluster
formation methods yield different types of clusters. Second,
the clustering method needs to be effective at recovering the
types of cluster structures that it was intended to find. Nearly
all clustering methods are heuristics, and there is no guaran-
tee that any heuristic is effective. Finally, software support
needs to be available for applied analyses. It is our experience
that the latter issue tends to drive method selection with only
limited regard for the first two concerns.

For those readers who wish to make a more in-depth study
of clustering algorithms, several textbooks and survey arti-
cles have been written. These include the texts by Anderberg
(1973), Everitt (1993), Gordon (1999), Hartigan (1975), Jain
and Dubes (1988), Legendre and Legendre (1998), Lorr
(1983), and Späth (1980). Survey articles include Gordon
(1987), Milligan and Cooper (1987), and Milligan (1996,
1998). Although some of these sources are more dated than
others, they include a wealth of information about the topic.

The next three sections offer a review of the major types of
clustering methods that have been proposed in the literature.
Included in each section is a discussion concerning the issue
of selecting a clustering method appropriate to the type of
cluster structure expected to be present in the data. The fourth
section reviews the performance of a range of clustering
methods in finding the correct clustering in the data.

Agglomerative Algorithms

Agglomerative algorithms are the most common among the
standard clustering algorithms found in most statistical pack-
ages. Here, each of the n objects is considered to be cluster
consisting of a single item. The algorithm then iterates
through n − 1 steps by combining the most similar pair of ex-
isting clusters into a new cluster and associating a height with
this newly formed cluster (Gordon, 1996). Different algo-
rithms use different methods for defining the most similar
pair, associating a height, and defining a proximity measure

between the new cluster and the previously established
clusters. In particular, if the new cluster is given by the ag-
glomeration of Ci and Cj, then one can define the new dissim-
ilarities measures by the general formula given by Lance and
Williams (1966, 1967) as follows:

dissim (Ci ∪ Cj , Ck)

= �i d(Ci , Ck) + �j d(Cj , Ck) + �d(Ci , Cj )

+ �|d(Ci , Ck) − d(Cj , Ck)|

Different choices of the parameters {�i , �j , �, �} define dif-
ferent clustering algorithms as shown in Table 7.1. For exam-
ple, �i = 1/2, � = −1/2, defines the single-link algorithm
where the new dissimilarity coefficient is given by the small-
est distance between clusters. This algorithm tends to gener-
ate unstable clusters, where small changes in the data matrix
result in large changes in the dendrogram (Gordon, 1996).
However, it is one of the few clustering algorithms that
would be able to detect clusters that are the result of a long
chain of points, rather than a densely packed cluster of points. 

Complete link clustering corresponds to �i = 1/2,

� = 1/2. Single and complete link clustering are based solely
on the rank order of the entries in the data matrix and thus can
be used with ordinal scale data. Most other algorithms
require interval scale data. Of the interval scale techniques,
group-average link [�i = ni/(ni + nj )] and weighted-
average link (�i = 1/2) demonstrate greater success at
cluster recovery, as shown later in this chapter, than do either
of the ordinal scale techniques. Group-average link is also
commonly denoted as UPGMA (for unweighted pair group
mean average), whereas the weighted average link method is
commonly denoted as WPGMA (weighted pair group mean
average; Sneath & Sokal, 1973). Additional information on
combinatorial clustering methods can be found in Podani
(1989).

TABLE 7.1 Coefficients to Generate Clustering Techniques Based on
the Formalization of Lance & Williams (1966)

Clustering
Method �i � �

Single link 1/2 0 −1/2

Complete link 1/2 0 1/2

Group-average link
ni

ni + nj
0 0

Weighted-average link 1/2 0 0

Centroid
ni

ni + nj

−ni nj

(ni + nj )2 0

Median 1/2 −1/4 0

�-Flexible
1 − �

2
−1 ≤ � ≤ 1 0
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Divisive Algorithms

For divisive algorithms, the reverse approach from agglom-
erative algorithms is used. Here, all n objects belong to a
single cluster. At each step of the algorithm, one of the exist-
ing clusters is divided into two smaller clusters. Given the
combinatorial explosion of the number of possible divisions,
divisive algorithms must adopt heuristics to reduce the num-
ber of alternative splittings that are considered. Such algo-
rithms often stop well before there are only single items in
each cluster to minimize the number of computations needed.
Still, the problem of finding an optimal division of clusters
for several criteria has been shown to be NP-hard (which im-
plies that the computational time will most likely grow expo-
nentially with the size of the problem) for several clustering
criteria (Brucker, 1978; Welch, 1982). 

Optimization Algorithms

An alternative approach to iterative algorithms is to recon-
sider the problem by transforming a dissimilarity matrix (di j )
into a matrix (hi j ) whose elements satisfy either the ultramet-
ric or the additive inequality. Optimization algorithms have
been developed using a least-squares approach (Carroll &
Pruzansky, 1980), a branch-and-bound algorithm (Chandon,
Lemaire, & Pouget, 1980), and other approximation ap-
proaches (Hartigan, 1967). One promising technique was an
approach developed by De Soete (1984). The technique,
which is discussed later in this chapter, has been successful at
addressing the problem of determining optimal weights for
the input variables.

Selecting a Clustering Method

This section focuses on the issue of evaluating algorithm per-
formance. One approach commonly used in the literature is
the analysis of real-life data sets. It is not unusual for various
articles to attempt to establish algorithm performance by
using only one or two empirical data sets. Thus, validating a
heuristic method is always questionable. In many cases the
results are considered valid because they correspond to some
general or intuitive perspective. Several criticisms of this ap-
proach exist. First, one must recognize that a very small sam-
ple size has been used to establish validity. Second, one can
always question the author’s a priori grouping of the data.
Third, how are we to know that clusters actually exist in
the empirical data? Few authors consider a null clustering
condition. Finally, assuming that clusters are present, how
can we determine that the correct cluster structure was
found? These criticisms can seldom if ever be addressed

properly through the use of empirical data sets for validation
purposes.

Most classification researchers have turned to the use of
computer-generated data sets for establishing clustering va-
lidity. Simulation or Monte Carlo experiments allow the re-
searcher to know the exact cluster structure underlying the
data. This strategy has the advantage that the true clustering
is known. The extent to which any given clustering algorithm
has recovered this structure can be determined. Because of
the use of artificially generated data sets, simulation results
can be based on hundreds or thousands of data sets. Thus,
sample size is not an issue.

There is a serious weakness in the use of simulation meth-
ods. In every case, such results are limited on the basis of gen-
eralizability. That is, the Monte Carlo results may be valid
only for the types of cluster structures and distributions that
were present in the generated data sets. Thus, the effectiveness
of the algorithms may not extend to other data structures that
are possible in applied analyses. Thus, it is important to estab-
lish replicability of simulation results from differing studies. It
is especially valuable when different researchers achieve sim-
ilar results using different strategies for data generation and
evaluation. Such replications offer investigators more confi-
dence in the selection of methods for applied analyses.

In terms of results on the recovery of underlying cluster
structure, agglomerative hierarchical algorithms have been
the most extensively studied. Three reviews of Monte Carlo
clustering studies covering various time frames were pub-
lished by Milligan (1981a), Milligan and Cooper (1987), and
Milligan (1996). The validation studies have examined a
number of factors that might affect recovery of the underly-
ing clusters. Many studies have included an error-free data
condition. The clustering present in the error-free data typi-
cally was so distinct that almost any method should have
been able to perform well with this sort of simple and obvi-
ous data structure. Clustering methods that fail with error-
free data would not be suitable for most applied research
settings.

A second factor examined has been the introduction of
some sort of error, either on the underlying variables or directly
to the similarity measures. This condition has the capability of
being tuned to a gradient of increasing noise.An effective clus-
tering method should be capable of finding clusters that have
been hidden by moderate amounts of error in the data.

A different sort of error involves the introduction of outly-
ing data points to a core set of elements that defines a suitable
cluster structure. Unusual observations are not unusual in
behavioral research. A clustering method used for applied
analyses should have some insensitivity to the presence of
such data points.
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The population distribution used to conceptualize and
generate the clusters themselves need not be multivariate
normal. Nonnormality may be present in many empirical
data sets, and a clustering method should be able to recover
well-defined clusters in such circumstances. Furthermore,
alternative population distributions serve to generalize the
Monte Carlo results. Few simulation studies have included
more than one type of distribution. The generalization exists
across different studies using differing underlying population
probability models.

The number of clusters in the underlying data can be var-
ied easily and, thus, can serve to ensure that a given cluster-
ing method is not sensitive to this factor. The clustering
method adopted should not have differential effectiveness on
this factor.

The relative sample size of clusters can be systematically
varied as well. Some clustering methods do not respond
properly to the presence of unequal cluster sizes. This is not a

desirable result, and it has implications for applied analyses.
The characteristic can be demonstrated most easily by gener-
ating data sets with varying cluster sizes.

Some authors have varied the number of variables that are
used to construct the artificial data. Since the data are first
transformed to a similarity measure, most clustering methods
do not directly analyze the original data. However, the num-
ber of variables may influence the information captured by
the similarity measure and, hence, influence the method’s
ability to recover the underlying clusters. Other factors have
been included in one or more studies. These include the use
of more than one similarity measure for the data and the num-
ber of underlying dimensions from a principal component
representation of the variable space, among others.

Simulation results for a set of hierarchical methods are
presented first. Validation results for five such methods are
reported in Table 7.2, adapted from Milligan and Cooper
(1987). It is important not to overinterpret the results in the

TABLE 7.2 Monte Carlo Validation Results for Hierarchical Methods

Method

Single Complete Group Ward’s Beta
Study Link Link Average Method Flexible

Baker (1974)
Low error .605 .968
Medium error .298 .766
High error .079 .347

Kuiper & Fisher (1975)
Medium size .579 .742 .710 .767
Five clusters .444 .690 .630 .707
Unequal sizes .663 .705 .702 .689

Blashfield (1976) .06 .42 .17 .77
Mojena (1977) .369 .637 .596 .840
Mezzich (1978)

Correlation .625 .973
Euclidean .648 .943

Edelbrock (1979)
Correlation .90 .80 .96 
Euclidean .62 .63 .70 .88 

Milligan & Isaac (1980) .30 .64 .70 .57
Bayne, Beauchanp, Begovich,

& Kane (1980)
Configuration 1 .53 .68 .66 .70 
Configuration 2 .55 .76 .75 .76 

Edelbrock & McLaughlin (1980)
Correlation .858 .813 .880
Euclidean .690 .780 .858 .873

Milligan (1980)
Zero error .974 .995 .998 .987 .997
Low error .902 .970 .997 .989 .994
High error .777 .880 .948 .940 .945

Scheibler & Schneider (1985)
Correlation .43 .49 .81 .78 .73
Euclidean .04 .38 .16 .79 .77

Note. For details on the nature of the recovery values, see Milligan and Cooper (1987).
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table because the recovery index is not the same across all
studies. Direct numerical comparisons should be made
within a given study, and not across different experiments.
The measures do have the common characteristic that recov-
ery performance improves as the index approaches 1.00,
which indicates perfect cluster recovery.

The simulation results in Table 7.2 contain some impor-
tant lessons for the applied user. In most cases, there appears
to be an advantage in favor of Ward’s (1963) method and the
�-flexible approach. Performing somewhat more erratically,
the group-average method can be competitive as gauged
by cluster recovery, but not always. The effectiveness of the
�-flexible approach from these studies led to some improve-
ments on this method by Milligan (1989a) and Belbin, Faith,
and Milligan (1992).

A particularly important result seen in Table 7.2 is that the
single-link method has consistently performed poorly, even
in the case of error-free data where distinct clustering exists.
Furthermore, single link is especially sensitive to most any
form of error added to the data. Cheng and Milligan (1995a,
1996a) also demonstrated that the single-link method was re-
markably sensitive to outliers present in the data. That is, the
method can be adversely affected by the presence of only one
outlier. An outlier in a clustering context refers to an entity
that does not fall within the general region of any cluster. Al-
though some authors have argued that the method possesses
optimal theoretical properties (e.g., Fisher & Van Ness 1971;
Jardine & Sibson; 1971), simulation and empirical evidence
suggest that this is an unsuitable method for most applied
research.

Simulation-based research on nonhierarchical partitioning
methods has not been as extensive as for the hierarchical rou-
tines. K-means (MacQueen, 1967) algorithms have been the
most frequently examined methods to date. Simulation results
for such methods are presented in Table 7.3. Generally, these
studies were based on error-free data sets. The simulation-
based literature indicates that the recovery performance of
some partitioning methods can be competitive with those
found for the best hierarchical procedures.As before, the reader
is warned not to overinterpret the numerical recovery values
between studies as they are based on different indices.

Most of the generated data sets used to establish the
results in Table 7.3 were multivariate normal and should
have been the ideal application context for the normal theory-
based clustering methods such as the Friedman and Rubin
(1967) and Wolfe’s (1970) NORMIX procedures. Unfor-
tunately, such methods performed inconsistently in these
studies. Less sophisticated methods, such as k-means algo-
rithms, can produce equivalent or superior recovery of cluster
structure.

One characteristic discovered from the set of studies re-
ported in Table 7.2 concerns the nature of the cluster seeds
used to start the k-means algorithms. The k-means algorithms
appear to have differential recovery performance depending
on the quality of the initial configuration. This effect was sys-
tematically studied by Milligan (1980). The results reported
by Milligan indicated that starting seeds based on randomly
selected sample points were less effective than was the use
of rational starting configurations. Rational starting seeds
markedly improved the recovery performance of all k-means
methods. In light of these results, Milligan and Sokol (1980)
proposed a two-stage clustering algorithm that was designed
to improve the recovery of the underlying clusters. Subse-
quently, other researchers have endorsed this approach or de-
veloped useful refinements (see Punj & Stewart, 1983; Wong,
1982; Wong & Lane, 1983). 

Overall, more research on the comparative evaluation
of clustering methods is needed. We have good informa-
tion on certain types of methods. However, for other methods
or approaches the current knowledge base on algorithm

TABLE 7.3 Monte Carlo Validation Results for Nonhierarchical
Clustering Methods

Average Recovery With 
Clustering Method Recovery Rational Seeds

Blashfield (1977)
Forgy k-means .585
Convergent k-means .638
CLUSTAN k-means .706 .643
Friedman-Rubin trace W .545
Friedman-Rubin |W| .705
MIKCA trace W .560
MIKCA |W| .699

Mezzich (1978)
Convergent k-means: correlation .955
Convergent k-means: Euclidean .989

distances
Ball-Hall ISODATA .977
Friedman-Rubin |W| .966
Wolfe NORMIX .443

Bayne et al. (1980)
Convergent k-means .83
Friedman-Rubin trace W .82
Friedman-Rubin |W| .82
Wolfe NORMIX .70

Milligan (1980): Low error condition
MacQueen’s k-means .884 .934
Forgy’s k-means .909 .996
Jancey’s k-means .926 .993
Convergent k-means .901 .996

Scheibler & Schneider (1985)
CLUSTAN k-means .67 .78
Späth’s k-means .55 .77

Note. Average recovery for k-means methods corresponds to random
starting seeds. “Rational Seeds” were centroids obtained from Ward’s or
group-average methods.
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performance is weak or badly lacking. For example, there
have been a number of recent developments. An interesting
approach to clustering, called MCLUST, has been proposed
by Raftery, Fraley, and associates (see Fraley & Raftery,
1998). To date, an independent evaluation of this approach
has not been published.

STEPS IN A CLUSTER ANALYSIS

A fundamental principle in classification is that as the level of
error increases in the data, or in the specification of one or
more factors relating to the clustering, the ability to recover
the underlying cluster structure is reduced. Thus, a number of
issues must be addressed while conducting an applied analy-
sis in addition to the choice of clustering method. 

Sometimes these decisions are not apparent to the re-
searcher. For example, a researcher may select a clustering
software package that makes one or more of these decisions
without user intervention. The researcher should be alert to
the fact that these decisions were made and that they directly
affect the quality of the clustering results.

When applied research is published using clustering
methodology, we recommend that the specific actions taken
during the classification process be clearly articulated. This
practice is essential to allow subsequent researchers the abil-
ity to evaluate, compare, and extend the results. Examples
abound in the literature where authors have failed to provide
such information (see Milligan, 1996). Critical information
includes the choice of similarity measure, the clustering algo-
rithm used to form the groups, the determination of the num-
ber of clusters, and information on the sample and variables
used in the analysis.

Several key elements or decision points in the clustering
process are reviewed in this section. Best practical sugges-
tions, based on the current state of knowledge, are offered.
These suggestions relate to the selection of the elements to be
clustered, the selection of the variables to cluster, issues con-
cerning variable standardization, the selection of the number
of clusters, and the validation of empirical analyses.

Selecting the Data Set

The issue of selecting the data elements in a cluster analysis
has seen limited research. This issue is critical because it is
the sample of data elements selected for study that define the
resulting cluster structure. Several fairly simple principles
can guide the researcher. Unlike traditional inference-based
statistical procedures, random samples are not required for an
effective cluster analysis. Certainly, the selected sample

should accurately represent the underlying clusters, but not
necessarily in proportion to their size in the larger population.
In the absence of this consideration, it is likely that small
population segments may not be detected in a cluster analy-
sis. Oversampling these small populations would likely serve
to enhance their recovery in the cluster analysis. Further-
more, some clustering methods have some bias to find clus-
ters of relatively equal size, and this tendency can be used to
good advantage.

Of course, random sampling would be desirable if it is es-
sential for the researcher to be able to generalize the results of
the study to a target population. However, doing so would
imply a more theoretically driven analysis as opposed to
a more exploratory study. Random or stratified sampling
would be useful in replication studies or in more advanced
studies attempting to validate a contextual theory.

The selection of the sample elements should consider the
overall size of the database. A second sample or a split-half
sample would be helpful for validation purposes, as dis-
cussed later in this chapter. As suggested by Milligan (1996),
one possible approach is to place artificially generated ideal-
type individuals or subjects in the data set. The researcher
specifies the values for each variable of an ideal-type individ-
ual. The ideal type would represent a subject or other experi-
mental object that would represent the norm for each group
or cluster suspected to be present in the data. One or possibly
more ideal types would be specified for each hypothesized
cluster. The presence of the correct ideal type or types in a
cluster would support the researcher’s conceptualization for
the hypothesized clustering. On the other hand, if markedly
different ideal types appear in the same cluster, then the re-
searcher’s theory or the cluster analysis is suspect. The pres-
ence of clusters without ideal types may represent groups not
yet defined by the researcher’s theory, or possibly subgroups
of a larger cluster. The user should be warned that the use of
ideal types is a temporary process. The presence of ideal
types in the final clustering may change the assignment of
other elements in the data set. The relative influence of in-
dividual data elements has been explored by Cheng and
Milligan (1995a, 1995b, 1996a, 1996b).

Related to the issue of influential data points is the issue of
outliers. Outliers in a clustering context deserve special con-
sideration. As stated previously, an outlier in a clustering
context refers to an entity that does not fall within the general
region of any cluster. Note that outliers may or may not have
influence on the clustering solution obtained, and some data
points near or in a cluster may have an influential effect on
the clustering process.

An early simulation study on the effect of outliers in
clustering was conducted by Milligan (1980). This research
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confirmed that as the percentage of outliers increased, the
ability of hierarchical clustering methods to recover the
underlying structure decreased. Some methods were less
affected than others. More recent results concerning the
effect of outliers on hierarchical methods can be found in
Milligan (1989a) and Belbin et al. (1992). This more recent
research suggests that Ward’s (1963) method may not be as
seriously affected by the presence of outliers as first sus-
pected. Similarly, Belbin et al. (1992) demonstrated desirable
characteristics with respect to outliers for two versions of the
�-flexible method. Overall, the impact of outliers appears to
be less severe for k-means methods.

The applied user of clustering methodology can adopt sev-
eral different strategies for dealing with outliers. One can
eliminate those elements that appear to be outliers to the
overall set of data. Alternatively, the relationship between the
obtained clusters and the suspected outliers can be investi-
gated after an initial clustering is completed. A third alterna-
tive is to use a clustering method resistant to the presence of
outliers. Selected parameterizations of the �-flexible hierar-
chical clustering procedure and Ward’s (1963) minimum
variance method may be good selections, as well as some of
the k-means algorithms.

Variable Selection and Weighting

Clustering methods differ profoundly from traditional statis-
tical inference models. Standard statistical requirements such
as the assumption of normally distributed data generally do
not apply within the clustering framework. That is, the meth-
ods are heuristics, and they were often developed without
consideration of an underlying probability model for the data. 

Another common misconception is that the presence of
correlated variables in the data set is somehow bad or unde-
sirable. Researchers often fail to realize that the correlations
among variables may be a result of the natural cluster struc-
ture in the data. Attempts to eliminate these correlations
would likely serve to distort or hide the structure in the data.
Numerous applied analyses have attempted to eliminate in-
tervariable correlation by means of principal components or
other multivariate methods. Unfortunately, the routine appli-
cation of principal components or other factoring techniques
prior to clustering is appropriate only in those cases where
the clusters are hypothesized to exist in the factor space and
not in the original data. Sneath (1980) has shown that clusters
embedded in a high-dimensional variable space may not
be correctly identified in a reduced number of orthogonal
components.

A different issue relates to the selection of variables to
include in the cluster analysis. Care must be exercised in

selection of the variables. Most reference works in the clus-
tering area fail to offer strong advice on this issue. Only those
variables that are believed to help discriminate among the
clusters in the data should be included in the analysis. Far too
many analyses have been conducted by including every
available variable. Some users have gone to great efforts to
collect just one more variable without considering its ability
to help find the underlying clustering. Instead, the bias should
be not to include the variable without additional information.

The difficulty in using all available data can result from
the added irrelevant variables’ serving to mask whatever ac-
tual clustering is present in a reduced number of variables.
In fact, the addition of only one or two irrelevant variables
can dramatically interfere with cluster recovery. Milligan
(1980) was the first to demonstrate this effect. In this study
only one or two random noise variables were added to data
sets where a strong and distinct clustering was present in a
reduced set of variables. Fowlkes and Mallows (1983) intro-
duced the term masking variables, which is a good descrip-
tion of the effect. Results from the Milligan (1980) study are
presented in Table 7.4.

As can be seen in Table 7.4, cluster recovery quickly de-
graded with even one random noise dimension added to the
core data containing distinct clustering. A second dimension
continued to diminish the ability to find the true structure in
the data. The core dimensions defined a strong clustering
in the data. Clearly, there are important implications for applied
analyses. The inclusion of just one irrelevant variable may
serve to mask or hide the real clustering in the data. It would

TABLE 7.4 Results From Milligan (1980): Mean Recovery Values
With Masking Variables

Clustering Error-Free 1-Dimensional 2-Dimensional
Method Data Noise Noise

Hierarchical
Single link .974 .899 .843
Complete link .995 .859 .827
Group average (UPGMA) .998 .930 .903
Weighted average .994 .917 .885

(WPGMA)
Centroid (UPGMC) .983 .808 .616
Median (WPGMC) .976 .808 .661
Ward’s method .987 .881 .855
�-flexible .997 .904 .863
Average link in cluster .985 .870 .834
Minimum total SS .935 .837 .780
Minimum average SS .993 .900 .865

Partitioning
MacQueen’s k-means .884 .793 .769
Forgy’s k-means .932 .844 .794
Jancey’s k-means .927 .867 .823
Convergent k-means .903 .849 .787

Note. Average within-cell standard deviation is .108 and was based on 108
data sets.
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be wise to provide a justification for each variable included in
the clustering process. The bias should be toward exclusion
in the case where doubt exists as to whether the variable may
contain information regarding the clustering in the data.

Fortunately, a significant contribution on the problem of
masking variables has been made. If Euclidean distances are
used with a hierarchical clustering method, then the optimal
variable weighting method of De Soete (1986, 1988) may
offer helpful protection against masking variables. De
Soete’s method computes optimal weights for the distance
equation:

dij =
⌊ nv∑

k=1

wk(xik − xjk)2

⌋.5

.

The derivation and computation of the weights are com-
plex, and the reader is referred to the work of De Soete (1986,
1988) and Makarenkov and Legendre (2000) for further de-
tails. Originally, De Soete’s procedure was not intended to
detect masking variables. Rather, the purpose was to opti-
mize the fit of the computed distances to an ultrametric struc-
ture. The application to masking variables was suggested by
one of the example analyses conducted by De Soete (1986).
Milligan (1989b) pursued this application and found evi-
dence that the method was effective at dealing with the mask-
ing problem. Makarenkov and Legendre (2000) recently
have replicated the results concerning the effectiveness of the
weights against masking variables. In addition, their work
provides an important extension to k-means methods.

The results in Table 7.5 are from Milligan’s (1989b) study
of De Soete’s algorithm. The study compared the recovery
performance using equal variable weights to that obtained
using optimal weights. As can be seen in the table, recovery
performance was greatly enhanced, even when three mask-
ing variables were added to the core cluster dimensions.
Further research revealed that De Soete’s algorithm was as-
signing effectively zero weights to the masking variables,

thus eliminating their noise contribution to the distance
computation.

There have been other attempts to deal with the problem
of optimal variable weighting. For example, DeSarbo,
Carroll, and Green (1984) proposed a procedure called
SYNCLUS. The algorithm uses a nonhierarchical k-means
method in the clustering process. To date, there has not been
a systematic validation study conducted on the SYNCLUS
algorithm. Green, Carmone, and Kim (1990) reported that the
starting configuration used for the k-means method appears
to be a critical factor for the success of the effectiveness of
the variable weighting method. Other approaches to the
masking problem do not attempt to provide differential
weighting of variables. Rather, the method of Fowlkes,
Gnanadesikan, and Kettenring (1988) attempts to include or
exclude variables in a manner analogous to that used in step-
wise regression.

Variable Standardization

With respect to variable standardization, we again find that
applied researchers bring potentially ill-advised biases to the
clustering process. First, many researchers assume that vari-
able standardization is required in order to prepare the data
for clustering. They assert that variable standardization is
necessary when the variances among variables differ to any
significant degree. Similarly, some authors will argue that
standardization is essential when substantial differences exist
in the numerical magnitude of the mean of the variables.
Otherwise, it is believed that those variables with the larger
scales or variances will have an undue influence on the clus-
ter analysis. 

Many researchers fail to consider that if the cluster struc-
ture actually exists in the original variable space, then stan-
dardization can distort or hide the clustering present in the
data. Again, as with principal components, standardization
would be appropriate if the clusters were believed to exist in

TABLE 7.5 Results From Milligan (1989b): Mean Recovery for Masking Variables Using De Soete’s (1988) Variable 
Weighting Algorithm

1 Dimension 2 Dimensions 3 Dimensions

Clustering Method Equal Weights Weighted Equal Weights Weighted Equal Weights Weighted

�-flexible = −.5 .750 .966 .673 .952 .601 .948
�-flexible = −.25 .788 .979 .716 .962 .657 .961
Single link .812 .883 .647 .840 .473 .820
Complete link .668 .977 .595 .955 .555 .930
Group average .859 .980 .809 .965 .732 .957
Ward’s method .764 .968 .675 .955 .627 .947
Column standard deviation .263 .128 .295 .163 .307 .180

Note. Each mean was based on 108 data sets.
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TABLE 7.6 Results From Milligan & Cooper (1988): Effect of
Standardization Procedure and Alternative Data Structures

Standard-
Separation Maximum Variance Global

ization
Level Ratio Variance

Formula Near Distant 16 100 Experiment

zo .662 .821 .745 .739 .621(L)

z1 & z2 .672 .837 .755 .754 .936

z3 .689* .854* .771* .772* .984*

z4 & z5 .693* .864* .778* .780* .968*

z6 .674* .836 .757 .753 .981*

z7 .639(L) .768(L) .693(L) .713(L) .839

Overall .674 .835 .754 .756 .888

Note. The asterisk indicates membership in the statistically equivalent
superior group. (L) indicates that the procedure performed significantly
worse than the other methods.

TABLE 7.7 Results From Milligan & Cooper (1988): Effect of
Standardization Procedure and Clustering Method

Clustering Method

Standardization Single Complete Group Ward’s
Formula Link Link Average Method

zo .608* .750 .811 .798(L)

z1 & z2 .577 .778 .800 .864*

z3 .622* .793* .835* .836

z4 & z5 .609* .815* .839* .851*

z6 .616* .761 .813 .828

z7 .494(L) .730(L) .810 .781(L)

Overall .589 .777 .819 .834

Note. The asterisk indicates membership in the statistically equivalent
superior group. (L) indicates that the procedure performed significantly
worse than the other methods.

the transformed variable space. This result was first demon-
strated in a simple example by Fleiss and Zubin (1969). Other
discussions on this topic appeared in Sneath and Sokal (1973)
and in Anderberg (1973).

A different bias brought to the analysis by applied re-
searchers is an assumption as to the form of variable stan-
dardization to be used. Researchers with a social science or
statistics background often assume that variable standardiza-
tion would be based on the traditional z score:

z1 = x − x

s
.

It turns out that there are number of other ways in which to
standardize data so that the influence of variance and relative
numerical values can be controlled. Milligan and Cooper
(1988) documented several other approaches to variable
standardization:

z2 = x

s
,

z3 = x

Max(x)
,

z4 = x

Max(x) − Min(x)
,

z5 = x − Min(x)

Max(x) − Min(x)
,

z6 = x∑
x
,

and z7 = Rank(x).

Milligan and Cooper (1988) evaluated the performance
of the various forms of standardization in a large-scale simu-
lation study. Included were the traditional z score (z1), z2

through z7, as well as the unstandardized data represented by
zo in their study. 

Selected simulation results from the Milligan and Cooper
(1988) article are presented in Tables 7.6 and 7.7. Each entry in
the tables represents the average obtained from 864 data sets.
Note that the rows in the tables correspond to the various forms
of standardization. The columns in Table 7.6 represent differ-
ent types of artificially generated data structures. The entries
are averages across four clustering methods. Table 7.7 presents
similar information broken down by clustering method.

The asterisk notation is unique to these tables and requires
explanation. An asterisk indicates that the corresponding
standardization method was in the statistically equivalent su-
perior group for a given column. This was, in effect, a test of
simple main effects in a factorial ANOVA design. Thus, the
asterisk indicates the best performing methods for each
condition. Across the conditions explored in Milligan and

Cooper (1988), the only standardization procedures that were
in the superior group in every case were those methods that
standardized by range, namely z4 and z5. The consistency of
the results was unexpected. Since the publication of the 1988
study, anecdotal evidence reported by numerous researchers
has supported the Milligan and Cooper results. Recently,
Mirkin (2000) has been developing a mathematical theory
as to why standardization by range has been consistently
effective. Mirkin and other researchers are likely to continue
with this line of inquiry.

Selecting the Number of Clusters

The next significant problem faced in the analysis is the de-
termination of the number of clusters to be used in the final
solution. Some clustering methods, such as k-means, require
the user to specify the number of groups ahead of time. Other
methods require the researcher to sort through and select
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TABLE 7.8 Results From Milligan & Cooper (1985): Stopping 
Rule Performance

Number of True Clusters

Stopping Rule 2 3 4 5 Overall

1. Calinski & Harabasz 96 95 97 102 390
2. Duda & Hart 77 101 103 107 388
3. C-index 71 89 91 96 347
4. Gamma 74 86 83 96 339
5. Beale 57 87 95 92 331
6. Cubic clustering criterion 67 88 82 84 321
7. Point-biserial 94 83 66 65 308
8. G(+) 52 70 79 96 297
9. Mojena 20 84 93 92 289

10. Davies & Bouldin 54 72 72 89 287
11. Stepsize 96 56 53 68 273
12. Likelihood ratio 64 72 64 68 268
13. | log( p)| 78 71 45 43 237
14. Sneath 34 51 66 83 234
15. Frey & Van Groenewoud 0 76 79 77 232
16. log(SSB/SSW) 0 104 42 66 212
17. Tau 85 77 30 10 202
18. c/

√
k 88 80 25 7 200

19. n log(|W|/|T|) 0 104 32 13 149
20. k2 |W| 0 104 15 27 146
21. Bock 74 15 31 22 142
22. Ball & Hall 0 104 23 1 128
23. Trace Cov(W) 0 104 17 0 121
24. Trace W 0 104 16 0 120
25. Lingoes & Cooper 37 30 17 16 100
26. Trace W−1B 0 52 23 9 84
27. Generalized distance 5 22 11 9 47
28. McClain & Rao 9 5 5 6 25
29. Mountford 1 6 1 2 10
30. |W|/|T| 0 0 0 0 0

from a sequence of different clustering solutions. This is the
case when hierarchical algorithms are selected and the pur-
pose is to find a coherent grouping of the data elements as
opposed to a tree representation. 

Numerous methods have been proposed for selecting the
number of clusters, especially in a hierarchical context. As
with many aspects of the clustering process, theoretical de-
velopments on this problem have been limited to date.
Rather, we have a set of ad hoc methods. The formulas are
sometimes called stopping rules for hierarchical clustering
methods. The most comprehensive study on the selection of a
suitable stopping rule in a hierarchical context is the article
by Milligan and Cooper (1985). These authors conducted a
comparative evaluation of 30 stopping rules within a simula-
tion framework. The authors considered only those rules that
were independent of the clustering method. The generated
data sets used by Milligan and Cooper (1985) consisted of
error-free structure with distinct clustering. Despite the pro-
nounced clustering present in the data, the results of their
study revealed that there was a wide range in the effective-
ness of the stopping rules. Selected results from the Milligan
and Cooper (1985) study are presented in Table 7.8. The
reader is referred to the 1985 article for more detailed perfor-
mance information and for references for each stopping rule.

The results in Table 7.8 indicate the number of times that
a given stopping rule selected the correct number of clusters
in the data. The maximum performance rate that could be ob-
tained for any specific number of clusters was 108, and 432
overall. The results in the table include a number of well
known approaches such as Mojena’s (1977) method, Beale’s
(1969) pseudo F test, and the rule developed by Calinski and
Harabasz (1974). As one reaches the least effective methods
at the bottom of the table, the chance selection rate for each
cluster level is around 9.

Certainly, more research in the area of stopping rules is
needed. The Milligan and Cooper results are from one simu-
lation study, and the potential limitation of generalizability is
an important consideration. Independent validation of the
performance of the rules with other types of simulated data
needs to be undertaken. The reader is warned not to take the
performance ranking of the stopping rules as an absolute find-
ing. The rankings produced by Milligan and Cooper (1985)
may have been a result of the specific characteristics of the
simulated data sets. On the other hand, one might argue that
those stopping rules found in the upper third of those tested
by Milligan and Cooper might be replicated to some degree in
an independent study. Similarly, it would seem unlikely that
the least effective rules in their report would perform with a
degree of distinction in a different experiment. Support for
this conjecture was found by Cooper and Milligan (1988) in a

related experiment. In this experiment, the data were sub-
jected to various levels of error perturbation. Although the
performance of the rules declined as expected, the relative
ranking of the stopping was sustained in the experiment.

For applied analyses, it is recommended that one use two
or three of the better performing rules from the Milligan and
Cooper (1985) study. The Statistical Analysis System (SAS)
(Gilmore, 1999) has implemented several of these rules as
clustering software options. When consistent results are ob-
tained from the rules, evidence exists for the selection of the
specified number of clusters. If partial agreement is found,
the user might opt for the larger number of clusters. In this
case, one may have an incomplete clustering of the data
where two or more groups still need to be merged. Their char-
acteristics will appear to be fairly similar when the researcher
is attempting to interpret each cluster. Finally, if no consis-
tency can be found among the rules, the researcher is facing
one of several possibilities. Of course, the stopping rules
might have failed on the empirical data set at hand. A differ-
ent outcome is that there is no cluster structure inherent in the
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data set. Since most clustering routines will produce a parti-
tion (or set of partitions) for any data set, a researcher might
assume that there is a significant clustering present in the
data. This belief induces a bias against a null hypothesis of no
significant clustering in the data in empirical research.

Validation of the Clustering Results

Once the clustering results are obtained, the process of vali-
dating the resulting grouping begins. Several strategies or
techniques can assist in the validation process. This section
covers the topics of interpretation, graphical methods, hy-
pothesis testing, and replication analysis.

Interpretation

An empirical classification will contribute to the knowledge
of a scientific domain only if it can be interpreted substan-
tively. To begin the evaluation process, descriptive statistics
should be computed for each cluster. The descriptive values
can be computed both on those variables used to form the clus-
ters as well as on exogenous variables not involved in com-
puting the clusters. The descriptive information can reveal
important differences and similarities between clusters, and it
can indicate the degree of cohesiveness within clusters.
Skinner (1978) refers to such characteristics as level (cluster
mean or centroid), scatter (variability), and shape (covari-
ances and distribution of data within clusters). Similarly, if
ideal type markers were used in the analysis, their cluster as-
signments can be examined for interpretive information.

A different approach is to use a block diagonal matrix dis-
play (Anderberg, 1973; Duffy & Quiroz, 1991). Although
this technique results in a matrix of numbers, the display ap-
proaches that of a graphical presentation. The process is
based on rearranging the similarity matrix according to the
groups obtained by the cluster analysis. The rows and
columns are reordered to place elements in the same cluster
in consecutive order. The result is ideally a block diagonal
matrix where within-block values represent within-cluster
distances or similarities. Entries outside of the blocks corre-
spond to between-cluster distances. If distinct clusters have
been recovered by the clustering method, the within-block
values should be distinctly different in magnitude when com-
pared to those between blocks. The permuted matrix can be
converted to a graphical display if the cells or blocks are
shaded according to some rule based on the values of the sim-
ilarity measures.

A variety of graphical displays have been proposed in the
classification literature. For example, Andrews (1972) pro-
posed a bivariate plot where data from a high-dimensional

variable space are transformed by means of selected tran-
scendental functions. Andrews argued that similar elements
should produce similar transformed profiles in the plot.
Bailey and Dubes (1982) developed a different type of dis-
play called a cluster validity profile. The profiles were in-
tended to allow for the evaluation of the relative isolation and
compactness of each individual cluster. Kleiner and Hartigan
(1981) presented a set of graphical methods based on natural-
appearing “trees” and “castles.” These displays are best
suited to hierarchical clustering results. An excellent discus-
sion on the use of graphical methods in a clustering context is
found in Jain and Dubes (1988).

Hypothesis Testing

Hypothesis testing is possible in a cluster-analytic situation,
but it can be tricky and full of pitfalls for the unsuspecting
user. Most testing procedures have been developed to deter-
mine whether a significant cluster structure has been found.
Because clustering algorithms yield partitions, applied re-
searchers who see such results tend to assume that there must
be clusters in their data. However, clustering methods will
yield partitions even for random noise data lacking structure. 

There are some significant limitations in the use of tradi-
tional hypothesis-testing methods. Perhaps the most tempting
strategy, given the context of the analysis, is to use an
ANOVA, MANOVA, or discriminant analysis directly on the
variables that were used to determine the clustering. The par-
titions obtained from the cluster analysis are used to define
the groups for the ANOVA or discriminant analysis. An
attempt is made to determine whether there are significant
differences between the clusters. Unfortunately, such an
analysis is invalid. Since the groups were defined by parti-
tions on each variable, an ANOVA or discriminant analysis
will almost always return significant results regardless of the
structure in the data, even for random noise. The fundamen-
tal problem is that one does not have random assignment to
the groups independent of the values on the variables in the
analysis. This result was noted by Dubes and Jain (1979) and
by Milligan and Mahajan (1980). It is unfortunate that many
textbooks on clustering do not emphasize this limitation.

There is a way to conduct a valid inference process in a
clustering context. Valid testing procedures take on one of
several different approaches. The first approach is called an
external analysis, and the test is based on variables not used
in the cluster analysis. The second approach is called an in-
ternal analysis and is based on information used in the clus-
tering process. These two approaches are considered in turn.

External criterion analysis can be performed using standard
parametric procedures. One can test directly for significant

schi_ch07.qxd  9/6/02  12:12 PM  Page 179



180 Clustering and Classification Methods

differences between clusters on variables that were not used in
the cluster analysis. It is critical for the validity of the test that
the variable not be used in forming the clusters.

A different type of external analysis is based on a data par-
tition generated independently of the data set at hand. The
partition can be specified from a theoretical model or obtained
from a clustering of a separate data set. Hubert and Baker
(1977) developed a method to test for the significance of sim-
ilarity between the two sets of partitions. The test is based on
an assumption of independent assignments to groups in the
two partition sets. It is important to note that the Hubert and
Baker method cannot be applied to two clusterings of the
same data set. Doing so would not result in two independent
groupings of the objects in the study.

An internal criterion analysis is based on information ob-
tained from within the clustering process. These analyses are
based on measures that attempt to represent in some form the
goodness of fit between the input data and the resulting clus-
ter partitions. There are numerous ways in which to measure
the goodness of fit. Milligan (1981b) conducted a study of 30
internal criterion indices for cluster analysis. For an extended
discussion of such indices, see Milligan (1981b). Milligan’s
research indicated that indices such as the gamma, C-index,
and tau measures should make an effective measure of inter-
nal consistency.

The advantage to identifying an effective internal criterion
index is that it can serve as a test statistic in a hypothesis-
testing context. The test can be used to determine whether a
significant clustering exists in the data. The main problem
with this approach is the specification of a suitable sampling
distribution for the test statistic under the null hypothesis of
no cluster structure. One can use randomization methods, or
bootstrapping, to generate an approximate sampling distribu-
tion. Milligan and Sokol (1980), Begovich and Kane (1982),
and Good (1982) have all proposed tests based on this strat-
egy. Unfortunately, software support for this form of testing
is not widely available.

Replication Analysis

Replication analysis within a clustering context appears to
have been developed by McIntyre and Blashfield (1980) and
by Morey, Blashfield, and Skinner (1983). Replication analy-
sis is analogous to a cross-validation procedure in multiple
regression. The logic behind replication analysis is that if an
underlying clustering exists in the data set, then one should
be able to replicate these results in a second sample from the
same source and set of variables. There are six steps in a
replication analysis. First, one obtains two samples. This can
be done by taking a random split-half reliability of a larger

data set. Data must be obtained on the same set of variables
in both samples. Second, the first sample is subjected to the
planned cluster process. Once the clusters have been identi-
fied, the cluster centroids are computed from the first sample.
These centroids are used in the next step. Third, the distances
between the data points in the second sample to the centroids
obtained from the first sample are computed. Fourth, each el-
ement in the second sample is assigned to the nearest centroid
determined from the first sample. This produces a clustering
of the second sample based on the cluster characteristics of
the first sample. Fifth, the second sample is subjected to the
same cluster process as used for the first sample. Note that we
now have two clusterings of the second sample. One was ob-
tained from the nearest centroid assignment process, the sec-
ond from a direct clustering of the data. The final step is to
compute a measure of partition agreement between the two
clusterings of the second sample. The kappa statistic or the
Hubert and Arabie (1985) corrected Rand index can serve as
the measure of agreement. The resulting statistic indicates the
level of agreement between the two partitions and reflects on
the stability of the clustering in the data from two samples.

Breckenridge (1989, 1993) extended this approach to
replication analysis and provided performance information
on the effectiveness of the approach. The results reported in
Table 7.9 are from his 1993 simulation study. The column la-
beled “Recovery” indicates the degree of agreement between
the true cluster assignments and the partitions obtained from
the clustering procedure. The column for “Replication” indi-
cates the degree of agreement between the direct clustering of
the second sample and the nearest centroid grouping for the
same sample. Recall that this grouping was based on the
classification from the first sample. The results indicate that
the replication means were close in value to average recovery
for each method. This finding suggests that replication analy-
sis can be used as a validation tool for applied cluster
analysis.

Breckenridge (1993) also reported that replication analysis
can be used to help determine the number of clusters in the

TABLE 7.9 Results From Breckenridge (1993): Mean Recovery and
Replication Values for Error-Free Data

Clustering Method Recovery Replication

�-flexible = −.5 .773 .750
�-flexible = −.25 .761 .738
Single link .440 .350
Complete link .695 .654
Group average .751 .740
Ward’s method .787 .766
Hartigan & Wong k-means: .785 .797

(Ward’s method seed points)

Note. Averages based on 960 data sets.
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TABLE 7.10 Results From Breckenridge (1993): Number of Clusters
Selected by the Scree Test

True
Number Chosen

Number
of Clusters 2 3 4 5 6 7 8 9

2 58 1 0 0 0 0 0 0
3 10 48 1 0 0 0 0 0
4 1 12 45 2 1 0 0 0
5 1 2 11 35 9 1 1 0
6 1 2 5 11 32 5 3 1
7 1 0 6 8 12 22 7 4
8 0 1 0 6 13 8 12 20
9 1 5 5 7 5 5 3 29

data. Results for 480 data sets are presented in Table 7.10. The
columns of the table indicate the number of clusters selected
by a scree test, and the rows represent the correct number of
clusters in the data. Thus, the diagonal of the table corre-
sponds to the correct specification of the number of clusters
identified by the scree test. A scree test is a graphical method
used for visually identifying the change in level of a statisti-
cal measure. In this application the replication values are plot-
ted across the number of groups in the clustering solution. A
notable change in level of the statistic may indicate that the
correct number of clusters has been found. The replication
scree test was able to specify the correct number of clusters in
58% of the cases. When including those cases that were
accurate to within ±1 cluster, 82% of the data sets were re-
solved correctly. Thus, further development of the replication
methodology seems warranted.

DISCUSSION AND EXTENSIONS

The recommendations presented in this chapter are simply
guidelines and not hard and fast rules in clustering. The au-
thors would not be surprised if an empirical data set can be
found for each case that would provide a counterexample
to the suggested guidelines. Since the classification area is
quite active and new research continues to appear, applied
researchers are encouraged to review more recent results as
time progresses. The journals listed as references for this
chapter can serve as a basis for following the current litera-
ture. There is no doubt that further advances will reshape our
knowledge with respect to this methodology.

Use of Clustering in Psychology and Related Fields

Clustering continues to be used heavily in psychology and
related fields. The 1994–1999 editions of the SERVICE
bibliographic database list 830 entries in the psychological

journals alone. Primary areas of application include personal-
ity inventories (e.g., Lorr & Strack, 1994), educational
styles (e.g., Swanson, 1995), organizational structures (e.g.,
Viswesvaran, Schmidt, & Deshpande, 1994), and semantic
networks (e.g., Storms, Van Mechelen, & De Boeck, 1994).
Table 7.11 lists the 130 articles in psychology journals by
subdiscipline for the publication year of 1999, as listed in the
SERVICE bibliography. One can note that the subdiscipline
list in Table 7.11 spans most of psychology with a remarkably
even distribution. In addition, although a number of articles
about clustering appear in methodological journals, this cate-
gory represents only 9% of the publications about clustering
and classification. Thus, clustering and classification research
remains very healthy in psychology with both methodologi-
cal developments and substantive applications appearing
within the literature on a regular basis.

In addition to research within the mainstream psychology
journals, there is a large body of psychological research using
classification techniques in several closely related areas. Some
of the notable areas include environmental geography, where
cluster analysis is used to identify neighborhood structures
(Hirtle, 1995); information retrieval, where clustering is used
to identify groups of related documents (Rasmussen, 1992);
marketing, where there remains a close relationship between
data analysis techniques and theoretical developments
(Arabie & Daws, 1988); social network theory (Wasserman &
Faust, 1994); and evolutionary trees (Sokal, 1985).Arabie and
Hubert (1996) emphasize the last three areas as particularly
notable for their active use of clustering and for their method-
ological advances. Psychologists with an interest in the devel-
opment or novel adaptation of clustering technique are urged
to look toward these fields for significant advances.

Relationship to Data Mining

With a recent explosion of interest in data mining, there has
also been a resurgence of interest in clustering and classifica-
tion. Data mining applies a variety of automated and statistical

TABLE 7.11 Number of Source Articles in Psychology Journals on
Clustering and Classification by Subdiscipline for 1999

Subdiscipline N %

Social/personality 28 21.5%
Cognitive/experimental 22 16.9%
Applied/organizational 16 12.3%
General 16 12.3%
Methodological 12 9.2%
Counseling 9 6.9%
Developmental 8 6.2%
Clinical 7 5.4%
Educational 6 4.6%
Neuroscience 5 3.8%
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tools to the problem of extracting knowledge from large data-
bases. The classification methods used in data mining are
more typically applied to problems of supervised learning. In
such cases, a training set of preclassified exemplars is used to
build a classification model. For example, one might have data
on high- and low-risk credit applicants. Such problems are
well suited for decision trees or neural network models
(Salzberg, 1997). In contrast, unsupervised classification is
closer to the topic of this chapter in that a large number of
cases are divided into a small set of groups, segments, or par-
titions, based on the similarity across some n-dimensional
attribute space. Data-mining problems can be extremely
large, with as many as a half million cases in the case of
astronomical data (e.g., Fayyad, Piatetsky-Shapiro, Smyth, &
Uthurusamy, 1996) or pharmacological data (e.g., Weinstein
et al., 1997). Thus, the use of efficient algorithms based on
heuristic approaches may replace more accurate, but ineffi-
cient, algorithms discussed previously in this chapter.

Han and Kamber (2000) reviewed extensions and variants
of basic clustering methods for data mining, including parti-
tioning, hierarchical, and model-based clustering methods.
Recent extensions of k-means partitioning algorithms for
large data sets include three related methods, PAM (Kaufman
& Rousseeuw, 1987), CLARA (Kaufman & Rousseeuw,
1990), and CLARANS (Ng & Han, 1994), which are based on
building clusters around medoids, which are representative
objects for the clusters. Extensions to hierarchical methods
for large databases include BIRCH (Zhang, Ramakrishnan, &
Linvy, 1996) and CHAMELEON (Karypis, Han, & Kumar,
1999), both of which use a multiphase approach to finding
clusters. For example, in CHAMELEON, objects are divided
into a relatively large number of small subclusters, which are
then combined using an agglomerative algorithm. Other data-
mining clustering techniques, such as CLIQUE (Agrawal,
Gehrke, Gunopulos, & Raghavan, 1998), are based on projec-
tions into lower dimensional spaces that can improve the abil-
ity to detect clusters. CLIQUE partitions the space into
nonoverlapping rectangular units and then examines those
units for dense collections of objects. Han and Kambar (2000)
argued that the strengths of this method are that it scales
linearly with the size of the input data and at the same time is
insensitive to the order of the input. However, the accuracy of
the method may suffer as a result of the simplicity of the
algorithm, which is an inherent problem of data-mining
techniques.

Software Considerations

Applied researchers may face significant problems of access to
user-friendly software for classification, especially for recent

advances and cutting-edge techniques. Commercially avail-
able statistical packages can seldom keep up with advances
in a developing discipline. This observation is especially true
when the methodology is not part of the mainstream statistical
tradition. It is unfortunate that research-oriented faculty are
not able to provide a greater degree of applied software sup-
port. Fortunately, the Internet can facilitate access to the
research software that is available. For example, the Classifi-
cation Society of NorthAmerica maintains a Web site that pro-
vides access to an extensive set of software programs that have
been made freely available to the research community. The site
can be located at http://www.pitt.edu/~csna/.TheWeb site also
provides useful links to commercial software packages, some
of which are not widely known. More generally, a wealth of
information on the classification community can be found at
the Web site.

We still believe that the best advice is for graduate students
to develop some skill in writing code in at least one higher
level language to support their research activities. In some
situations you may just have to write it yourself in order to get
the analysis done. One option, among several, is to gain skill
at writing macros for the S-Plus (1999) software package.
This software package provides a fairly flexible system for
handling, manipulating, and processing statistical data.
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Although clinical and experimental psychologists have made
contributions to the legal system since the early 1900s (e.g.,
see Travis, 1908; Munsterberg, 1908; Wrightsman, 2001)
clinical forensic psychology has thrived as a subspecialty
only for the past 25 years (Otto & Heilbrun, 2002). For the
purposes of this chapter, we adopt the broad definition of
forensic psychology that was crafted by the Forensic Psy-
chology Specialty Council (2000) for submission to the
American Psychological Association (APA), which was ac-
cepted by the APA Council of Representatives in August
2001. Forensic psychology is defined here as “the profes-
sional practice by psychologists within the areas of clinical
psychology, counseling psychology, neuropsychology, and
school psychology, when they are engaged regularly as ex-
perts and represent themselves as such, in an activity primar-
ily intended to provide professional psychological expertise
to the legal system” (Forensic Psychology Specialty Council,
2000). More specifically, we define clinical forensic psy-
chology as assessment, treatment, and consultation that re-
volves around clinical issues and occurs in legal contexts or
with populations involved within any sphere of the legal sys-
tem, criminal or civil. Research areas and methods common
to other applications of psychology to law (e.g., social psy-
chology, experimental psychology, cognitive psychology,
industrial-organizational psychology) are not addressed here;

in this chapter we use the terms forensic psychology and
clinical forensic psychology interchangeably.

With increasing frequency, clinical psychologists have
provided assistance to the legal system by assessing persons
involved in legal proceedings whose mental state is at issue
(e.g., in cases of competence to stand trial, criminal responsi-
bility, guardianship, child custody, personal injury, testamen-
tary capacity) and treating persons who are involved in the
legal system in some capacity (e.g., convicted adults and
juveniles, crime victims). Indicators that clinical forensic
psychology is now a unique subspecialty are numerous and
include the recent designation of forensic psychology as a
specialty area by the American Psychological Association,
development of special interest organizations (e.g., American
Psychology-Law Society–Division 41 of the American Psy-
chological Association), implementation of a specialty board
that credentials persons who practice forensic work at an
advanced level (i.e., American Board of Forensic Psychol-
ogy), establishment of graduate predoctoral, internship, and
postdoctoral specialty training programs in clinical forensic
psychology (see Cruise, 2001, and Packer & Borum, in press,
for reviews), and publication of professional books (e.g.,
Melton, Petrila, Poythress, & Slobogin, 1997; Grisso, 1986;
Rogers, 1997) and scientific journals (e.g., Behavioral Sci-
ences and the Law, International Journal of Forensic Mental
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Health Law and Human Behavior, Journal of Forensic Psy-
chology Practice) devoted to research and practice in clinical
forensic psychology.

Clinical forensic psychologists typically are involved in
one of three pursuits within the legal system—assessment,
treatment, and consultation. This chapter focuses on research
methods and issues that occur in assessment and treatment
contexts, as opposed to those in consultation, which typically
involve working with legal bodies or legal professionals (i.e.,
judges, attorneys). For each task that is unique to clinical
forensic psychology research, we provide examples of the
clinical challenges confronting the psychologist, identify
problems and challenges faced when researching the issues
or constructs, and describe research strategies that have been
employed, their strengths, and their limitations. We do not
discuss in this chapter those research endeavors that may be
relevant to clinical forensic psychology but are not unique to
the specialty.

Assessment of persons involved in the legal system in
some capacity is a major activity for forensic psychologists.
Forensic psychological assessment even has been described
by some as a cottage industry (Grisso, 1987). The majority of
forensic assessment tasks facing psychologists can be classi-
fied as descriptive or predictive. Some forensic activities are
retrospective in nature, insofar as the psychologist is asked to
offer opinions about a person’s mental state at a prior point in
time, such as in criminal responsibility and contested will
evaluations.

DESCRIPTIVE CLINICAL FORENSIC ASSESSMENT

Overview

In a subset of criminal and civil cases, a litigant’s mental state
or psychological functioning may be at issue. In these cases,
triers of fact (i.e., judges or juries) often seek the input of psy-
chologists or other mental health professionals who, as a
function of their expertise, can provide the court with infor-
mation about the person’s mental condition that otherwise
would be unavailable, based on the assumption that this input
results in a better and more accurate legal decision. For ex-
ample, in criminal cases, a defendant’s mental state and emo-
tional functioning may be relevant to his or her criminal
responsibility or competence to proceed with the criminal
process (i.e., to understand the charges or to assist in one’s
own defense). Similarly, a plaintiff’s mental state and psy-
chological functioning also can become an issue in a variety
of civil proceedings, including personal injury litigation,
cases of disputed child custody, testamentary capacity, and
guardianship.

The assessment task in all of the above cases fundamen-
tally is descriptive—that is, the legal system looks to the psy-
chologist to describe the abilities, capacities, or functioning
of the person as they affect or are related to the particular
legal issues at hand. The legally relevant behaviors, capaci-
ties, and skills that the forensic psychologist assesses have
been broadly conceived as psycholegal capacities (e.g., see
Grisso, 1986).

Exactly what the psychologist assesses and describes is
defined and identified by the law, although the assessment
techniques and approach are based on the psychologist’s
knowledge and expertise in psychopathology and human
behavior (see Grisso, 1986, for further discussion of this
issue). For example, when assessing a criminal defendant’s
competence to proceed, although the specific legally rele-
vant elements are determined by the law (i.e., the defen-
dant’s understanding of the legal proceedings, the ability to
work with counsel as it might be affected by mental disorder
or other, related factors), the potentially relevant mental
states and evaluation techniques are determined by the
psychologist. Similarly, although the law regarding testa-
mentary capacity delineates the abilities, knowledge, and
understanding one must have to execute a valid will, the
forensic psychologist examining someone in the context of a
contested will proceeding determines, based on his or her
knowledge of cognitive functioning and mental disorder,
what psychological factors will be addressed and how they
will be evaluated.

Psychologists use various techniques to assess psycholegal
capacities. In addition to employing traditional assessment
methods (i.e., clinical interview; record review; and measures
of psychopathology, intelligence, academic achievement, and
cognitive functioning) psychologists have developed a variety
of special assessment techniques, including those specifically
designed to assess psycholegal capacities (i.e., forensic as-
sessment instruments; see Grisso, 1986; Heilbrun, Rogers, &
Otto, in press).

Psychologists who research psycholegal constructs then
are faced with two separate but related tasks: (a) conducting
research that operationalizes these psycholegal capacities,
and (b) conducting research that examines the utility of vari-
ous techniques and instruments that are designed to assess
these capacities.

Challenges to Researching Psycholegal Capacities

Researching psycholegal capacities presents a number of
challenges, some of which are caused by working in a venue
that is defined by another discipline (i.e., the law), and some
of which are inherent to the task. We describe some of these
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challenges below, including (a) varying definitions of con-
structs across jurisdictions, (b) multifaceted constructs, and
(c) the lack of a gold standard.

Varying Definitions

A unique problem that may be experienced by clinical foren-
sic psychologists researching psycholegal capacities is that
the definition and conceptualization of the constructs they re-
search can vary across jurisdictions and change over time
within a particular jurisdiction as the applicable law changes.
Research focused on criminal defendants’ competence to
confess and waive their Miranda rights provides a good ex-
ample of this difficulty. 

In Miranda v. Arizona (1966) the Supreme Court deter-
mined that the United States Constitution requires that crimi-
nal defendants who waive their Fifth Amendment right to
avoid self-incrimination must do so knowingly, intelligently,
and voluntarily. To meet this requirement, arresting officers
typically inform suspects of their constitutional rights in a col-
loquy that has become well known even to laypersons (You
have the right to remain silent . . .). Less well known by the lay
public is that different jurisdictions employ various “Miranda
warnings,” although the fundamental elements of the various
warnings remain primarily the same (Oberlander & Goldstein,
2001).

Whether waiver of one’s right to avoid self-incrimination
is valid and the resulting confession admissible is determined
on case-by-case basis. The court considers the totality of the
circumstances surrounding the waiver and confession in
reaching a conclusion about admissibility factors specific to
the situation, along with the abilities of the suspect. Grisso
(1981) conducted a program of research examining the abil-
ity of adults and juveniles to comprehend their Fifth Amend-
ment right to avoid self-incrimination and developed four
instruments designed to operationalize these psycholegal
capacities as psychological constructs (Comprehension of
Miranda Rights, Comprehension of Miranda Rights–True/
False, Comprehension of Miranda Vocabulary, and Function
of Rights in Interrogation; Grisso, 1998). Grisso subse-
quently examined the psychometric properties of these in-
struments and normed them on both adults and juveniles,
some of whom were involved in the criminal justice system
and some of whom were not. Revised versions of these in-
struments are now used by psychologists in the context of
Miranda waiver evaluations. Of some interest is that the
Miranda warning language employed in Grisso’s measures is
that used by law enforcement officials in St. Louis county in
the 1980s. This language, of course, may differ from the
Miranda language provided to criminal defendants in other

jurisdictions, and this issue has been raised on occasion to
challenge the external validity of the instruments and test
findings in particular. Researchers need to be aware of these
differences as they plan studies to construct and evaluate
instruments designed to assess such capacities. 

Assessing and Researching Multifaceted Constructs 

Another challenge that clinical forensic researchers face is
operationalizing and researching multifaceted psycholegal
issues or constructs. The child custody arena provides per-
haps the best example of this challenge. In those instances
when divorcing parents cannot reach agreement about cus-
tody of their minor children, judges are left to make decisions
about custody and placement based on the “best interests of
the children.” In these cases, judges and attorneys sometimes
look to psychologists to provide the court with a better un-
derstanding of the children’s needs, the parents, and the par-
ents’ abilities to meet their children’s needs. Essentially all
states have attempted to define and operationalize what they
consider to be the best interests of the child, at least insofar as
they have identified factors that judges must consider in
making custody and placement decisions (i.e., the child’s
emotional, educational, and physical needs; the emotional
functioning and adjustment of the parents; the nature and
quality of the relationship between the parents and the child;
the stability of the child’s current and proposed environ-
ments; the willingness of each parent to foster a relationship
between the child and the other parent). Nevertheless, differ-
ent states define the standard in different ways and direct
judges to consider different factors. Even the casual observer
can conceive of circumstances in which the factors that are to
be considered may suggest different outcomes and decisions.
For example, the custody decision that might be best for a
child’s emotional adjustment may not be best with respect to
fostering a continuing relationship with the noncustodial par-
ent. Similarly, one parent may do best at meeting a child’s
educational and academic needs, while the other may most
ideally respond to the child’s emotional needs. Whether and
how the various factors are to be weighed is not specified,
and judges are not provided a legal calculus for arriving at an
ultimate decision. This makes defining, researching, and as-
sessing this psycholegal construct (the best interests of the
child) particularly difficult.

Lack of a Gold Standard

A final problem facing clinical forensic researchers is the lack
of a gold standard to define or identify a construct. This prob-
lem is not unique to research in clinical-forensic psychology.
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For example, there is no gold criterion or absolute standard
for any mental disorder, despite what proponents of the
Diagnostic and Statistical Manual–Fourth Edition (DSM-IV;
American Psychiatric Association, 1994) might argue. After
all, the DSM-IV diagnoses represent little more than consen-
sus judgments. Because psycholegal capacities are based on
legal constructs, identifying a criterion is difficult. For exam-
ple, the ultimate threshold judgment of whether a criminal
defendant is competent or incompetent, whether a child’s
best interests are served by living with his or her mother or
father after a divorce, whether someone is or is not capable of
managing his or her legal and financial affairs, or whether
someone is capable of consenting to a proposed psychologi-
cal or medical intervention are all ultimately moral-legal de-
cisions that are to be made by the legal decision maker
(Slobogin, 1989). As is described in more detail in the fol-
lowing section, when developing, researching, and evaluat-
ing instruments that are designed to assess these various
capacities, forensic psychologists must operationalize ab-
stract constructs and employ proxy criteria. 

Research Strategies 1: Operationalizing
Psycholegal Constructs and Assessing the
Validity of Assessment Techniques

As noted previously, regardless of the psycholegal capacity at
issue, the researcher’s first task is to operationalize and define
a construct that ultimately is a legal one, and that has no true
or absolute definition. Next, as researchers develop instru-
ments or approaches designed to assess a particular psy-
cholegal capacity, they must evaluate the validity of their
assessment techniques. Researchers employ a variety of
strategies as they try both to operationalize psycholegal crite-
ria and to assess the validity of instruments designed to assess
particular psycholegal capacities. 

Surveys of the Literature

In some cases, researchers have attempted to operationalize
or define a particular psycholegal capacity based on a review
of the relevant scientific and legal literatures. For example,
Ackerman and Schoendorf (1992) developed the Ackerman-
Schoendorf Scales for Parent Evaluation of Custody
(ASPECT), an assessment battery designed for use in cases
of contested custody to identify the parent who is best able to
meet the child’s needs. So that their battery would identify
and assess factors that the legal decision maker (i.e., the
court) considered relevant to child custody decision making
and the best interests of the child, the authors surveyed the
published legal and mental health literatures addressing child

custody. The value of this approach is that it ensures consid-
eration of factors that are likely to be relevant to defining a
particular psycholegal capacity. Accordingly, it should result
in a conceptualization (and associated assessment approach)
that has face validity, which may be particularly important in
legal contexts (see Grisso, 1987). This approach, however,
requires considerable judgment and discretion on the part
of the professional who reviews the literature, particularly
in those instances in which there is a lack of consensus or
difference of opinion expressed. 

Polling Experts

Researchers seeking to operationalize psycholegal capacities
also have attempted to do so by surveying professionals
whose opinions are thought to be relevant to the issue of in-
terest. Those surveyed can be legal professionals, mental
health professionals, or a combination of both. An example of
this approach is provided by Jameson, Ehrenberg, and Hunter
(1997), who surveyed a sample of psychologists from British
Columbia with experience conducting child custody evalua-
tions; the psychologists were asked about their opinions
relating to child custody decision making and the standard
of the best interests of the child. Such surveys can provide
helpful information regarding how persons in the field con-
ceptualize a particular issue, but there are several limitations.
Perhaps most importantly, the value of such surveys can be
limited by the population sampled. In the example just
cited, although the opinions of psychologists from British
Columbia with respect to matters of child custody are inter-
esting, they certainly do not settle the issue because matters
of custody ultimately are moral-legal ones (Slobogin, 1989).
But even polling members of the bar (either judges or attor-
neys) can pose problems, as questions can be raised about the
representativeness of the samples utilized. Finally, questions
of sample appropriateness aside, test developers or re-
searchers may find themselves in awkward situations when
the opinions of the sample polled are discordant with the pre-
vailing law as it is understood.

Theory-Based Development

In some cases researchers attempt to define forensic psy-
cholegal constructs and to develop techniques designed to
assess these constructs based on legal theory. As an example,
the MacArthur Competence Assessment Tool–Criminal
Adjudication (MacCAT-CA; Poythress et al., 1999), which is
designed to assess a defendant’s competence to participate in
the criminal process, is based in part on Bonnie’s (1993) the-
ory of adjudicative competence. Like the literature review
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strategy previously described, this approach benefits from
face validity that is particularly important in legal contexts
(Grisso, 1987), but it is limited insofar as the assessment ap-
proach or technique developed is anchored in a particular the-
ory that may or may not be consistent with the law as it exists
or as it may evolve.

Research Strategies 2: Assessing the Utility of
Assessment Techniques

Only after a psycholegal capacity is adequately defined and
operationalized can psychologists develop approaches to as-
sess the capacity. These assessment approaches then must be
assessed and validated before they can be used for decision-
making purposes (American Educational Research Associa-
tion, American Psychological Association, National Council
on Measurement in Education, 1999). Many of the basic psy-
chometric properties of these assessment techniques (e.g.,
scale consistency, inter-rater reliability, test-retest reliability)
can be evaluated in much the same way as one evaluates tra-
ditional measures of intelligence, academic achievement, and
psychopathology. More difficult, however, is assessing the
validity of these assessment techniques given the unique
nature of the constructs they assess. 

Predicting Judges’ Decisions or Legal Outcomes

One validation strategy sometimes employed by researchers
is to examine the relationship between classifications based
on the examinee’s test performance and the legal outcome.
For example, Ackerman and Schoendorf (1992) offer as sup-
port for the validity of the ASPECT (see this chapter’s section
titled “Surveys of the Literature” for a description) that 75%
of the parents identified as the better parent by their instru-
ment were awarded custody by the court. Similarly, as evi-
dence of the validity of the Bricklin Perceptual Scales (BPS),
which are used to identify a child’s parent of choice in the con-
text of child custody, the author (Bricklin, 1990) cited a high
rate of agreement (94%) between BPS classifications and
judges’ ultimate decisions regarding custody and placement.

Although in some circumstances such analyses can be en-
lightening (e.g., it may be particularly important to know
whether judges’ decisions and classification on a particular
forensic assessment instrument are highly negatively corre-
lated), high rates of agreement between the legal decision
maker’s conclusions and classifications based on the forensic
assessment instrument do not settle the issue. If such logic is
followed and judges’ decisions are adopted as the gold stan-
dard, then there is little reason to spend time developing as-
sessment techniques to inform or influence judges’ opinions.

Of course, when such an approach is used it is particularly
important that the decisions of judges or legal decision mak-
ers’ decisions not be based, in full or in part, on how the liti-
gant performed on the assessment instrument. If such is the
case, criterion contamination occurs and renders any positive
findings of limited value (see Otto & Collins, 1995, and Otto,
Edens, & Barcus, 2000, for further discussion of this issue in
the context of the ASPECT and BPS previously described).

Evaluating Agreement Between Test Classification and
Clinicians’ Assessments of the Psycholegal Construct

Another approach similar to that previously described that has
been employed to evaluate the validity of forensic assessment
instruments is to examine agreement between the classifica-
tion offered from the assessment instrument and independent
clinical assessments of the relevant capacity. An example of
this approach is provided by Bricklin and Elliott (1997) in
their discussion of the validity of the Perception of Relation-
ships Test (PORT), which is described by the test developer as
a child custody evaluation measure that assesses the types of
interactions a child has with each parent and the degree to
which a child seeks psychological closeness with each parent.
Bricklin and Elliott reported that they administered the PORT
to a sample of 30 children in order to identify a primary care-
taker, and also had clinicians offer similar opinions based on
observed parent-child interactions. In over 90% of the cases
there was agreement between the clinicians’ identified parent
of choice and the parent of choice identified by the PORT re-
sults, leading them to conclude that the PORT validly assesses
childrens’ perceptions of their parents.

In this section, we discussed descriptive forensic psycho-
logical assessment tasks and research. These tend to focus on
psycholegal capacities at the time of the evaluation (i.e., ad-
judicative competence) or at some time in the past (i.e., men-
tal status at the time of the offense, testamentary capacity).
Some of the challenges to research include varying legal def-
initions, multifaceted constructs, and the lack of criteria es-
tablishing a gold standard. Researchers have attempted to
overcome these challenges by conducting surveys of the lit-
erature, polling experts, using theory-based development,
predicting legal outcomes, and evaluating the correspon-
dence between test classifications and clinicians’ judgments. 

In other contexts, however, a variety of other research
challenges and corresponding research strategies exist. Legal
decision makers often ask mental health professionals to in-
form decisions that are based not on current functioning, but
rather on what persons might (or might not) do at some point
in the future, how they might (or might not) behave, and how
well (or poorly) they will function in one setting versus
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another. It should be clear even before these tasks are de-
scribed that there are a number of complexities involved in
the research endeavors involved in our next main topic—
predictive forensic assessments.

PREDICTIVE CLINICAL FORENSIC ASSESSMENT

Overview

There are many circumstances in which the future behavior
or functioning of persons is a defining element of a legal deci-
sion, and for which clinicians often are called upon to offer ex-
pert opinions. The legal settings in which such decisions are
required are varied, including much more than criminal courts
and judicial decisions, such as civil courts, family courts, spe-
cialty courts (i.e., mental health courts, drug courts), and ad-
ministrative tribunals of many kinds (i.e., parole boards,
workers compensation boards). In addition, clinicians in many
applied settings, such as mental health clinics, psychiatric fa-
cilities, forensic hospitals, juvenile residential treatment facil-
ities, and correctional institutions, often are asked to forecast
the future behavior of their clients-patients, particularly with
respect to violence, suicide, and treatment response. Some of
the more common clinical questions that require predictive as-
sessments include (a) violence risk; (b) child, parental, and
family functioning; and (c) treatment and intervention re-
sponse. Concerning violence risk assessment, which has pre-
viously been described by terms such as violence prediction,
risk prediction, prediction of dangerousness, and dangerous-
ness assessment, mental health professionals are asked in
dozens of legal settings about the likelihood that persons will
act violently in the future. Shah (1978) identified 15 such set-
tings in criminal justice and mental health over 20 years ago.
Lyon, Hart, and Webster (2001) recently identified 17 points in
Canadian law in which risk assessment is required by statute
or regulation. The term violence risk assessment is used
broadly in this chapter to refer to the assessment of risk for nu-
merous types of antisocial behavior, such as general violence
(i.e., homicide, battery, armed robbery), as well as more spe-
cialized forms of violence, such as sexual violence, domestic
violence, and stalking.

In some contexts, such as civil commitment proceedings
for sexual offenders, the question is fairly narrow and specific
(is the individual likely to commit a violent sexual crime in
the future?). There are currently 16 states with such legisla-
tion. Although there are variations among these laws, most
define sexual predators as persons charged with or convicted
of sexually violent offenses who have a mental abnormality,

personality disorder, or paraphilia that makes them likely to
commit future acts of sexual violence. These laws allow for
postsentence civil commitment. 

Other contexts require consideration of different types of
violence, different severities of violence, or violence that
might take place within different time frames (imminent vs.
eventual risk). As with descriptive clinical forensic assess-
ment, there typically is some source of legal authority (i.e.,
statutes, cases, bylaws, and administrative policies) that
specifies the types of behavior that are to be forecast. How-
ever, beyond this minimum specification, the mental health
professional must decide how best to proceed to be optimally
informative to the legal decision maker. 

In some settings, the legal source is far removed. For in-
stance, the clinical management of a private psychotherapy
patient or even the inpatient management of a psychiatric or
forensic patient is not carried out in order directly to inform a
specific legal decision that must be made (as is the case in
many other risk assessment contexts). However, to the extent
that service providers have legal duties in such contexts to
prevent violence or to provide a safe workplace, then there
are existing standards under tort and malpractice law—or
perhaps professional practice and ethical standards—that
would in effect serve as the legal authority to which clini-
cians or agencies would be held.

In the child and family context, there are several instances
in which mental health professionals might be involved in
forecasting future circumstances, and the adjustment thereto
of children, parents, and families. Child custody cases are
one important example. Although involving a strong descrip-
tive assessment element, as reviewed in the previous section,
child custody assessments also involve a substantial future-
oriented component. The purpose of custody evaluations or,
more precisely, legal proceedings to determine custody, is
to decide which of numerous possible future scenarios of liv-
ing arrangements best suits the interests of the child(ren),
given the present and predicted future adjustment and social
functioning of the children and their parents under various
conditions (e.g., joint custody, sole custody with mother, sole
custody with father). 

Forecasting treatment response or amenability to certain
interventions is relevant in numerous legal contexts, just as it
is in nonlegal settings as well. In civil disputes, for example,
a plaintiff’s (i.e., the person who brings the cause of action
and alleges wrongdoing by others that caused injury) pro-
jected course of recovery often will be relevant to the legal
determinations of injury and damages. 

Under tort law, there must be some sort of injury suffered
by the plaintiff in order for that person to be compensated.
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Most relevant to the present discussion is the concept of
psychological injury, also variously known as emotional
shock, nervous shock, psychiatric damage, or emotional in-
jury. This is a controversial subject with differing legal
standards—ranging from liberal to conservative—in terms of
compensability across jurisdictions (see Douglas, Huss,
Murdoch, Washington, & Koch, 1999). Most commonly,
such injuries would arise from criminal or accidental victim-
ization. In the former cases, a defendant might be held liable
for the “intentional infliction of nervous shock,” in addition
to other injuries (such as the tort of battery). In the latter
cases, the law of negligence typically applies to psychologi-
cal injuries suffered as a result of motor vehicle and other
accidents.

In addition to descriptive assessment issues such as the
severity of psychological injury, civil courts may want to
know the typical course of psychological recovery from
the trauma at issue, promising treatment approaches, and
whether they will be able to “restore” the person’s condition
to preinjury status, which is the theoretical purpose of tort
law. These questions might relate to emotional functioning
(i.e., posttraumatic stress disorder, acute stress disorder, de-
pression) or neurocognitive functioning (i.e., executive dys-
function, memory impairment, and restoration of cognitive
function relevant to traumatic brain injury). 

Challenges to Researching Predictive Assessment

In this section, we discuss common threats to the validity and
reliability of forensic research endeavors that attempt to eval-
uate predictive assessment tasks. We recommend method-
ological or statistical procedures to safeguard against these
potential pitfalls. The context for this discussion centers pri-
marily around violence risk assessment, one of the more
common predictive forensic assessment tasks and research
endeavors.

Varying Legal Definitions of Important
Outcome Measures

Although forensic research ultimately is about human
behavior, there is a very important constraint on its
generalizability—the law. In most other research applica-
tions, concerns over external validity are based on participant
characteristics, cultural factors, or design issues (i.e., how
were participants selected for the study?). These concerns
exist in forensic assessment research as well. The law, how-
ever, imposes on the researcher an additional set of general-
izability concerns. As previously noted, research carried out

in one jurisdiction may not generalize to another for the sim-
ple reason that the laws differ between them. Similarly, legal
principles, standards, and tests may differ between related but
different legally substantive settings as well. 

To illustrate the problem that this may pose to forensic
assessment research (and practice), we can consider the case
of violence risk assessment. On its face, the task may seem
quite simple conceptually—evaluate a person by some
reasonable method and give an opinion about risk for future
violence. However, the law introduces a number of complex-
ities that belie this seeming simplicity. For instance, what is
the type of violence that is legally relevant in the particular
setting and jurisdiction? For some legal issues and in some
jurisdictions, only serious physical harm will satisfy the legal
test. For instance, although most civil commitment statutes
require risk for bodily harm or physical violence, some juris-
dictions permit less serious forms of violence to satisfy the
legislative requirement (Melton et al., 1997). The complicat-
ing nature of jurisdiction is daunting enough within the
United States. Given the global nature of research, however,
there is really no reason to fail to consider legal contexts
beyond the United States; this is particularly so given the
tendency for contemporary risk assessment instruments to be
translated for use in foreign countries. Ethical principles
about researchers’ responsibility for how their research is
used would suggest at least some cause for being aware of the
use of such research in other countries, particularly if permis-
sion is granted to translate copyrighted works (implying
preknowledge of anticipated use).

In more specialized legal settings, the nature (sexual vio-
lence), victim (domestic violence), or context (violence in the
context of stalking) of violence is specified. Further, differing
legal standards might impose constraints on the imminence
or duration of risk that is relevant. In traditional civil com-
mitment proceedings, for instance, there typically must be
some concern about a person’s imminent risk for violence.
Contrast this to civil commitment under sexual predator laws,
in which the legally relevant duration for risk can be decades
long (e.g., see Florida Statues 394.910–394.931). In certain
jurisdictions and settings, the law might require that particu-
lar risk factors form part of the assessment. Depending on the
context, there might be differing standards concerning the de-
gree of risk (or the likelihood of violence) that is required for
the law to be satisfied, and for the degree of certainty that the
court must have about this degree of risk.

In essence, risk assessment is clinically and legally com-
plex and multifaceted. Depending on legal jurisdiction and
setting, evaluators and researchers must be concerned about
different definitions and operationalizations of severity,
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imminence, duration, frequency, target, likelihood, nature,
certainty, context, and specified factors relevant to risk as-
sessment (Hart, 2001, in press; Mulvey & Lidz, 1995).
Any of these dimensions can vary across settings and juris-
dictions, and researchers and clinicians ought to be aware of
those that apply in the settings in which their work is located.
This is a problem that is inherent to research and practice
activities of clinical psychology situated within the legal con-
text (Ogloff & Douglas, in press).

How do these varying legal standards across settings and
jurisdictions translate into clinical forensic assessment prac-
tice and research? A first step to tackling the multiplicity of
relevant applications of risk assessment (and, in fact, of any
forensic assessment application) is to conduct a psycholegal
content analysis of the germane substantive area in which
research (or practice) is to be carried out (Douglas, 2000;
McNiel et al., in press; Ogloff & Douglas, in press). This in-
volves (a) identifying the relevant primary legal authority—
typically a statute—that governs the assessment task that will
be the object of study, (b) isolating the pieces of the legal au-
thority that will apply most directly to the assessment task,
(c) evaluating how sources of supporting law—typically
cases—have interpreted and applied the primary authority,
(d) distilling legal principles from the statute and support-
ing interpretive sources of law, and (e) applying psychologi-
cal knowledge to the legal concepts and principles that were
derived in steps a through d. This procedure can lay the
groundwork for conducting legally relevant and appropri-
ate research within legal or forensic settings. 

Researchers and clinicians must bear in mind that the gen-
eralizability of their findings will be limited by these legal
factors. In some cases, there is little one can do to counter this
limiting factor. For instance, research on the long-term re-
cidivism of sexual offenders will have little generalizability
to and hence be minimally informative with respect to immi-
nent risk posed by acutely mentally ill persons being consid-
ered for involuntary civil commitment. Researchers can,
however, promote the generalizability of their findings by in-
corporating, to the degree that is methodologically feasible, a
number of the aspects of risk previously described. For in-
stance, evaluating the relationship between a risk assessment
measure and differing severities or types of violence (see
Douglas, Ogloff, Nicholls, & Grant, 1999; McNiel & Binder,
1994a, 1994b) over different time periods (Quinsey, Harris,
Rice, & Cormier, 1998; Rice & Harris, 1995), and using dif-
ferent classes of persons (Estroff & Zimmer, 1994) could be
accomplished in a single research study. Similarly, evaluating
the role of different risk factors within single studies has be-
come common in risk assessment research, typically through
the construction or evaluation of risk assessment measures

(Douglas et al., 1999; McNiel & Binder, 1994a, 1994b;
Monahan et al., 2000, 2001; Quinsey et al., 1998; Steadman
et al., 2000).

Insensitive Predictor and Outcome Measures

In the context of violence risk assessment, Monahan (1988;
see also Monahan & Steadman, 1994a) wrote that previous
research efforts had suffered from “impoverished predictor
variables” and “weak criterion variables” (Monahan, 1988;
pp. 251, 253). By this he meant that complex clinical phe-
nomena such as psychopathology commonly were reduced to
gross categorizations such as psychotic-nonpsychotic. Simi-
larly, outcome measures considered only a single source
and were coded simply as violent-not violent. Clearly, such
methodological operationalizations oversimplify the con-
structs they purport to measure. As a result, they obscure
meaningful relationships that might exist among the data.

To avoid this shortcoming, Monahan encouraged re-
searchers to define and measure risk factors in more complex
ways that more accurately reflect the actual nature of the risk
factors (Monahan, 1988; Monahan & Steadman, 1994a). A
good example is psychopathology. Rather than define major
mental illness grossly as psychotic-nonpsychotic, researchers
started to evaluate the role of certain diagnostic classes of dis-
orders (Binder & McNiel, 1988; Eronen, Hakola, & Tiihonen,
1996a, 1996b; Hodgins, Mednick, Brennan, Schulsinger, &
Engberg, 1996; McNiel & Binder, 1994a, 1994b, 1995;
Räsänen et al., 1998) and certain types of psychotic symptoms
(Appelbaum, Robbins, & Monahan, 2000; Link & Stueve,
1994; Monahan et al., 2001; Swanson, 1994; Swanson,
Borum, Swartz, & Monahan, 1996). In so doing, a fairly ro-
bust relationship has been observed between certain aspects
of mental illness, rather than mental illness per se and vio-
lence. It is important to note that not all research has observed
positive relationships between indexes of disorder and symp-
toms. Nonetheless, this approach is able to evaluate which
aspects of mental disorder are and are not related to violence,
at least under certain conditions.

Researchers also have drawn on risk factors that are sup-
ported by theory. For instance, contemporary models and
measures of psychopathy (Hare, 1991, 1996), anger (Novaco,
1994), psychotic symptoms (Link & Stueve, 1994; McNiel,
1994) and impulsivity (Barratt, 1994) have promoted more
thoughtful and systematic evaluation of their contribution to
risk for violence (see Monahan & Steadman, 1994b).

Similarly, with respect to violence as an outcome, it has
come to be recognized that (a) measurement from a sin-
gle source and (b) simple operationalizations of violent-
nonviolent are not adequate. As risk is multifaceted, so too is
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violence—it can vary in severity, frequency, rate, timing, tar-
get, motivation, and context. Using a single source (e.g.,
arrest records) to measure violence is guaranteed to underes-
timate the actual occurrence of violence, and likely its actual
severity due to the fact that many violent acts go unreported.
Moreover, arrest records are often bereft of detail concerning
the nature of violence, context, targets, and so forth. Such dif-
ficulties are magnified when other sources are used as indica-
tors of violence (e.g., criminal convictions). 

Use of a single source for recording outcome criteria also
makes research subject to the peculiar biases of each type of
outcome source (Mulvey & Lidz, 1993). For instance, arrest
records may underestimate the true nature of violence, self-
reports also may underestimate occurrence and severity of
violence, and collateral reports may suffer from memory bi-
ases. Using multiple sources, each of which compensates for
the weaknesses of others, is a sound approach. Some re-
searchers (Monahan et al., 2001) have developed scales for
measuring violence that are intended to capture a range of
severities. Other researchers incorporate severity in other
ways, typically by distinguishing between physical and non-
physical violence (Douglas et al., 1999; McNiel & Binder,
1994a). Further, most studies use more than one source to de-
tect violence. For instance, in two large-scale, prospective
risk assessment projects using civil psychiatric samples, the
researchers were able to use official arrest records, collateral
interviews, and self-reports of patients (Lidz, Mulvey, &
Gardner, 1993; Monahan et al., 2000, 2001), increasing the
likelihood of adequate detection of criterion violence.

The importance of this issue cannot be overemphasized.
For instance, using official records as the only source of vio-
lence detection among a large sample of civil psychiatric pa-
tients who had been released into the community, Mulvey,
Shaw, and Lidz (1994) reported a base rate of violence of
12% (73 of 629 individuals). When the methodology was ex-
panded to include self- and collateral reports of violence, this
base rate rose dramatically to 47% (293 of 629 subjects).
Similarly, in another large-scale sample of close to 1,000
civil psychiatric patients, Steadman et al. (1998) reported a
1-year base rate of serious violence of 4.5% when using
agency reports only; when participant and collateral reports
were added, the base rate rose to 27.5%. These differences in
base rate could affect the statistical analyses used to evaluate
the predictive utility of a risk factor or assessment measure.
Such differences in base rates will affect the maximum effect
size obtainable under most statistical procedures. Rice and
Harris (1995), for example, reported that the correlational
index (�) used in their research with a large sample of foren-
sic psychiatric patients increased from .25 to .40 under corre-
sponding base rates of 15% and 50%.

Dichotomous Legal Outcomes Versus Continuous
Psychological Outcomes

Law and psychology differ on numerous conceptual and epis-
temological bases. One of these is certainty versus probabil-
ity (Haney, 1980). That is, the law demands certainty,
whereas psychology—particularly academic or research
psychology—is inherently probabilistic. Even though legal
standards such as preponderance of evidence, beyond a rea-
sonable doubt, or balance of probabilities certainly imply a
probabilistic approach to legal decision making, it is equally
clear that decisions and outcomes in law are absolute—
persons either are or are not guilty, liable, dangerous, unfit,
and so forth. There is no such thing in law as a person being
found “likely guilty, within 95% confidence.” A person is
guilty although the evidence that supports this decision only
needs proof beyond a reasonable doubt.

In some contexts, the law recognizes the continuous nature
of constructs such as risk. For instance, the language used in
many statutory regimes contains references to risk and other
related concepts. There may be some conceptual overlap
between psychology and law in these domains. Even here,
however, the law must come to an absolute, dichotomous
decision that a person is or is not at such a level of risk that sat-
isfies whatever legal test is relevant, and hence justifies state-
sanctioned deprivation of liberty or other restriction of rights.
Even though risk is inherently probabilistic and continuous,
the law must dichotomize it or cut the continuum into risk that
meets statutory requirements and risk that does not.

In general, then, the most legally relevant clinical out-
comes and criteria are dichotomous (i.e., rearrested or not). In
research, however, it is a truism that to dichotomize is to lose
information. To retain some legal external validity, however,
coding for and analyzing outcomes in legally relevant ways is
recommended, in addition to the perhaps more sophisticated
and appropriate conceptualization of human behavior as a
complex, continuous phenomenon. In this way, research can
optimally inform legal reality, as well as contribute to under-
standing of human behavior on a more basic level.

Low and Varying Outcome Base Rates

Criterion variables that occur infrequently (i.e., low base
rates) are difficult to predict. More precisely, base rates that
deviate substantially from .50, whether low or high, attenuate
effect sizes of many statistical procedures. As such, a base
rate of .95 would be as problematic as .05 in terms of pre-
dicting the occurrence of the criterion. The problem of low
base rates was in fact one of the critical focal points in early
risk assessment research. Commentators argued that violence
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by persons with mental illness was simply too rare to permit
meaningful analyses. Since that time, methodology has im-
proved substantially, and, as it turns out, base rates are not as
low as was previously believed. Steadman et al. (1998), for ex-
ample, reported that 61% of the patients in their large-scale
risk assessment study were violent in the community within
1 year of release, and 28% seriously so. Lidz et al. (1993) re-
ported a 45% base rate of violence over 6 months among 714
patients evaluated in a psychiatric emergency department.

Researchers have developed several methodological and
statistical procedures to ensure that the problem of low base
rates does not preclude meaningful scientific inquiry. First,
as suggested above, methodological procedures surrounding
data collection have been strengthened to include multiple
sources of information. In early studies, arrest records
typically were used as the sole indication of violence. As
discussed above, researchers have since recognized the inad-
equacy of this approach, and commonly employ a combina-
tion of sources—such as self-report, collateral report, clinical
files, hospital records, and incident reports (Mulvey &
Lidz, 1993).

The second general approach to deal with base rate issues
is to define outcome criteria broadly. For instance, violence
can be defined as any attempted, actual, or threatened harm to
a person that is nonconsensual (Boer, Hart, Kropp, &
Webster, 1997; Webster, Douglas, Eaves, & Hart, 1997). As
Mulvey and Lidz (1993) pointed out, however, such liberal
definitions actually may make outcome variables less rele-
vant to legal decisions by incorporating a good deal of fairly
trivial behavior that would not satisfy most legal tests. An ad-
visable procedure is to adopt a broad definition of violence,
but to distinguish between less and more serious forms of
violence in coding and analyses (i.e., Douglas et al., 1999;
McNiel & Binder, 1994a, 1994b; Monahan et al., 2000, 2001;
Steadman et al., 1998), which permits some flexibility in
terms of choosing relevant outcome variables. 

Finally, it has been common in the published risk as-
sessment research to use certain statistical procedures that
are much less sensitive to base rate problems than are tra-
ditional statistical procedures such as correlation or regres-
sion. Primary among these are the areas under receiver
operating characteristic (ROC) curves (Metz, 1978, 1984;
Mossman & Somoza, 1991). Rice and Harris (1995)
showed that across differing base rates of violence in their
sample, traditional indexes of accuracy and association
varied by up to 37.5%, whereas the areas under ROC
curves remained stable. This analysis is recommended, and
has become standard in the analysis of data in risk assess-
ment research (Douglas et al., 1999; Monahan et al., 2000,
2001; Quinsey et al., 1998; Steadman et al., 2000). In

theory, it could be applied to any data containing a di-
chotomous outcome and continuous predictor.

Ethical Constraints

In all areas of research, ethical considerations prohibit certain
methodological approaches. Although all research ethical
guidelines that apply generally in psychology also apply to
forensic assessment, some additional ethical factors delimit
the scope of research in a manner that directly affects
methodological soundness. The first has to do with restriction
of range, and is really a matter of public policy and law in ad-
dition to professional ethics. That is to say, although a given
risk assessment measure will be applied to all persons who
are, for example, referred for parole, it can only be validated
on the portion of that sample that actually is released. This re-
stricts the range of participants and likely of risk factor vari-
ance that otherwise would have been observed. Even the best
validated risk assessment instruments, then, are based on
samples of restricted range. 

The extent to which this affects the psychometric proper-
ties of instruments is unclear. Little can be done methodolog-
ically to combat this problem because to do so would require
releasing all persons from correctional and forensic institu-
tions, regardless of concerns about future violence. One strat-
egy is to measure the released and nonreleased persons on
key variables (i.e., age, race, important clinical variables and
risk factors), and control for these in analyses. 

The second methodological limit in predictive research
arising from ethical constraints is what we call intervention
effects: In most settings, when an assessment of high risk is
made, intervening steps are (and should be) taken to prevent
violence (or whatever the adverse event of concern happens
to be). To do otherwise for the sake of research would be eth-
ically impermissible. Despite our agreement with this reality
from clinical, ethical, and policy perspectives, the case re-
mains that it seriously hampers the ability to conduct predic-
tive research in forensic settings. In essence, this problem is
analogous to obtrusive measurement. By measuring a per-
son’s risk, we change his or her later behavior that would
serve as the ultimate criterion in terms of validation (because
we have to intervene to prevent the behavior we fear might
occur).

To circumvent this problem, most research adopts proce-
dures that parallel actual practice as closely as possible, but
do not actually form part of clinical practice (Douglas &
Kropp, in press). For instance, participants can be evaluated
clinically for research purposes, with information being un-
available for decision-making purposes. This is essentially
the procedure that has been followed in several contemporary
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studies of risk assessment measures (Douglas et al., 1999;
Monahan et al., 2000, 2001; Quinsey et al., 1998). However,
some fruitful research that has relied on actual practice has
been published. For instance, Dale McNiel and colleagues
have led a productive program of research on risk assessment
and violence among civil psychiatric patients (see, e.g.,
Binder & McNiel, 1988, 1990; McNiel & Binder, 1987, 1989,
1991, 1994a, 1994b, 1995; McNiel, Binder, & Greenfield,
1988; McNiel, Sandberg, & Binder, 1998) using the clinical
judgments of mental heath professionals in a large psychiatric
facility. Lidz et al. (1993) were able to use the actual clinical
judgments of psychiatrists in their study of the clinical pre-
diction of violence.

In this subsection, we have identified obstacles to sound
research endeavors in predictive assessment, including vary-
ing legal definitions of outcome criteria, insensitive predictor
and outcome measures, dichotomous versus continuous con-
ceptualizations of outcome criteria, and low or varying base
rates, as well as research limitations placed by ethical con-
cerns. We have described several strategies that can be used
to overcome—or at least minimize the harm from—these ob-
stacles. In the next subsection relevant to predictive assess-
ment, we describe in more general terms methodological and
statistical approaches that forensic researchers have taken or
could take to answer common predictive forensic assessment
research questions, including evaluations of the relationship
between (a) individual predictors and outcome, (b) multiple-
variable scales and outcome, or (c) clinical decisions (that are
based on the predictors or scales) and outcomes.

Research Methods for Predictive Assessment

Research Strategies

Given that the research task is predictive, one might assume
that most research strategies also are predictive or truly
prospective. However, given the resources required to conduct
a true predictive study, researchers have employed other
designs as well, such as retrospective and pseudoprospective
designs. The utility of repeated-measures prospective designs
and that of case-crossover designs also are discussed.

Retrospective or postdictive designs are perhaps the most
limited in terms of validating predictive forensic assessment
research questions, although they provide the benefits of low
cost and time burden. In these designs, the predictor in ques-
tion, be it a putative risk factor or a full measure, is evaluated
in terms of its ability to predict past outcome criteria. As
such, this design cannot evaluate actual prediction. However,
it can offer preliminary evidence of whether a predictor is at
least related in expected ways to outcome variables. For

example, researchers may wish to investigate whether post-
traumatic stress disorder (PTSD) subsequent to trauma will
predict other emotional problems in the future, so as to be
able to forecast, in the context of civil litigation, recovery
from such trauma. To do so, they may evaluate the prevalence
of depression in the past of persons who do and do not have
PTSD following a trauma. This study would permit evalua-
tion of whether the two constructs, PTSD and depression, are
at least related. Of course, it would not provide justification,
in a pure epidemiological sense, for calling PTSD a risk fac-
tor for subsequent depression.

Similarly, researchers may wish to know if a certain puta-
tive risk factor will predict violence, but are unable to conduct
a prospective analysis of the issue. Researchers have used
postdictive designs to evaluate the connection between psy-
chosis, variously defined, and violence. Swanson et al. (1996)
evaluated whether certain types of psychotic symptoms and
disorders were related to violence since the age of 18 in the
Epidemiological Catchment Area data set of approximately
10,000 people. They then applied those relationships to an
equation in order to estimate the predicted probability of vio-
lence, given certain risk factor combinations. Their findings
that certain combinations of symptoms and disorders were re-
lated to past violence offered support for the position that the
constructs are related and that these symptoms and disorders
might then predict violence in subsequent investigations.
Similarly, Douglas and Webster (1999b) evaluated the rela-
tionship between two violence risk assessment measures—
both intended to forecast future behavior—and past violence.
Their findings provided preliminary support for the position
that the measures relate to violence, as they should.

Researchers must be cautious in interpreting findings
from such designs because the design is vulnerable to con-
founding the predictor and the outcome. That is to say, it is
possible that because the so-called outcome occurred earlier
in time than did the predictor, the outcome actually influ-
enced scores on the predictor, rather than the other way
around. For instance, one risk factor on the risk assessment
measures used by Douglas and Webster (1999b) is substance
misuse. It is possible that a past violent episode (the outcome)
could lead a person to drink or use drugs in order to cope with
the stressful aftermath of the violence. In this way, the out-
come of violence would have actually caused, preceded, or
led to the predictor, rather than the other way around. As
such, results can only be interpreted as showing a noncausal
relationship, or that the variables or measures are associated
in some expected way. 

Researchers should take steps to remove obviously con-
flated factors from those identified as predictors if using this
design (i.e., Douglas & Webster, 1999b). For instance, most
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risk assessment measures contain risk factors relating to past
violence. Past violence is also the outcome criterion. Having
the outcome criterion also contribute to the predictor obvi-
ously is problematic and will artificially inflate effect sizes.
This is a rather straightforward example. The danger lies in
less obvious instances that might not be readily discernible to
the researcher, but that do exist.

Another problem that can arise with this research design
relates to what might be called either cohort effects, or could
be considered forms of the threats to validity called history
and selection by Cook and Campbell (1979). Whatever the
terminology, the problem stems from changes that might
occur through the passage of time. For instance, if a measure
is validated postdictively on a group of persons who were
admitted to (or released from) a facility in a particular year
(e.g., 1990, 1995, or 2000, etc), its application to persons re-
cently admitted or discharged will be suspect if there have
been any changes in the admission or discharge criteria
(which is often the case due to the modification of law and
policy). Different admission and discharge criteria could
substantially alter the prevalence among persons of impor-
tant factors such as type of disorder, history of violence,
substance use, and so forth. Given that these factors also
correlate with many criterion variables of interest, such as
violence or suicide, such a shift likely will affect the relation-
ship between a predictor and the criterion variable. Applica-
tion of a predictor or measures devised on an earlier sample
to a later sample, then, would be tenuous.

Pseudoprospective designs attempt to model true prospec-
tive designs in structure, but actually are retrospective. Typi-
cally, researchers will rate certain factors or measures based on
archival or file data that is several years old, and then conduct
what is called a retrospective follow-up for outcome criteria. In
this design, the predictor is coded from information that ex-
isted prior in time to the outcome. However, the actual coding
occurs later in time than the outcome does. For instance,
Douglas et al. (1999) completed the HCR-20 (Historical-
Clinical-Risk Management) risk assessment measure (Webster
et al., 1997) and the Hare Psychopathy Checklist: Screening
Version (PCL:SV; Hart, Cox, & Hare, 1995) based on file in-
formation of civil psychiatric patients who had applied for re-
view panels for discharge in 1994. They used multiple sources
of records to track the violence of patients until late 1996.
Harris, Rice, and Quinsey (1993; Quinsey et al., 1998) used a
similar procedure to construct a risk assessment measure
called the Violence Risk Appraisal Guide (VRAG). Although
the information upon which the measures were based existed
prior to the outcome, the actual completed measures did not.
As such, this design allows for proper temporal ordering of the
predictor and outcome, but is not truly prospective.

This design is a reasonable alternative to a true prospec-
tive design in that it is far less resource intensive and does
not require researchers to follow subjects for years before
gathering information about the predictive potential of cer-
tain factors. It therefore permits somewhat more confident
statements about the relationship between a putative predic-
tor and subsequent criteria than do postdictive designs.
However, the design suffers some weaknesses. If studies
are conducted properly, coders will be blind to outcome
status. There is a risk, however, that coders will inadvertedly
learn of the outcome, creating criterion contamination.
Perhaps the larger limitation is that the information upon
which the measures are completed is not optimally aligned
to the purpose of the study. That is, researchers have to
make do with existing data, rather than collect data in a
predefined manner. The information that exists—typically
medical, psychological, social, legal, and criminal file and
report information—was not gathered originally to complete
the measures that the researcher is investigating. As such, the
rating of some items might be less reliable than it would be
if the researcher were able to construct a priori information-
gathering mechanisms.

For instance, the assessment measures completed by
Douglas et al. (1999) and Harris et al. (1993), respectively,
require some degree of clinical inference. Risk factors on the
HCR-20 include constructs such as lack of insight and impul-
sivity. Both the HCR-20 and the VRAG require ratings of
psychopathy on a clinician-rated test. These constructs might
be difficult to rate based on preexisting reports. Additionally,
because all ratings are done from file information, patients
are not present to participate in interviews. This further limits
the type or (at least) the reliability of data that can be
collected.

Truly prospective designs compensate for the weaknesses
of both the postdictive and the pseudoprospective design. As
such, they are preferable to these other designs, but also tend
to be more time and cost intensive. In this design, collection
of all data and completion of all measures are done before
participants enter a follow-up phase. As such, there is no risk
of confounding outcome and predictor, or of contaminating
ratings with knowledge of outcome. Variables and measures
can be operationalized in optimal ways, and special-to-
purpose data collection procedures can be constructed to
allow optimal ratings of constructs. There is no built-in ne-
cessity to make do with existing information. Data can be
collected that suit the purpose of the study, eliminating
the need to conform the purposes and procedures of the study
to suit the data. For these reasons, prospective studies yield
results that allow the most confidence in the predictive utility
of variables or measures.
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To illustrate, prospective designs are common in research
on trauma secondary to accidents or crime. Ehlers, Mayou,
and Bryant (1998), for instance, evaluated approximately
1,000 victims of motor vehicle accidents who were consecu-
tively admitted to a British hospital. They then evaluated the
utility of information gathered during the hospital admission
(i.e., severity of injury, perception of accident, anger over ac-
cident, PTSD symptoms present, trait worry, coping style) to
predict PTSD incidence at 3 and 12 months postaccident. In
the violence risk assessment field, prospective studies have
been used to construct or validate predictive instruments (i.e.,
Belfrage, Fransson, & Strand, 2000; McNiel & Binder,
1994b; Monahan et al., 2000, 2001; Steadman et al., 2000)
and to evaluate the validity of clinical predictions of violence
(Lidz et al., 1993; McNiel, Sandberg, & Binder, 1998). 

Repeated-measures prospective designs offer yet more
potential. For instance, a currently important topic in risk
assessment and treatment research is the malleability of risk
factors, the relationship of such changes to frequency of
violent behavior, and the potential systematically to target
such risk factors for intervention (Douglas & Kropp, in
press; Hanson & Harris, 2000; Webster, Douglas, Belfrage, &
Link, 2000). Using this design permits such analyses. Cox
proportional-hazards survival analysis with time-dependent
covariates (i.e., the putatively changeable variables that are
measured on a repeated basis) would permit evaluation of the
relationship between changes in risk factors and the occur-
rence of violence (or changes in the hazard functions related
to changes in risk factors).

Although we are aware of no examples in forensic predic-
tion, a potentially useful methodology is the case-crossover
design. As Maclure and Mittleman (2000) explained, this
design can evaluate whether something notable happened im-
mediately prior to some event of interest (i.e., violence, treat-
ment dropout). The design is so named because at least some
of the sample will have crossed over, so to speak, from low to
high exposure on a potential trigger or risk factor (Maclure &
Mittleman, 2000, p. 196). In this design, the control condition
is time rather than participant based (i.e., it is essentially a
within-group design). Further, the design is retrospective. It
searches for what might have been present just prior to an
outcome of interest that was not present during some previ-
ous time period for the same people. The design attempts to
distill precursors to events by retrospectively examining
equal-sized time periods: one prior to the event and another at
some earlier time point. Acute or sudden events, such as a
violent act, might be particularly amenable to this design be-
cause time periods could be well defined.

Finally, some researchers have been able to take ad-
vantage of natural field experiments. These opportunities,

although rare, come about through sudden changes in the law
or through comparisons between jurisdictions. Two of the
more infamous examples in forensic psychology stem from
court decisions holding that certain state legislation violated
the Constitution. In Baxstrom v. Herold (1966), the petitioner,
Johnnie K. Baxstrom, sought a writ of habeas corpus con-
cerning his postsentence civil commitment without protec-
tions that were afforded to all persons who were subject to
civil commitment proceedings in the community. Further,
although psychiatrists had opined that he could be placed in
a civil institution, he was placed by administrators in a cor-
rectional facility. 

The U.S. Supreme Court held that this procedure denied
Baxstrom equal protection under the Constitution. Following
this holding, Baxstrom and close to 1,000 others in his situa-
tion were transferred to less secure civil hospitals or released
outright in what came to be known as Operation Baxstrom.
In the other seminal case, Dixon v. Attorney General of the
Commonwealth of Pennsylvania (1971), seven plaintiffs
brought a class action against the attorney general of the state
on their own behalf and the behalf of similarly situated per-
sons institutionalized at Farview State Hospital. The state
mental health statute permitted postsentence, indefinite
civil commitment of prisoners nearing the ends of their
sentences—without a formal hearing or process, without
even notification of prisoners or their families, and without
the right to counsel or to solicit an independent mental health
examination. On top of this, the statute permitted such com-
mitment on the basis that the person appeared to be mentally
disabled and in need of care. The United States District Court
for the Middle District of Pennsylvania held that “we enter-
tain no doubt that Section 404 of the . . . Act . . . is unconsti-
tutional on its face” (p. 972), having no semblance of due
process. As a result, the court ordered that persons were to be
discharged, or recommitted under an entirely new and fair
procedure that provided patients with the right to notification,
to counsel, to present evidence, to cross-examine witnesses,
and to retain independent experts. The standard for commit-
ment was changed to require the fact finder to establish
“clearly, unequivocally and convincingly that the subject of
the hearing requires commitment because of manifest indica-
tions that the subject poses a present threat of serious physi-
cal harm to other persons or to himself” (p. 974). Again, the
result was that numerous persons were released or transferred
to less secure facilities.

These legal cases provided natural experiments to re-
searchers. One might infer from their commitment that these
patients all had been determined (or predicted) to be danger-
ous mentally ill prisoners. Despite this, many were released,
hence minimizing the ethical concerns and restriction of
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range problem previously described. Follow-up studies of the
Baxstrom (Steadman & Cocozza, 1974; Steadman & Halfon,
1971; Steadman & Keveles, 1972) and Dixon (Thornberry &
Jacoby, 1979) patients revealed a very low rearrest rate for vi-
olent crime, leading some to conclude that the original pre-
dictions were highly inaccurate, being characterized by very
high false-positive errors (Monahan, 1981). These cases and
naturalistic research studies were largely responsible for set-
ting in motion the accrual of research and writing as well as
the conceptual and methodological developments in the field
of violence risk assessment. 

Reliability in Prediction

Of course, reliability in forensic prediction is as important as
it is in any predictive endeavor. Because most predictive
measures are not construct measures, reliability indexes from
classical test theory (i.e., internal consistency, item-total cor-
relations, item homogeneity) and modern test theory (i.e., a
and b item parameters, differential item functioning, item
characteristic curves) typically are not of paramount interest.
Rather, inter-rater reliability is most important. If clinicians
cannot agree on predictive decisions, then such decisions are
of little utility. We recommend that measures of agreement
rather than of association are used as reliability indexes.
Measures of association, such as the Pearson r or � are not
sensitive to additive and multiplicative biases between raters,
whereas measures of agreement, such as intraclass correla-
tion (ICC) and kappa (�) are. For instance, on a 10-point
scale, a correlation of unity would result from either of the
following two pairs of ratings: Rater A: 1, 2, 3, 4, 5; Rater B:
6, 7, 8, 9, 10 (additive bias) or 2, 4, 6, 8, 10 (multiplicative
bias). Clearly these pairs of ratings are associated with one
another. Equally clear, however, is that raters are not in agree-
ment. As such, measures of chance-corrected agreement,
such as ICC, �, or �weighted are recommended. 

Common Statistical Approaches

We list here the commonly used statistical approaches in pre-
dictive forensic assessment. Traditional indexes of classifica-
tion accuracy are common, such as false and true negatives
and positives, and positive and negative predictive power
(e.g., see Douglas et al., 1999; Lidz et al., 1993; McNiel &
Binder, 1994b). Discriminant function analyses have been
used as well (Klassen & O’Connor, 1989). Linear and logis-
tic regression-based models also are commonly used to test
for independent relationships between predictors and out-
comes (see, respectively, Douglas et al., 1999; Harris et al.,
1993; Kropp & Hart, 2000; Monahan et al., 2000, 2001;

Quinsey et al., 1998; Steadman et al., 2000). Hierarchical
regression models have been used to evaluate incremental
validity (Douglas et al., 1999; Kropp & Hart, 2000; Swanson
et al., 1996). As described above, ROC analysis is now fre-
quently used to estimate predictive accuracy (Douglas et al.,
1999; Monahan et al., 2001; Quinsey et al., 1998; Rice &
Harris, 1995; Steadman et al., 1998). Survival analysis has
been used to evaluate hazard rates relative to predictors
(Douglas et al., 1999). This list is not comprehensive, but
illustrative.

We have chosen to forego discussion of other method-
ological aspects of predictive forensic assessment, such as
the use of rational versus empirical scale construction, or the
evaluation of clinical versus actuarial predictions, because
these topics are discussed in other chapters and require much
more space than could be allotted here. We can offer a few
comments. First, given the numerous variations in forensic
predictive tasks created by differing legal standards across
settings and jurisdictions, discussed earlier, the generalizabil-
ity of empirically derived, actuarial instruments may be more
difficult to achieve than in other fields. This has led to a
movement to study rationally derived instruments that pro-
mote structured clinical decisions (rather than the traditional
clinical decisions that typically are described as informal,
impressionistic, and subjective—see Grove & Meehl, 1996).
These structured models of decision making (e.g., see
Augimeri, Koegl, Webster, & Levene, 2001; Boer, Hart,
Kropp, & Webster, 1997; Borum, Bartel, & Forth, 2002;
Kropp, Hart, Webster, & Eaves, 1999; Webster et al., 1997)
provide operationalized factors that evaluators must consider,
and for the scoring of which evaluators must follow standard
rules. Initial research suggests that the clinical decisions
that are based on these measures are adequately reliable
(Douglas, 2001; Kropp & Hart, 2000) and add incremental
validity to actuarial predictions (Dempster, 1998; Douglas,
2001; Kropp & Hart, 2000). For fuller treatments of this
issue, see Douglas, Cox, and Webster, 1999; Douglas and
Kropp, in press; Douglas and Webster, 1999a; Hart, 1998,
2001, in press; Melton et al., 1997; Otto, 2000.

Clinical forensic psychologists often find themselves
asked to forecast the future behavior or functioning of their
patients and clients. Often the substance of such predictive
assessments is violent behavior, future child and family func-
tioning, and response to trauma and treatment. Research ef-
forts to evaluate the reliability and validity of these efforts are
challenged by numerous factors, some of which could easily
appear in other fields of inquiry (i.e., low or varying base
rates of criteria), whereas others are more salient within
forensic settings (i.e., influence on criteria of legal standards).
We have described several methodological or statistical
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procedures to compensate for some of these shortcomings
(i.e., using multiple sources of outcome, adopting broad defi-
nitions of outcome criteria, employing particular statistical
approaches, using research strategies that parallel actual clin-
ical practice without influencing it). We also presented the
strengths and weaknesses of general research designs used
to answer predictive assessment research questions, such
as postdictive, pseudoprospective, true prospective, repeated-
measures prospective, case-crossover, and natural field
experiments.

In the next and final section—dealing with the evaluation
and validation of legally relevant diagnostic constructs and
response styles—forensic researchers are presented with yet
more research challenges. They also employ a variety of
methodological and statistical approaches in addition to those
discussed previously in order to provide reasonable answers
to important research questions. We discuss these issues in
the following section.

RESEARCH REGARDING THE ASSESSMENT
AND VALIDATION OF LEGALLY
RELEVANT DIAGNOSTIC CONSTRUCTS
AND RESPONSE STYLES

Overview

In the first section of this chapter, we discussed research ef-
forts designed to evaluate psycholegal constructs, or psycho-
logically related constructs that essentially are defined by law
(i.e., best interests of the child, fitness to stand trial). The
current section has some similarities in that it concerns psy-
chological constructs rather than the prediction of future be-
havior or functioning, as in the middle section of this chapter.
This third area of research in clinical forensic psychology—
although somewhat less distinctive than the others—pertains
to the exploration and validation of legally relevant diagnos-
tic constructs. In many ways, the conceptual and method-
ological issues are the same as those that face any researcher
seeking to understand and validate a clinical syndrome, diag-
nosis, or psychological construct, but the legal context in
which subjects are examined or in which the results would be
relevant poses some additional challenges for research design
(Moore & Finn, 1986). The two primary areas of research in
clinical forensic psychology have been (a) the search for
personality styles that place persons at risk for negative legal
outcomes, and (b) response styles aimed at manipulating
certain legal outcomes. As in the previous two sections of this
chapter, we provide a brief overview of these topics, discuss
some general research challenges within these fields, and

then present specific methodological approaches that re-
searchers have used to evaluate these topics.

In clinical forensic psychology there has been significant
interest in identifying a clinical syndrome or cluster of per-
sonality traits that distinguish individuals who are at particu-
larly high risk for negative legal outcomes (Millon, Simonsen,
Birket-Smith, & Davis, 1998; Stoff, Breiling, & Maser, 1997).
This research has proceeded along two lines. In the first, re-
searchers have attempted to identify personality traits and
characteristics that distinguish individuals who engage in
criminal or violent behavior from those who do not. Studies in
the second line of research have explored the existence of a
personality type, syndrome, or disorder that is reliably associ-
ated with criminal or violent behavior.

The research methods or statistical approaches used in the
first line are not particularly distinctive or unique to forensic
psychology (Lilienfeld, 1994). Most investigations in this tra-
dition have used one or more scales or tests designed to assess
a particular construct of interest—such as anger, hostility, or
impulsivity—and looked for mean score differences between
two criterion groups (e.g., violent offenders vs. nonviolent of-
fenders). Between-group differences are then interpreted by
inference to mean that the particular trait is somehow associ-
ated with the criterion behavior.

Another issue that has received significant research atten-
tion in clinical forensic psychology is the response style of in-
dividuals who are subjects of forensic examinations when
they are asked to complete psychological tests or report their
symptoms in interviews. The applied problem in these as-
sessments is that respondents may consciously misrepresent
their psychological status or symptoms to achieve some sec-
ondary gain. Both underreporting and overreporting of one’s
symptoms can be problematic in a forensic context. Although
it is likely that a hybrid response set, in which the examinee
is motivated to deny or minimize some problems and exag-
gerate or fabricate others, may be the most common response
style adopted in forensic evaluations (see Rogers, 1997, for a
discussion), specific response styles are more likely to occur
in particular types of evaluations. 

Concerns about underreporting and minimization—often
referred to as defensiveness or positive malingering—are
most likely to surface in three types of forensic evalua-
tions: fitness for duty, custody-dependency, and release
decision making. In evaluations of fitness for duty and in pre-
employment screening, examinees may be motivated to deny
and minimize problems they may be experiencing in order to
gain desired employment or placement. In custody and de-
pendency evaluations, parents may be motivated to present
themselves in a positive light so that they can gain custody
of their children. And in cases in which persons are being
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evaluated in order to make decisions about their appropriate-
ness for release from an institution of some type (e.g., in the
context of a parole or civil commitment hearing) they also
may be motivated to present themselves in a positive light
and deny or minimize psychopathology. Concerns about
overreporting—often referred to as malingering—occur
when potential secondary gain may accrue from a patient’s
having severe psychological impairment. In criminal cases,
such incentives may occur for defendants seeking to assert an
insanity or other mental-state defense. In civil cases, such in-
centives may occur when a plaintiff claims to have suffered
psychological damages due to the negligence of someone
else, and the degree of compensation due will be contingent
in part on the degree of severity of those damages.

Challenges to Researching Legally Relevant Diagnostic
Constructs and Response Styles

Personality-Diagnosis

As noted in the previous section, two major research chal-
lenges have beset these studies: weak predictor variables and
weak criterion variables (Monahan, 1988). These are the
same issues that have vexed research in violence prediction,
and they are problematic for many of the same reasons:

• The constructs selected as predictors are not conceptually
or empirically related to the criterion. 

• The constructs selected as predictors are related to the
criterion, but the relationship is largely nonspecific.

• The scales or tests used are poor (invalid) measures of the
construct.

• The scores themselves have very little variability (re-
stricted range) in the samples chosen for study (e.g., delin-
quent status offenders vs. violent delinquents).

• The criterion behaviors (or scores) have a restricted range
in the samples chosen for study.

• The criterion groups are poorly defined or distinguished
(e.g., using the instant offense as the sole criterion to
distinguish violent offenders and nonviolent offenders,
when many nonviolent offenders also have a history of
prior violence).

Research attempting to identify a syndrome associated
with propensity for criminality has proceeded somewhat
differently. Early efforts attempted to discover and discern
the elements of a so-called criminal personality (Eysenck,
1964; Howell, 1971). Predictably, these efforts met with
limited success because they worked backward from a

multiply-determined behavior and attempted to define and
explain its manifestation as a personality style. One would
perhaps expect similar results in attempting to define the
“addictive personality,” or the “bad driving personality.”
An extensive body of research has shown that in predicting
or explaining any form of human behavior—including
aggression—that personality variables explain very little of
the variance. Situational factors tend to have much greater
explanatory power, but they are not the focus of a criminal
personality model of behavior. 

These early efforts did, however, contribute to further
thinking about a disorder that might be associated with a par-
ticularly strong propensity for antisocial behavior—even if
most people who engaged in such behavior did not possess
the disorder. “The viability of a psychopathological construct
is based on a range of evidence. A prerequisite is the exis-
tence of a coherent syndrome, that is, a cluster of symptoms,
signs, and traits that occur together and that are distinct from
other clusters” (Cooke & Michie, 2001, p. 171). Based on
early conceptual work by Cleckley (1941), several re-
searchers, most notably Robert Hare, attempted to opera-
tionally define and measure such a syndrome; they referred to
the construct as psychopathy (Hare & Schalling, 1978). Later
in this section we use this line of research to illustrate some
methodologies for validating these constructs in forensic
clinical psychology.

Response Style

The main challenge confronting this line of research easily is
evident on the face of the problem—how do you study peo-
ple who lie? Individuals in the criterion group do not want to
be accurately identified and use deception and distortion to
avoid identification. In the previous section on researching
legally relevant capacities, we discussed the challenges
posed by the absence of a gold standard for the criterion. This
problem applies here as well. Individuals who successfully
exaggerate or minimize their symptoms—by definition—will
not be identified in real-world contexts, so that they or their
responses cannot be studied. The closest that a researcher can
come to having unequivocal evidence of extreme response
distortion (e.g., claiming to have severe impairment that is
not really present, or denying significant problems that really
are present) is either to have an admission of that distortion,
or to have compelling factual evidence that directly contra-
dicts the individual’s self report (e.g., an individual claims to
have been in a particular hospital on three occasions, but
there is no record of an admission), or to have evidence of
certain criteria that are considered to be highly specific (e.g.,
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performing at a rate significantly below chance on a symptom
validity test).

Researching Legally Relevant Diagnostic Constructs and
Response Styles

Diagnosis-Personality

A commonly used approach to the study of legally relevant
constructs is factor analysis. Using concepts derived from
Cleckley, Hare and his colleagues attempted initially to
validate the construct through the use of exploratory factor
analysis (EFA). Their work, as presented in the manual
(Hare, 1991), produced three hypothetical factor structures:
a model with three so-called facets, a model with two
distinct but correlated factors, and a hierarchical structure
in which component facets were nested within a higher-
order construct. The two-factor model—consisting of a
“selfish, callous, and remorseless use of others” factor and
a “chronically unstable and antisocial lifestyle” factor (Hare,
1991, p. 38)—gained initial ascendance in the literature on
psychopathy and the associated instrument, the Hare Psy-
chopathy Checklist–Revised (PCL-R; Hare, 1991). Hare’s
interpretation of the two-factor model was guided by a mea-
sure of factor similarity referred to as the congruence coeffi-
cient, although some critics have argued that this coefficient
should not be relied upon as an exclusive measure of factor
similarity (Floyd & Widaman, 1995). 

Subsequent analyses were conducted using confirmatory
factor analysis (CFA), with results of goodness-of-fit mea-
sures supporting the two-factor model—although no alterna-
tive or competing models were tested (Cooke & Michie,
2001). A subsequent EFA of the data from the instrument’s
standardization sample by Cooke and Michie (2001) exam-
ined the acceptability of the two-factor model using multiple
measures of fit, and the analysis found that structure to be no-
tably lacking in support. They then attempted to refine the
model by combining theoretical considerations (e.g., the
three historical domains of psychopathy and the hierarchical
nature of most models of normal and disordered personality)
and analytic methods that would produce the largest number
of factors for preliminary consideration (e.g., applying direct
oblimin criteria to obtain a solution with obliquely rotated
factors). Their data were most consistent with a three-factor
model (in essence dividing the “selfish, callous, and remorse-
less use of others” factor into two). Next, they cross-validated
the proposed structure within and across cultures, again using
multiple fit coefficients, and consistently found strongest sup-
port for their three-factor model. Among the research that has

attempted to validate the construct of psychopathy, the data
from factor analytic research has received the greatest atten-
tion. The evolution from a two-factor to three-factor model
being regarded as the dominant model demonstrates some
potential advantages to combining theoretical and statistical
considerations in model development and to using multiple
criteria and indexes of fit to enhance one’s confidence in the
viability of the solution. 

An alternative approach to validate or clarify a diagnostic
construct is prototypical analysis. This method is based on
prototype theory (Dopkins & Gleason, 1997; Hampton,
1995) and is seen as being particularly useful to bring opera-
tional clarity to constructs that may otherwise be ambiguous.
The basic approach is to generate a pool of nonredundant
items based on the empirical and theoretical literature that
may potentially characterize the construct. It is recom-
mended that one think broadly about the construct at the ini-
tial phase of item selection and to choose items that extend
beyond one’s own theoretical or conceptual view of the syn-
drome, and even to include some items that may be only mar-
ginally related (Salekin, Rogers, & Machin, 2001). The items
are presented to a sample of experts who are asked to con-
sider the most prototypical case of a person with the syn-
drome that they have seen in the recent past and to rate each
item on a Likert scale according to how strongly related or
characteristic that trait is of the overall syndrome. This
method has been applied to antisocial personality disorder in
adults (Rogers, Dion, & Lynett, 1992; Rogers, Duncan,
Lynett, & Sewell, 1994) and to the construct of psychopathy
in youth (Salekin, Rogers, & Machin, 2001). 

Response Style

Given that a definitive known groups design is typically not
feasible, researchers typically must resort to proxy criteria or
analogue (or simulation) research designs to study the prob-
lem, but each of these comes with its own set of challenges and
limitations. Proxy criteria typically used are cutting scores on
other psychometric measures of malingering and deception.
For example, the Structured Interview of Reported Symptoms
(SIRS; Rogers, Bagby, & Dickens, 1992) is one of the most
widely accepted measures for malingered psychotic symp-
toms. To validate a new instrument that assesses for malinger-
ing, an investigator might concurrently administer the SIRS,
along with the experimental measure, and designate those
with a certain predetermined SIRS score as the malingering
group (see, e.g., Miller, 2001). This would not be considered a
known groups design by conservative standards because the
condition can only be inferred indirectly from a psychometric
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measure. One’s psychological impairment, however, cannot
definitively be determined in the same way that a physical im-
pairment can be detected by diagnostic imaging techniques, so
proxy criteria often are used as alternatives.

Another option frequently used in studies of response dis-
tortion is the analogue study. In this approach, the investiga-
tor randomly assigns the sample to one of two conditions:
instructions to respond honestly or instructions to distort re-
sponses. In a typical analogue study, the experimenter would
administer a scale or measure to a sample. Half of the partic-
ipants would be given instructions to respond as honestly as
possible. The other half would be instructed to use a particu-
lar response set (e.g., you are attempting to convince the eval-
uator that you have a severe mental illness). The mean scores
of the two groups would be compared to determine whether
there were significant differences, and the presence of such a
difference would be interpreted as evidence of the scale’s
ability to distinguish honest from nonhonest (malingering)
responders. Rogers (1997) also recommended that subjects in
analogue research on malingering and deception be debriefed
following their participation in an experiment for two rea-
sons: (a) to ensure they understood and complied with the
instructions, and (b) to explore—at least qualitatively—the
different strategies that people may use to portray themselves
as being more or less troubled than they actually are. 

What are the problems with analogue research? It is per-
haps not surprising that any reasonably designed scale for
assessment of exaggerated symptoms will show large differ-
ences between normal participants asked to respond honestly
(who presumably would have few if any symptoms), and
honest participants asked to appear pathological (who pre-
sumably would seek to report a significant number of symp-
toms). In any applied context, the between-groups distinction
is likely to be much more difficult, particularly because some
people who minimize or exaggerate their problems do have
actual symptoms or disorders. Someone who uses malinger-
ing as a response style may still have a serious mental disor-
der. Thus, on its face the analogue study in this context would
not appear to be a very rigorous test for the validity of a
measure.

This dilemma is further compounded by two problems—
one conceptual and the other motivational—inherent in the
analogue design. The conceptual problem is one that some
have previously referred to as the simulation-malingering
paradox: That is, the design uses information obtained from
individuals who comply with instructions to respond dishon-
estly to make inferences about people who do not comply
with instructions to respond honestly. Arguably, this raises
a question about generalizability. Further threatening exter-
nal validity are the potential differences in motivation and

incentives between a research situation in which no real con-
sequences accrue to subjects regardless of whether they are
successful in dishonestly portraying their psychological sta-
tus, and a legal situation in which the incentives for avoiding
criminal penalties or gaining substantial monetary damages
may be quite compelling. It is not difficult to imagine how
these differences could affect one’s investment, effort, prepa-
ration, or performance.

Given that incentives may be high in legal contexts, con-
cerns have been raised that some individuals may seek to
learn—or be coached by their attorneys—about the strategies
and scales used by mental health professionals to detect the
type of deception in which they intend to engage. If that were
true, then it might be possible to defeat the detection strate-
gies. Some researchers sought to examine this issue em-
pirically by designing studies in which some subjects were
provided with instructions about how particular psychomet-
ric measures operated to detect response bias to examine
whether this knowledge enhanced one’s ability successfully
to present a distorted protocol without invalidating the mea-
sure or triggering indexes of deception. 

In presenting the results of this line of research, a funda-
mental tension is raised between the ethical obligation to pro-
tect the security of and integrity of psychometric measures
and tests, and the scientific obligation to describe one’s re-
search method and protocol in detail (Ben-Porath, 1994;
Berry, Lamb, Wetter, Baer, & Widiger, 1994). For example, if
a study finds that a certain instructional set—such as provid-
ing detailed information on how a particular validity scale
operates to detect dishonest responding—helps dishonest
responders to distort the protocol while avoiding detection, to
publish those instructions might then compromise the test
in applied settings. On balance, a researcher reading these
results would likely be interested to know the nature of the
instructions that affected the results, not simply that some un-
defined instruction produced the effect. Berry and colleagues
(1994)—after reviewing numerous options—recommended
an approach to handle this dilemma by limiting the amount of
detail provided in the publication about the specific instruc-
tions or strategy that was given to enhance the avoidance of
detection.

In summary, then, two primary issues have been the focus
of research efforts described in this section—legally relevant
diagnostic constructs and response styles. In the former,
researchers have been interested in identifying and describing
personality styles such as psychopathy that relate to meaning-
ful and important legal outcome criteria. In the latter case,
researchers have attempted to describe styles of responding
intended to mislead legal decision makers. Some of the
research challenges here were similar to those described in
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the other sections: weak predictor and criterion variables, lack
of a gold standard for outcome criteria, and the difficulty of
studying persons who are intentionally dishonest and do not
want to be detected. Common research approaches have in-
cluded exploratory and confirmatory factor analysis, proto-
typicality analysis, use of proxy criteria, and analogue studies.

CONCLUSION

Clinical forensic psychology has become a well-defined sub-
specialty of clinical psychology. It can be defined as assess-
ment, treatment, or consultation that centers around clinical
issues within legal contexts, or with populations involved in
the legal system. Psychologists who conduct research in
forensic contexts are faced with challenges that present them-
selves in any research context, as well as with some that are
unique to working within another profession’s venue. As
such, forensic researchers must be well versed in general re-
search design and methodological principles from clinical
and experimental psychology, in addition to being alive and
responsive to the unique legally related research challenges
that they will face. They must be able to apply both (a) the
general principles of research design within legal contexts,
and (b) forensic-specific approaches to research design and
methodology. 

In this chapter, we described (a) common areas of inquiry
in clinical forensic psychology (descriptive assessment and
psycholegal capacities, predictive assessment, and legally
relevant diagnostic constructs and response styles); (b) gen-
eral challenges to conducting research within these areas; and
(c) specific research designs and methodological approaches
that scholars effectively have employed within these areas. 

Concerning the first topic, clinical forensic psychologists
who are interested in the assessment of psycholegal capaci-
ties must define and operationalize these capacities based
on their understanding of both the law and of psychological
factors. After these constructs are identified and defined,
researchers must develop methods for their description and
evaluation. In addition to assessing the standard psychomet-
ric properties of these instruments (i.e., normative data, struc-
tural reliability), clinical forensic psychologists are presented
with the challenge of assessing their validity within the legal
contexts in which they are intended to be used. Many of the
research challenges that face any researchers are relevant
here as well. However, this task presents numerous forensic-
specific challenges to research, such as the lack of a gold
standard for outcome criteria, varying legal definitions of
constructs, and the legally multifaceted nature of many of
these constructs. Researchers have used various approaches

to study these issues, such as literature and expert surveys,
theory-based development, and evaluating the correspon-
dence between constructs or instruments and either judges’ or
clinicians’ decisions.

Next, clinical forensic psychologists also continue to be
called upon to develop assessment protocols designed to pre-
dict behaviors of interest. As with the other two main areas of
research activity, research on predictive forensic assessment
is beset with forensic-specific challenges, such as varying
legal definitions of outcome criteria, insensitive predictor and
outcome measures, the clash between dichotomous legal out-
comes and continuous psychological outcomes, low and
varying base rates, and limiting factors stemming from legit-
imate ethical concerns, such as restriction of range and inter-
vention effects. 

Given the sensitive and important issues with which the
courts concern themselves in such matters (e.g., risk for vio-
lent reoffending, risk for suicide, risk for sexual reoffending,
best custody arrangement for a child in the future) as well as
the challenges to researching them, psychologists research-
ing these issues must employ a variety of ingenious designs.
Researchers have used a variety of designs in this area—
ranging from the most simple and perhaps least informative
(postdictive) to more sophisticated and informative designs
(repeated-measures true prospective designs). Within these
designs, researchers attempt to counter the challenges to re-
search by employing multiple sources of outcome data, em-
ploying broad but hierarchical and multifaceted definitions of
outcome, adopting theoretically informed and complex pre-
dictor variables, and using statistical procedures such as ROC
analysis to compensate for base rate problems. 

In terms of the third area of clinical forensic research—
legally relevant constructs and response styles—researchers
face some of the same challenges as those who research
descriptive psycholegal capacities or predictive measures.
These challenges include weak predictor and criterion
variables and lack of a gold standard; in addition, taking a
“single explanation approach” (i.e., personality) to multiply-
determined behavior (criminal behavior) has posed chal-
lenges to researchers. A further difficulty in this area has been
posed by efforts to study persons who are intentionally at-
tempting to lie, and hence whose self-reports cannot be
trusted. Common research methods on this line of research
include exploratory and confirmatory factor analysis, proto-
typicality analysis, and analogue studies.

Clinical forensic psychological research seeks to promote
the understanding and optimal legal use of psychological
constructs and behaviors as they unfold in legal settings. For
a relatively young field, there has been reasonable growth in
the quantity and quality of research carried out in the service
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of this goal. All projections would lead to a forecast of con-
tinued growth in clinical forensic research, with the result, we
hope, of continued increasing understanding of the role of
psychology within law.
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Between-group outcome research is a scientific approach to
evaluating the effectiveness of psychotherapy and the mech-
anisms of change associated with those treatments for psy-
chological disorders. This area of research is replete with
important methodological issues that need to be considered
in order for investigators to draw the strongest, most specific
cause-and-effect conclusions about the active components of
treatments, human behavior, and the effectiveness of thera-
peutic interventions.

In this chapter, we present the various methodological
considerations associated with these experiments. The
chapter begins with a discussion of independent variable
considerations, including a description of the different ex-
perimental designs from which investigators may choose in
designing a therapy outcome study, as well as the method-
ological, client-participant, and therapist concerns that must
be taken into account in the design stage. Then we discuss the
measurement of change, starting with the considerations sur-
rounding dependent variables and ending with methods of
analyzing data and assessing clinically significant change.
Finally, after a presentation on small-N experimental de-
signs, we discuss the importance of scientific research in nat-
uralistic settings.

Preparation of this manuscript was supported in part by National
Institute of Mental Health Research Grant RO1 MH58593 to the
second author.
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INDEPENDENT VARIABLE CONSIDERATIONS:
BETWEEN-GROUP EXPERIMENTAL DESIGNS

The primary goal of any experimental design is to hold
constant all factors among experimental conditions except
the single factor under investigation. Such a design allows
researchers to draw cause-and-effect conclusions about that
factor, and the strength of those conclusions is a direct func-
tion of the extent to which variables other than the manipu-
lated variable were equivalent across conditions. In the strong
inference approach to scientific research (Platt, 1964), one
constructs rival hypotheses about the cause-and-effect rela-
tionship observed between variables, accordingly conducts
methodologically rigorous experiments designed to rule out
one or more of those rival hypotheses, and subsequently
conducts experiments aimed at ruling out further rival hy-
potheses about whatever remained unrejected by the previous
experiment. The process is recycled repeatedly, leading to in-
creasingly specific cause-and-effect conclusions.

The beauty of such an approach to scientific investigation
lies in its unique ability to discard rejected hypotheses in pur-
suit of highly specific pieces of knowledge about a single
causal relationship. As is the case for any class of scientific in-
vestigation, the primary goal of psychotherapy outcome re-
search is to establish such cause-and-effect relationships, and
thus the strong inference approach is the most powerful way to
pursue this ultimate goal. Through such an approach, investi-
gators are well equipped to identify the mechanisms through
which a psychotherapeutic procedure produces change. With
the identification of these mechanisms, we are able to acquire
specific knowledge about human behavior and simultaneously
enable the application of this knowledge in developing in-
creasingly effective psychotherapeutic interventions.

In the various psychotherapy outcome research designs
that we describe in this chapter, participants are randomly as-
signed to different treatment conditions in which variables
are held constant (i.e., are equivalent) to varying degrees.
Each of these designs allows investigators to draw causal
conclusions, but the specificity of those causal conclusions
varies with the type of design employed. Factors that are
equivalent between conditions cannot explain ways in which
the conditions differ in outcome. Differences in outcome can
only be causatively explained by the ways in which the con-
ditions differed. Thus, the fewer the dissimilarities and the
greater the similarities between comparison conditions, the
more specific we can be in identifying the cause of observed
differences in their outcome.

This section describes each of these research designs in
the order of the scientific rigor and specificity of causal
conclusions associated with them. Whereas the no-treatment

and common factors comparison designs allow investiga-
tors to draw the weakest, most general cause-and-effect con-
clusions due to remaining potential differences between
compared conditions, the dismantling, additive, catalytic, and
parametric designs are best suited to the application of the
strong inference approach to scientific investigation because
of the close similarities between compared conditions.
These designs enable investigators to establish specific
cause-and-effect conclusions and thus acquire knowledge
about human behavior and the mechanisms of change.

No-Treatment Comparison Design

The no-treatment comparison design compares the degree of
change caused by a particular intervention to the change that
would occur if no intervention were provided. This approach is
often used for new therapeutic techniques that have not yet
been tested in a controlled fashion but that clinical experience
and related basic scientific research suggest will probably be
useful. The design employs a condition in which participants
are assessed at pretherapy and posttherapy moments, but they
do not receive any form of intervention. Because participants
in the no-treatment condition are being denied a treatment that
might prove to be helpful for their clinical problem, investiga-
tors ordinarily have an ethical obligation to institute a waiting-
list (no-treatment) control group in place of a pure no-treatment
control group. Participants assigned to this condition are told
that they will be given therapy after the waiting period.

As in any experimental investigation, a control group is
employed in a research design in order to control for the many
variables other than the variable under investigation that
might cause change in the participants. In a waiting-list no-
treatment design, the waiting-list group is used to control for
(i.e., hold constant or equivalent) all potential causes of
change other than the reception of therapy. Such potential
causes include the effects of (a) history (any event or events
other than the independent variable that occur outside of
the experiment that may account for the results); (b) matura-
tion (processes within participants that change over time, such
as aging); (c) repeated testing (the possibility that being tested
once may influence performance on future testing); (d) instru-
mentation (changes in the instruments or procedures used to
measure participants on the dependent variables); (e) statisti-
cal regression (the tendency for extreme scores to revert
toward the mean when participants are tested again); (f ) se-
lection bias (differences in conditions that occur as a result of
having different client characteristics due to nonrandomly as-
signed groups); (g) differential attrition (different rates of
dropout between groups); and (h) interactions of selection
bias with the other factors (for a more detailed discussion of
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these variables, see Campbell & Stanley, 1963). Because par-
ticipants are randomly assigned to treatment and no-treatment
conditions, we can rule out these potential causes of change as
the explanation of any difference found in the outcome com-
parison. With random assignment, such variables can be as-
sumed to affect both conditions equally (i.e., the groups will
be equivalent in the likely influence of such factors). The
reader should, however, realize that there is no guarantee that
random assignment will in fact yield equivalent groups; it
merely (but importantly) maximizes the probability of equiv-
alence. Note also that the larger the sample size, the greater
the likelihood that equivalence will be realized. Hence, what-
ever gains the experimental group experiences beyond the
changes observed in the no-treatment condition can be attrib-
uted to something about receiving treatment.

Such an experiment has some advantages. This simple
design typically results in large between-group effect sizes,
thus rendering a small sample size acceptable, and is relatively
low in cost. Despite these clear advantages, however, some
important ethical, methodological, and practical disad-
vantages exist. From an ethical standpoint, it is important to
consider the ramifications of delaying treatment for a
group of individuals, particularly if one is studying severely
distressed populations or conditions with the potential for
deterioration during the waiting period (e.g., chronically de-
pressed, suicidal, or posttrauma individuals). Moreover, some
form of monitoring clients in a waiting-list condition needs to
be employed in order to detect any significant worsening of
the problem. If deterioration does occur, the client must be re-
moved from the protocol and immediately placed in an appro-
priate treatment for the disorder. In a similar consideration,
there may be a selection problem in this design if the waiting-
list control group consists only of clients who agreed to delay
the reception of treatment. Such a feature would of course
result in nonrandom assignment of clients to conditions. The
consequential selection bias as well as a potential need to
remove deteriorating clients from the waiting-list condition
can yield a nonequivalent control group (e.g., symptomatol-
ogy may be less severe than that displayed by the experimen-
tal group at the pretreatment assessment). This presents a
serious methodological flaw and a highly plausible alternative
hypothesis to explain any results found in the investigation.
Additionally, because no-treatment participants must be
treated at the conclusion of the study, the employment of such
a group does not allow long-term follow-up assessments. It
thus becomes impossible to examine the differential effects
of treatment over an extended posttherapy period.

Finally, an important practical disadvantage of such a
design is that it yields very little knowledge relevant to
either empirical or applied goals. Investigators can draw a

cause-and-effect conclusion from such a design, but that con-
clusion is merely that something about the provision of ther-
apy caused a change in functioning above and beyond the
change caused by such factors as the mere passage of time.
What that something is, however, remains a mystery and can-
not be determined. The no-treatment comparison group does
not control for some other potentially powerful ingredients
inherently present in clinical interventions, such as client ex-
pectancy to improve, hope and faith, demand characteristics
to report improvement at the end of therapy, and the thera-
peutic relationship that develops between clinician and client.
There is also very little applied knowledge to be gained from
such a design. It is quite unlikely that an intervention would
actually be worse than or equivalent to not being in treatment
at all, particularly in light of variables such as the therapeutic
relationship, which has been shown to be an important pre-
dictor of psychotherapy outcome (Alexander & Luborsky,
1986; Suh, Strupp, & O’Malley, 1986).

In summary, a waiting-list, no-treatment design is a
simple, low-cost experimental design that is often used when
examining new treatment techniques that have not yet been
put to empirical test. However, it is useful for researchers
employing this design to recognize its important scientific
limitations, including the potential for selection biases, the
inability to assess long-term results, and the limited amount
of attainable empirical and applied knowledge. (Due to these
limitations, we strongly suggest a discontinuation of this
type of design and instead recommend the creation of other
comparison conditions that incorporate a greater number of
potential causative factors in common with the treatment
condition under investigation.)

It should be noted at this point that all of the comparison
conditions described in the following sections do control for
the variables ordinarily held constant by the no-treatment
condition (i.e., history, maturation, etc.). They also control for
other potentially causative factors inherent to a therapy, and
the degree to which those factors are held constant is directly
related to the strength of causal conclusions investigators may
draw. Throughout this discussion, however, it is important to
keep in mind the potential presence of unmeasured variables
that may differ between groups—differences that would limit
the strength of causal conclusions (for an in-depth discussion
of these issues, the reader is referred to this chapter’s section
entitled “Random Assignment Within Waves”).

Common (Nonspecific) Factors or Placebo
Comparison Design

Whereas the no-treatment design allows researchers to
reject the hypothesis that variables associated with history,
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maturation, and so on are responsible for any greater change
observed in the experimental condition, the strong inference
approach dictates the need for ruling out further, more spe-
cific rival explanations not addressed by the no-treatment
comparison before meaningful theoretical or applied conclu-
sions are possible.

Frank (1971) identified the major elements of psychother-
apy shared by all approaches, regardless of theoretical orien-
tation: (a) the therapeutic relationship; (b) facilitation of
emotional arousal; (c) a therapist who provides a conceptual-
ization of the presenting problem, as well as a believable
rationale for treatment; (d) techniques that are implemented
to increase the client’s believability in the therapist or ther-
apy; and (e) provision of success experiences. The common
factors design provides a control condition in which partici-
pants receive only those elements of therapy that are consid-
ered to be common in (nonspecific to) nearly all forms
of psychotherapy and that are not included in the theoreti-
cal foundation of the experimental therapy. This condi-
tion was originally termed a placebo condition, because
its use was thought to be analogous to pharmacological treat-
ment trials in which an inert substance was given to control
patients. Parloff (1986), however, has argued that the use of
placebo conditions in medical research is not analogous to
their use in psychotherapy research, because in psychother-
apy research, the so-called inert factors interact with the
theory-specific factors in such a way that they are not truly
inert. For example, a strong therapeutic relationship, perhaps
in the form of trust, may well be necessary for the effective
deployment of active intervention methods. Without a strong
relationship, a client might not be willing to engage in thera-
peutic tasks both within and outside of the therapy session,
thus rendering the otherwise efficacious treatment less effec-
tive or ineffective. In such a circumstance, the therapeutic
relationship and the specific therapy techniques may interact
in such a way as to cause the observed therapeutic gains;
thus, the extent to which an investigator can conclude that
the techniques themselves caused the change is compromised
(i.e., less specificity in ruling out rival hypotheses).

The term common factors refers to those elements that
are presumably shared by most forms of psychotherapy. For
example, attention to the presenting problem, contact with
a caring and supportive individual, personal contact with a
trained professional, expectancy effects, hope and faith,
suggestion effects, and demand characteristic effects (i.e.,
reporting an alleviation of symptoms in the absence of actual
change, based on client perception that improvement is
expected and desired by the clinician) are present in all
forms of psychotherapy. The term common factors is
now often used to replace the older phrase, nonspecific

factors (cf. Castonguay, 1993 for the arguments against
the use of the latter phrase).

The common factors design employs random assignment
to experimental and control treatment conditions, wherein
participants in the control group meet with the therapist reg-
ularly to receive treatment comprised solely of those com-
mon factors previously described. Ideally, the experimental
therapy contains equivalent degrees of common factors plus
specific and theoretically driven interventions, so that any
observed differential effects can be attributed to those
presumably active ingredients. This design, in contrast to the
no-treatment design, allows more specific cause-and-effect
conclusions to be drawn. That is, superiority of the experi-
mental therapy over a common factors condition allows the
conclusion that something specific in the former intervention
caused that degree of change that exceeded the change ob-
served in the latter condition.

Ethically, the common factors design is more advanta-
geous than the no-treatment (waiting-list) design in that
clients are at least being provided with a therapeutic relation-
ship, which contains features known to contribute to the ame-
lioration of psychological problems. Clients are also less
likely to decline participation in such a condition; thus poten-
tial selection bias is minimized. However, important ethical
as well as methodological disadvantages can be present in
this design. One important ethical consideration is that in one
condition of the experiment, researchers are knowingly pro-
viding clients with a treatment that they strongly suspect
from a theoretical viewpoint may not be as efficacious as the
experimental therapy. Potential methodological limitations
also exist, beginning with important threats to internal valid-
ity. Therapists, for certain, and possibly even clients, may not
be blind to condition (Lettieri, 1992), potentially leading to
differing levels of demand characteristics and expectancy
effects across groups. As Kazdin (1992) points out, develop-
ing a common factors condition that appears equally credible
to both the therapist and the client can pose a great challenge.
Important threats to external validity can also be present.
Parloff (1986) argues that common factors conditions do not
necessarily resemble actual therapy in applied settings. Thus,
researchers may be comparing theoretically derived thera-
peutic interventions to a form of control treatment that is in
actuality almost never practiced. Most important is that this
design has a crucial scientific limitation. The data can lead
scientists to conclude that the intervention caused a degree of
change superior to that caused by elements common to most
forms of treatment, but they are still not able to conclude ex-
actly what the causative ingredients of that therapy were. The
best this design can do is provide evidence that specific
causal ingredients do indeed exist in the treatment and that
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subsequent research would profitably aim at identifying what
those ingredients are, what mechanisms underlay their causal
influence, and what this information tells us about the nature
and mechanisms of the disorder being treated. (Given the
important ethical and scientific limitations often present in
the use of pure psychological placebo conditions, a work
group from a National Institute of Mental Health confer-
ence has recently recommended a discontinuation of the
placebo control condition in psychotherapy outcome re-
search [cf. Borkovec & Onken, in press]).

Although many types of nonspecific control groups that
have been used in past research have suffered from the previ-
ously described problems, one common factors condition is
less severely handicapped by these difficulties. If one does
decide to use a common factors control group, perhaps the
best type of choice involves the provision of a nondirective or
supportive listening condition. In such a condition, the thera-
pist provides supportive and reflective statements in response
to the content and affect contained in the client’s verbal and
nonverbal communications. This condition finds its origins in
early Rogerian therapy and thus has theoretical foundations
for its change mechanisms. Secondly, the therapeutic rela-
tionship factors contained in that theory and represented by
supportive listening techniques are widely accepted by the
field as critical background elements in any specific therapeu-
tic approach; the condition thus represents a significant core
of what is often meant by the phrase common factors. Given
their ubiquitous nature throughout varying therapeutic ap-
proaches, these techniques are thus part of common clinical
practice. Finally, in this sense, the use of this particular con-
trol condition approximates the employment of the compo-
nent control (or dismantling) design, which will be described
in a moment: An experimental therapy (specific plus common
components) is being compared to one of its components (i.e.,
the set of common components). Specification of the exact
active ingredients remains impossible, but at least the other
problems previously mentioned are minimized.

In the Penn State research program investigating the treat-
ment of generalized anxiety disorder (GAD), Borkovec and
Costello (1993) compared the effectiveness of nondirective
therapy (ND), applied relaxation (AR), and a full cognitive-
behavioral package (CBT) which consisted of AR plus im-
agery rehearsal of coping skills and cognitive therapy.
Although the investigation employed a dismantling design
(described in the next section) by comparing AR to a more
complete CBT package, the ND condition was instituted in
an attempt to control for common factors. Results indicated
that both the component treatment condition (AR) and the
full CBT package were superior to ND at posttreatment, and
the full CBT package caused greater clinically significant

maintenance of treatment gains over the 12-month follow-up
period. Although the ND condition was associated with some
degree of change in participants at posttreatment, these
improvements deteriorated over the follow-up period. From
this design and its outcome, we can conclude that CBT and
AR both contain active ingredients causative of change
beyond the improvement caused by common factors at post-
treatment, and that the addition of cognitive therapy to AR
(i.e., the CBT condition) causes an increment in long-term
change.

The remaining methodological approaches described in
the following sections offer greater control for common
factors and simultaneously allow investigators to hold con-
stant several additional variables. By so doing, they are able
to isolate exactly what the active ingredients of a therapy are.
Scientifically, these designs are more elegant in that they
allow investigators to draw more specific cause-and-effect
conclusions.

Component Control (Dismantling) Comparison Design

If an investigator wishes to control for the common factors of
therapy via a control group, he or she may as well demon-
strate efficacy beyond those common factors and at the same
time establish more specific cause-and-effect conclusions
regarding the elements of a treatment package. The compo-
nent control design (also called the dismantling design) is
a scientifically rigorous method for identifying specific
causative elements; it does so by providing some participants
with all components of a treatment while providing only
some components of the treatment to other participants.

The methodological, scientific, and ethical advantages of
such a design are numerous. First, the conditions in a dis-
mantling design control for factors such as history and matu-
ration, repeated testing, and statistical regression just like any
other control condition. Moreover, its conditions maximize
the likelihood of having equivalent levels of common factors
(e.g., credibility, expectancy, and therapeutic relationship)
and minimize therapist bias effects. Because the procedures
employed across conditions of this design are highly similar
to each other, the likelihood that credibility and expectancy
will be equivalent across conditions is high. This was empir-
ically demonstrated to be the case for credibility several years
ago (Borkovec & Nau, 1972). Furthermore, therapist bias
should be minimized because therapists are delivering
components of a treatment in which they are fully and equiv-
alently trained while recognizing that the component or
combination of components most likely to be effective is
currently unknown. Most important for scientific purposes,
such a design allows for very specific cause-and-effect
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conclusions to be drawn because it holds constant all other
elements of the therapy except for the intervention’s specific
comparison component. Thus, investigators are well equipped
to identify which ingredients (alone and in combination) are
specifically causative of change. For example, if a treatment
package consisting of components A and B is dismantled via
this design, then the investigator can randomly assign partici-
pants to receive only component A, only component B, or
both components A and B. If the A � B condition is superior
to either element alone, one can conclude that (a) A � B is
causative of change beyond common factor effects and his-
tory, maturation, and so on; and (b) A � B’s combination of
elements is additively or interactively causative of change
beyond either element alone. If component A, on the other
hand, is found to be equivalent to A � B, and component B is
inferior to A and A � B, then the evidence indicates that (a) B
is not causatively contributing to the effects of A � B, (b) A is
the likely explanation of the causative effects of A � B, and
(c) both A and A � B contain active, causative ingredients
beyond the effects of common factors and of history, matura-
tion, and so on, given their superiority over B, which contains
those potential causative variables. In addition to identifying
very specific causal relationships, the beauty of the disman-
tling design from a basic knowledge perspective is that its
outcomes point future research in the direction of understand-
ing the nature of the disorder under investigation and the
nature of the mechanisms of change. If a particular component
is causative, then that component contains a mechanism for
further pursuit, and scientists can devise new investigations to
explore rival theories about what that mechanism might be
and how it generates its therapeutic impact. Notice also how
it invites further research and theoretical understandings
of the disorder itself: What is the nature of this disorder and
its maintaining conditions such that this particular compo-
nent or combination of components specifically causes its
amelioration?

In an investigation of treatment for generalized anxiety
disorder, Butler, Fennell, Robson, and Gelder (1991) com-
pared the effectiveness of a waiting-list control group
(WL); behavior therapy (BT) consisting of relaxation train-
ing, graded exposure to feared situations, and confidence-
building strategies; and a full cognitive behavior therapy
(CBT) package, which consisted of behavior therapy in addi-
tion to cognitive therapy techniques targeting anxious
thoughts. Results indicated that at posttreatment, the WL
condition was inferior to BT on 4 out of 16 main outcome
measures and inferior to CBT on 13 out of 16 of those mea-
sures. In comparing the two active treatment conditions, CBT
was superior to BT on 6 of the 16 main outcome measures at
the end of treatment, whereas it was superior to BT on 9 out

of 16 measures at the 6-month follow-up. These findings
indicate that in dismantling CBT for the treatment of GAD,
behavior therapy was not as causative of change overall as was
a more complete package incorporating cognitive therapy, and
this was particularly evident at the 6-month follow-up assess-
ment. Notice how this finding invites pursuit of what it is
in CBT (e.g., challenging automatic thoughts or decatastro-
phizing feared outcomes) that causes greater change, and what
it is about GAD such that these elements increment its amelio-
ration. Such an implementation of the strong inference ap-
proach would allow us to eventually establish increasingly
specific cause-and-effect conclusions regarding the treatment
of GAD.

In addition to offering considerable basic knowledge
about therapeutic change, the dismantling design also poten-
tially yields significant applied implications. Clinicians can
discard the elements of the original package found to be in-
active or superfluous. Moreover, scientists can attempt to
improve or add to the remaining active elements in future
empirical investigations designed to identify further causes
of change.

The dismantling approach is also advantageous from an
ethical perspective. Such a design does not require clinical
researchers to employ deception in their investigations be-
cause at the outset of the study (and as was the case when
considering therapist biases), they do not yet know which
elements of a complete therapy package will be identified as
active or inactive. Each component is potentially effective,
given that it was included in the package by its developer
based on clinical experience or prior theoretical and empiri-
cal work. Hence, no participants receive an intervention
believed to be inactive or for which evidence for lack of
effectiveness already exists.

After investigators have identified the inactive ingredients
of a treatment package and are left with the components that
were found to be active, they may separate the remaining com-
ponents into even more specific elements and repeat the pro-
cedure. Alternatively, they can generate rival hypotheses as to
why specific components are active and design experiments
to rule out one or more of these rival hypotheses (e.g., in
the aforementioned study dismantling the effects of CBT
for GAD, one could compare BT � challenging automatic
thoughts, BT � decatastrophizing, and BT � challenging
automatic thoughts � decatastrophizing). This application of
the strong inference approach to psychotherapy research is of
crucial importance in the quest to develop the best possible
treatments for individuals with clinical problems. By recy-
cling the experimental process in order to refine our treatment
packages and to increase our basic knowledge about a disor-
der, we can determine increasingly specific cause-and-effect
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relationships that will eventually lead to therapeutic interven-
tions that contain more causes of change.

The disadvantage of the dismantling design is that not all
interventions (especially nonbehavioral or noncognitive ther-
apies) are easily broken down into separate components
(Basham, 1986). When this is the case, the next two scientif-
ically rigorous experimental designs can be employed.

Additive (Constructive) Comparison Design

The goal of the additive design (also called the constructive
design) is to create a new treatment package by adding two or
more separate techniques together and then testing the com-
bined effect of those techniques against the original separate
techniques. This design is very similar to the dismantling de-
sign in its implementation, and it also has exactly the same
methodological, scientific, and ethical strengths as the dis-
mantling design; thus, these points are not to be repeated here.
The additive design improves on the dismantling design in that
it can be utilized with treatment packages in which separating
the intervention into separate components is not a feasible
option, yet the experimental quest for identifying additional
causal change elements and thus for creating more effective
therapies for application in clinical settings can continue.

Of special consideration is how researchers decide which
techniques to add to the already existing ones in order to
carry out this type of experimental approach. This is precisely
the step in the research process in which basic knowledge
about the disorder under investigation is very useful to the
decision of what technique(s) to add to the treatment pack-
age. Developers of treatment protocol manuals would ideally
have an intimate knowledge of the disorder under investiga-
tion. Familiarity with the theoretical and empirical literature
in that area can be a key to deciding what elements should be
added to the existing treatment.

The additive design is the design of choice for empirical
investigations of new components that could potentially be
added to previously existing treatment packages. It is also the
design of choice for investigations of integrative psychother-
apy, which has recently been receiving more attention in both
research and applied settings. Psychologists can improve on
existing treatment packages by adding techniques derived
from other theoretical orientations in the hope of producing
the most effective treatments possible. This is a very differ-
ent, less problematic, and much more promising design ap-
proach to evaluating different forms of psychotherapy than
the comparative design, which we describe and evaluate later
in this chapter.

Based on the hypothesis that binge eating is negatively
reinforced by the anxiety-reducing effects of purging behavior,

Agras, Schneider, Arnow, Raeburn, and Telch (1989) em-
ployed the additive design in an investigation of the potential
additive effects of response prevention on CBT for bulimia
nervosa. Participants were randomly assigned to one of four
conditions: a waiting-list control group (WL); self-monitoring
of caloric intake and purging behavior (SM, a condition which
employed the use of nondirective techniques and thus
controlled for the common factors of therapy as well as the act
of monitoring one’s own eating and purging behaviors);
cognitive-behavioral therapy (CBT, which included self-
monitoring of eating and purging behaviors in addition to the
altering of dietary habits, exposure to avoided foods, and chal-
lenging of distorted cognitions regarding diet and body
image); or CBT plus response prevention of vomiting (CBT �

RP). The investigators concluded that after 4 months of
treatment, each of the three treatment groups (i.e., SM, CBT,
CBT � RP) but not the WL group had shown significant
improvement in the frequency of purging. Furthermore, only
the CBT group experienced significantly greater reduction in
purging behavior as well as overall cessation of purging than
did the WL group, while the SM and CBT � RP groups did not
differ from the WL group at treatment termination on these
two main outcome measures. At the 6-month follow-up
assessment, only the CBT group had experienced significantly
greater cessation of purging than did the WL group. From
this study, we can conclude that (a) treatment gains were not
due solely to the passage of time, because the WL group failed
to show a significant reduction of symptoms at treatment
termination and was significantly inferior to the other treat-
ment conditions, and (b) RP did not offer therapeutic
effects above and beyond the effects of CBT alone as had
originally been expected. In fact, it may have had a limiting
effect on the improvements that clients would have experi-
enced had they received CBT alone. One important limitation
in this study was that the CBT � RP condition allotted less
time for cognitive behavioral therapy than did the CBT condi-
tion, given that part of the session was devoted to the RP com-
ponent. Thus, the lessened effectiveness of CBT � RP may
have been due to the lessened amount of CBT (for a discussion
on the importance of allotting equal amounts of time in therapy
for each condition, see this chapter’s section titled “Session
Parameters”).

Another example of an additive design can be seen in our
current investigation of the additive effects of an interper-
sonal and emotional processing component to cognitive-
behavioral therapy for generalized anxiety disorder (GAD).
Although our original dismantling study (Borkovec &
Costello, 1993) showed that CBT was more effective in terms
of clinically significant change for treating GAD in the long
run than was one of its components in isolation (i.e., applied
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relaxation), only about 50% of the clients in that study
who received CBT managed to achieved a “normal” state of
functioning on a majority of main outcome measures (i.e.,
only about 50% receiving CBT achieved high end-state func-
tioning). Extensive research on the nature of GAD led us to
conclude that worry is likely characterized by (a) a cognitive
avoidance of somatic and emotional experience, and (b) an
etiology partially consisting of deficits in interpersonal rela-
tionships with early caregivers (for a review of this literature,
see Borkovec, Alcaine, & Behar, in press). Such findings led
to the decision to add an interpersonal and emotional pro-
cessing (IEP) segment to the original CBT treatment package
for GAD in an attempt to increase the rate of improvement.
The current clinical trial is an additive design in which this
CBT � IEP condition is being compared to CBT plus a sup-
portive listening component (included to control for the
amount of time spent in session). If we find that the combined
CBT � IEP is superior to CBT without IEP, we can conclude
that IEP is the cause of the incremented improvement. We
could potentially pursue such an effect further in a subse-
quent dismantling of IEP. Clients could be randomly assigned
to CBT plus interpersonal therapy, CBT plus emotional pro-
cessing therapy, and CBT plus IEP. If, on the other hand, the
two conditions in our current trial do not differ in outcome,
we can conclude that targeting interpersonal problems and
emotional processing is unnecessary in the treatment of
GAD.

Catalytic Design

When dismantling or additive designs reveal that combined
components are superior to any of its individual components,
we remain uncertain whether this is because each component
causes a degree of improvement by itself and the effects of
each component are merely additive, or whether this is
because of an interactive effect between the components.
Researchers have the opportunity to explore this question
through the use of catalytic designs. These designs involve
the manipulation of the order of presentation of the compo-
nents in the combined condition. This paves the way for
an understanding of how one component may cause a facil-
itation effect on the mechanisms of the other component
and thus produce a degree of change that is greater than
merely the additive effects of each component. For example,
in a design consisting of components A and B, the investiga-
tor can employ one condition in which component A precedes
component B during each therapeutic hour, and another con-
dition in which component A follows component B. An ideal
rendition of this design would also include two additional
control groups, each containing only one component during

the last half of the session hour with common factor treat-
ment during the first half (thus holding constant total amount
of treatment time among all conditions).

In a study designed to test the contributions of relaxation
to systematic desensitization, Borkovec and Sides (1979)
randomly assigned speech-phobic participants to receive one
of four treatment conditions: hierarchy exposure followed by
relaxation training (E � R); relaxation training followed by
hierarchy exposure (R � E); hierarchy exposure only (E);
or no treatment (NT). Results indicated that in contrast to
the other three conditions, the R � E condition produced
the greatest reductions in subjective fear, as well as greater
vividness of imagery, greater autonomic responses to visual-
izations of scenes in the hierarchy, and greater declines in
autonomic reactions to initial visualizations of scenes as
well as declines across repetitions of the same scene. Thus,
relaxation training had a catalytic effect on phobic image
exposures. This effect was not merely due to the additive
effects of exposure and learning relaxation techniques,
because the condition in which relaxation training followed
exposure was inferior to the R � E condition.

If a catalytic effect is observed in an investigation, a pos-
sible extension of the study could involve the comparison of
two conditions: In one condition, the different components
of the treatment are allowed to occur and interact with each
other throughout the entire session; in the second condition
(like the two studies previously described), separate seg-
ments or time periods are devoted to only one component
within the session. Similar to the dismantling and additive
designs, an important consideration in such a design is the
need to ensure that an equal amount of treatment time is al-
lotted to each component despite the fact that they are being
alternately used throughout the entire session. Having the
different components interact with each other throughout
the session may offer greater external validity. Clinicians in
applied settings may find it awkward to dedicate a half hour
of therapy to behavioral interventions and then quickly shift
gears and begin discussing interpersonal concerns. Addition-
ally, having the two components in constant interaction may
make the occurrence of a catalytic effect of one component
on another more probable.

Suppose, for example, that in an investigation designed to
examine the potential catalytic effect of interpersonal and
emotional processing (IEP) on cognitive therapy (CT) in the
treatment of generalized anxiety disorder, we find that a
condition in which IEP precedes CT is superior to a condi-
tion in which it follows CT. We could further examine the
effects of having these two components in constant interac-
tion with each other. Thus, in one condition, therapists could
sensitively deploy cognitive therapy, emotional deepening, or
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interpersonal interventions depending on their reading of
clients’ cognitive, affective, and behavioral states moment to
moment in the session. In the other condition, the first half of
each session would be dedicated to IEP, whereas the second
half would be dedicated to administering CT. If the interac-
tional condition caused a degree of change superior to that
caused by the condition employing separated components, we
could conclude that interpersonal interventions, emotional
processing, and cognitive therapy interact with each other in
such a way that their interaction causes an even greater degree
of change than the catalytic effect of IEP on CT.

The catalytic design offers a very high degree of scientific
control across conditions because, like the parametric design
discussed in the next section, the only thing that varies
between two of its conditions is the order of presentation of
the components of treatment, and like the additive or disman-
tling design, single component conditions hold constant one
of the two elements in the combined condition. This design
thus allows for very specific cause-and-effect conclusions
about catalytic effects.

Parametric Design

After an active ingredient of a treatment package has been
identified, investigators can pursue further causative knowl-
edge about its specific parameters. As Kazdin (1998) asks,
“What [quantitative] changes can be made in the specific
treatment to increase its effectiveness?” Knowing, for in-
stance, that cognitive therapy is an active ingredient in a
treatment package is certainly helpful and important for the-
oretical and applied purposes. When administering cognitive
therapy, however, scientists and treatment providers might
want to know, for example, what level of assertiveness (e.g.,
low, moderate, or high) in the process of challenging cogni-
tions optimizes cognitive change. Other possible examples of
parameters include depth of addressing interpersonal issues,
depth of emotional processing, degree of therapist empathy,
and length of exposure to feared stimuli, to name just a few.
The parametric design addresses such questions by compar-
ing conditions that are created by sampling at least three
points along a theoretically important or procedurally present
dimension of a particular element of therapy.

Borkovec, Robinson, Pruzinsky, and DePree (1983)
randomly assigned high and low worriers to engage in a
worry induction for either 0-, 15-, or 30-min intervals. Results
indicated a curvilinear causal relationship: Participants who
were instructed to worry for 15 min reported increases in
negative cognitive intrusions, whereas those who were in-
structed to worry for 0- or 30-min periods experienced
reductions in negative cognitive intrusions on a subsequent

attention-focusing task. Thus, worrying for 15 min produced
an incubation of negative cognitive activity. Although this
study was not conducted as part of a psychotherapy outcome
investigation (indeed, few outcome investigations to date
have employed a parametric design), results such as these are
obtainable from outcome trials and would significantly add to
our basic knowledge about the disorder or therapeutic para-
meter under investigation.

Like the previously discussed catalytic design, the para-
metric design achieves a great amount of experimental con-
trol across conditions because the only thing that varies
between the conditions is the dimensional level of a single
technique. The content of the technique is identical across
conditions; it is simply the quantified level of the technique
that varies. Thus, although investigators must conduct a cost-
benefit analysis before carrying out this design (given that the
nature of the design is such that small effect sizes are likely,
thus requiring a larger sample and hence a greater economic
expense), this experimental approach allows for highly spe-
cific cause-and-effect conclusions to be drawn because so
much is held constant across conditions. Moreover, such a
design can elucidate laws of behavior that may not be linear
in nature, as long as its conditions sample more than two lev-
els of the parameter of interest.

Comparative Design

The comparative design contrasts the effectiveness of two
or more interventions that represent different theoretical
and historical traditions. Common examples include the
comparison of the effects of psychotherapy to psychophar-
macological interventions, of one type of psychotherapy to
another (e.g., interpersonal psychotherapy and cognitive
behavioral therapy), and of a newly developed treatment
package to treatment as usual (TAU; an approach in which
investigators compare the effects of a protocol treatment to
the effects of the non–empirically validated methods tradi-
tionally used in the practicing community to treat the disorder
under investigation).

Society and the mental health profession understandably
want to know the answers to the question Which therapy is best
for a particular disorder? Unfortunately, despite its appear-
ances, we do not believe this question can be answered directly
by the comparative design. The comparative trial does not
allow specific cause-and-effect conclusions to be drawn, it
lacks internal validity, and its outcomes (even if internally
valid) would have little useful applied significance. In the fol-
lowing discussion we detail our reasons for these conclusions.

As has been evident throughout our discussion of the
different experimental approaches to evaluating the efficacy
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of treatment packages, the goal of experimental therapy
investigations is to hold constant all variables except the
manipulated variable, allowing investigators to rule out all
rival explanations of differential outcome between conditions
and leaving the one manipulated feature as the unambiguous
explanation for the cause of that outcome difference. Such
causal conclusions can significantly enhance our knowledge
about the pathology and about the investigated intervention.
Unfortunately, in the case of a comparative design, the two
(or more) contrasted treatments are so fundamentally differ-
ent in terms of their theoretical foundations, historical tradi-
tions, and most importantly, their (often myriad) specific
techniques, that the scientific ideal of holding all variables
constant except one is not even nearly approximated. For
example, consider for a moment how many techniques are
used in psychodynamic therapy and in cognitive behavioral
therapy. If the two conditions are compared and found to dif-
fer in outcome, one cannot determine what among those
many differences caused the difference in outcome. Although
a drug condition may appear to be more simple and straight-
forward when involved in a comparative trial in its contrast to
a psychotherapy condition, there still remain several ways in
which the two conditions differ (e.g., who administers the
drug, with what types of interpersonal interaction, for how
many minutes per session and how many sessions, in what
treatment or medical context). Thus, implementation of such
a design yields almost no scientific knowledge (i.e., specific
cause-and-effect information) because so many rival hy-
potheses exist; any difference in outcome may be due to any
one or a combination of the ways in which the compared con-
ditions differ, including ways that have nothing to do with the
specific elements of the interventions.

Even more fundamental problems having to do with the
internal validity of comparative designs make their results
wholly uninterpretable. One major threat to internal validity
is potentially differential quality of treatment across condi-
tions. If one therapy is administered poorly and the other
therapy expertly, obviously this is an unfair comparison.
Even if researchers employ separate “expert” therapists from
each type of therapy, as is often done in comparative trials in
an effort to maximize quality, there is no way to know
whether the expertise of each set of therapists is equivalent.
This is because valid measurements of expertise and quality
of treatment are not yet available for any single therapy,
much less for two different therapies that might be entered
into a comparative trial. Furthermore, even if researchers
could ensure by valid measurement equivalence of expertise
and quality of the treatments offered by expert therapists, the
grave threat of a therapist-by–condition confound would

remain. One would not know whether outcome differences
were due to the type of therapy, the type of therapists, or
the interaction of these two factors. (For a more detailed
discussion on the need to unconfound therapists and therapy
conditions, see the section on therapist concerns below).
Comparison of a drug to a psychotherapy method might ap-
pear to have fewer such problems than when differing types
of psychotherapy are compared, given that at least the quality
of the medication (by its proscribed ingredients) is assured.
However, one still does not know about the quality of the
psychotherapy comparison condition. Moreover, as previ-
ously mentioned, the attending physicians providing the
medication will not likely be the same therapists administer-
ing the psychotherapy with the same common factors in the
same type of setting for the same amount of time. Conse-
quently, amount of contact time and the personal characteris-
tics of the physicians and the qualities with which they
provide common factors will be different from those of the
psychotherapists and thus represent significant potential
confounds of any outcome differences observed.

The National Institute of Mental Health Treatment of
Depression Collaborative Research Program (Elkin et al.,
1989) employed a comparative design in an attempt to evalu-
ate the relative effectiveness of cognitive-behavioral therapy
(CBT); interpersonal therapy (IPT); a tricyclic antidepressant
(imipramine hydrochloride) plus what they called a clinical
management component in which patients were provided
with a minimal supportive therapy in order to control for
common factors (IMI-CM, regarded as the reference condi-
tion based on its status as a currently accepted treatment for
depression); and a pill placebo condition that likewise in-
cluded the clinical management component (PLA-CM).
Overall results indicated no significant differences between
the two psychotherapies and the reference condition (IMI-
CM). Additionally, compared to the PLA-CM condition,
there was no strong evidence of the specific effectiveness of
either IPT or CBT. For the more severely depressed subsam-
ple, IMI-CM led to the greatest improvement, and PLA-CM
produced the poorest outcome. IPT and CBT fell in between
these two conditions, with only IPT leading to significantly
more improvement than PLA-CM. In this investigation,
the comparison of the two pharmacotherapy conditions in
isolation (IMI-CM versus PLA-CM) constitutes an addi-
tive design in which the additive effects of imipramine hy-
drochloride and clinical management were validly tested.
From this aspect of the design, we can conclude that for more
severely depressed patients, the medication did provide
effectiveness above and beyond the effects of clinical
management plus pill placebo. However, IPT and CBT are
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so fundamentally different from each other and from a phar-
macological intervention (e.g., theoretical foundations [inter-
personal versus cognitive-behavioral versus biological],
techniques [identification and modification of interpersonal
problems versus identification and modification of intraper-
sonal thought and behavioral processes versus drug], and sets
of therapists administering each condition) that the design
yields no valid scientific knowledge, much less any knowl-
edge about mechanisms of change. Thus, although this study
does allow for causal conclusions to be drawn about the
effectiveness of a particular pharmacological treatment for
depression in comparison to a pill placebo, it is not a method-
ologically valid way to test the relative effectiveness of CBT,
IPT, and tricyclic antidepressants.

One ethical advantage to a comparative design is that all
participants are placed in a treatment condition—each held
by researchers on the basis of past efficacy results, by prac-
ticing clinicians on the basis of theory and clinical experi-
ence, or both—to be an effective therapy for the disorder.
However, this advantage in and of itself is insufficient to war-
rant the use of this design, given its lack of internal validity.
Without internal validity, no scientifically meaningful results
can emerge. Moreover, in terms of applied significance, even
if the design could be carried out with internal validity, the
implications of its results would be short-lived. This is be-
cause outcome investigations often require 3–5 years just to
obtain pre-post assessments on a large number of clients (and
this time period is extended even further for obtaining fol-
low-up data). During this time, the techniques would be
changing and improving on the basis of growing clinical ex-
perience and empirical data. Thus, the design’s answer to the
question Which therapy is better? is at least several years old
and of less relevance to existing versions of the therapies.
The other, more scientifically rigorous designs described ear-
lier do not suffer from this drawback because they are estab-
lishing cause-and-effect relationships and contributing to
knowledge about the disorder and the mechanisms of change.
Such cause-and-effect links and basic knowledge about the
disorder under investigation are timeless, unaffected by
the passage of time or by any further developments and im-
provement of the specific techniques, although further elabo-
rations of their meaning will occur as further research
relevant to the underlying principles of behavior proceeds.

It may eventually be the case that some of the criticisms of
comparative designs will someday be addressed. For example,
the trend in graduate clinical programs is toward greater train-
ing in several diverse therapeutic orientations and their inte-
grative use in therapy. Indeed, there is even movement within
the American Psychological Association toward the training

of clinical psychologists to administer psychoactive medica-
tions. One future consequence of these trends is the potential
availability of protocol therapists who have been trained in a
large number of therapeutic approaches in which the quality of
their services is more likely to be equivalent across these
approaches. In such a case, therapists can then be crossed with
the treatment factor, thus eliminating the otherwise disastrous
therapist confound. The reader is reminded, however, that
some of the other problems with the comparative design will
remain. Consider the example of a contrast of a pharmacolog-
ical treatment and a psychotherapy. We will further assume
certain crucial methodological features that have never been
employed in past such comparisons—for example, practition-
ers equally trained in both interventions treat an equal number
of clients in each condition, amount of in-session contact time
and the number of sessions are held constant, and client credi-
bility and expectancy for improvement are found to be equiv-
alent. Assume that the drug yields not only a significantly
superior outcome but also a much greater degree of clinically
significant change. Although we have eliminated several
possible confounds by our methodological features, we still
have two important problems remaining. Although such an
outcome would suggest that intervening at the biological level
has value (we can rule out common factors from explanation
of its greater change and conclude that it does contain an ac-
tive ingredient attributable to pharmacological effects), we
have learned nothing about its specific ingredients, nor have
we learned about the nature of its change mechanisms, nor
about the nature of the pathology other than the vague conclu-
sion that biology plays a role in the disorder. The two condi-
tions simply differ from each other in far too many ways to
allow for specificity in conclusions. Second, as described ear-
lier, by the time the investigation is completed with long-term
follow-up, its answer to the question of which treatment is
better for the disorder is several years old.

Ultimately, in order to answer the urgent questions of what
therapies are effective and which therapies are best for a par-
ticular psychological problem, we would wisely pursue basic
knowledge about a specific therapy using the more valid and
powerful designs described earlier and building increasingly
effective (causal) therapies based upon that knowledge.
Going deeply into a specific therapy (whether psychological
or pharmacological), learning everything we can about its
techniques’ specific cause-and-effect mechanisms, and using
such knowledge to increase our understanding about the na-
ture of the pathology and how best to treat it (i.e., how to in-
clude increasing numbers of elements causative of change)
will ultimately provide answers to society’s questions and
better therapies for people suffering from psychological
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problems. Using constructive, dismantling, and parametric
designs can accomplish this without pitting two therapies
against each other in a comparative design that cannot pro-
vide any useful basic or applied knowledge.

Each of the designs described above allows investiga-
tors to draw causal conclusions of varying specificity. The
no-treatment and common factors conditions yield relatively
weak, general causal conclusions, whereas the dismantling,
additive, catalytic, and parametric designs, due to the similar-
ity between their conditions, yield highly specific causal
conclusions that are conducive to constructing further rival
hypotheses to be tested in future experiments. Within each of
these designs, several methodological considerations need to
be taken into account. The next section describes these
considerations in detail.

INDEPENDENT VARIABLE CONSIDERATIONS:
METHODOLOGICAL CONCERNS

Determining Sample Size

When determining the number of participants to include in a
treatment outcome study, the investigator should conduct
power analyses. For a detailed discussion of the use of power
analyses in determining sample size, the reader is referred to
the chapter in this volume by Behrens and Yu. Additionally,
because sample sizes typically decrease due to client dropout
(attrition), it may be beneficial for investigators to recruit
more clients than are needed so that posttherapy and follow-
up data will possess sufficient power to detect condition dif-
ferences, if indeed they exist.

Random Assignment Within Waves

As mentioned earlier, it is vitally important to the methodol-
ogy of an efficacy study that the investigator randomly as-
sign participants to conditions. In practice, this is typically
done within consecutive temporal waves of clients as they
are enrolled in the experiment. Because of the large number
of clients required for an outcome study and the limited re-
sources of the therapy project, it is unlikely that all partici-
pants in an experiment can begin receiving treatment at the
same time. So in random assignment within waves, in a
three-condition study, the first three entered clients are ran-
domly assigned to each of the three conditions, the next
three clients to each condition, and so forth. This block ran-
dom assignment also controls for several factors such as
seasonal variation, cohort effects, changes in the level of
experience or expertise of protocol therapists, changes in

the experience of assessors, and changes in personnel. As
always, controlling for any other factor that might affect
outcome reduces rival explanations of any relationships
observed.

Session Parameters

It is also essential to avoid the potential confound of differ-
ential amount of therapy time between conditions. Clearly,
if one condition of the experiment provides 2 hours of ther-
apy per week, whereas a comparison condition provides only
1 hour, any difference in outcome between the two conditions
may very well be due to the amount of therapist contact, com-
mon factors, or exposure to a treatment rather than to the
difference in their content and techniques. Thus, an important
methodological concern is to hold the number of sessions and
the number of minutes per session constant across conditions
of the experiment.

This concern raises a particularly salient consideration
when conducting a dismantling or additive design investiga-
tion. In these two designs, experimenters are testing the
effects of elements A and B against the effect of combined
elements A and B. Clearly, the combined A and B condition
will require a greater amount of time in therapy than will
either A or B alone. Because it is important to equate the
amount of time devoted to a single component in both of its
single component conditions as well as in the total package,
experimenters are faced with the question of what to do with
the remaining time in the single-component conditions. The
most common approach is to fill that time with common fac-
tors treatment (e.g., supportive listening). By instituting this
“filler,” experimenters ensure that each condition receives
equal amounts of exposure to each theoretically active ingre-
dient and equal amounts of time in each session.

Therapy Manuals

Detailed procedures to be followed in each condition of the
experiment should be provided for therapists in the form of
a protocol manual. Manuals developed for behavioral and
cognitive therapy studies have commonly contained session-
by-session outlines of goals to be accomplished and specific
techniques to be employed during each meeting with the
client participant. Such a manual typically includes the
rationale initially given to participants for the type of therapy
being administered, a description of the methods to be used
for each session, and an explanation of the theory underlying
any given technique so that the therapist can exercise flexi-
bility in therapeutic methods depending on the particular
client and situation while still being true to protocol. With
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this combination of contents, the therapy provided is struc-
tured and uniform enough to maintain a standardized imple-
mentation of the therapy constant across participants and
therapists in any given condition, while at the same time
being flexible enough to allow for the sundry challenges and
individualized circumstances that each participant brings to
the therapy room.

Therapies that are not cognitive-behavioral in nature (e.g.,
interpersonal, psychodynamic, experiential) frequently need
to employ manuals that do not outline what is to be done
session-by-session, given that these therapies are driven
more by theoretical principles than by specific techniques.
Strupp and Anderson (1997), furthermore, assert that, given
the importance of personality characteristics of the client
and therapist as well as the ensuing therapeutic interaction
and relationship that elicit change in clients, treatment man-
uals may be limited in their ability to precisely define the in-
session variables that will lead to improvement on the part of
patients. In such cases, the alternative type of treatment man-
ual provides specific operational definitions of the theoretical
principles guiding treatment, and it allows considerable flex-
ibility for specific in-session interventions while remaining
true to those underlying theoretical principles.

The use of detailed protocol manuals has important impli-
cations beyond the need to maintain standardized implemen-
tation of the independent variables. First, replication of
findings by other investigators is facilitated by the use of a
protocol manual that can be made available. Furthermore,
therapists in applied settings who wish to provide empirically
supported treatments for their clients would have protocols to
follow to allow them to adhere to the treatment as it was
implemented in the study that validated the therapy.

The inclusion of treatment manuals in therapy outcome re-
search has had a major impact on the experimental evaluation
of psychotherapy. Any experiment requires clear operational
definitions of the independent variable. The use of protocol
manuals provides the scientific and methodological rigor
necessary to do this in the case of independent variables
involving complex psychotherapy methods. Indeed, accord-
ing to the American Psychological Association Task Force
on Promotion and Dissemination of Psychological Proce-
dures, the inclusion of protocol manuals is now a criterion
for demonstrating empirical support for a therapy (1995;
Chambless et al., 1996).

Integrity and Adherence Checks

After the treatment manual has been developed and therapists
have been trained in its use, it is important to ensure that the
therapists do not break protocol so that the independent

variable is the only factor systematically varied across
conditions. Adherence checks evaluate whether cross-
contamination occurs between conditions or whether other
therapy techniques are inadvertently employed. In performing
adherence checks, typically 20–25% of the treatment session
tape recordings are randomly selected from each condition.
Staff trained in the protocols categorize each therapist’s utter-
ances against a checklist of allowed and not-allowed tech-
niques. Checklist items for not-allowed methods include
(a) those relating to techniques of the comparison conditions
(e.g., if CBT is being compared to CBT plus an interpersonal
therapy component, then statements specific to interpersonal
therapy are not allowed into the CBT—only portions of ther-
apy) and (b) any other techniques of other psychotherapies not
specifically appropriate for the employed therapy condition.
Investigators must establish a predetermined rule for how
many major and minor breaks in protocol are necessary for ex-
clusion of a client’s data from the final analyses, as well as
clear definitions of what constitutes a major or minor break of
the protocol. The more stringent the criteria, the more likely
the therapy conditions will reflect only those techniques de-
fined by the independent variable manipulation.

Several investigations have alternatively employed the
practice of condition identification as a means of performing
adherence checks. In this approach, raters who are blind to
condition listen to therapy audiotapes and then independently
determine which condition was being employed on the tape.
The percentage of reliably differentiated tapes is then re-
ported. Because it is absolutely essential that the elements of
one condition not appear in a contrasted condition, such an
approach to ensuring integrity may be too liberal. It is fairly
easy for a rater to correctly classify an audiotape if only one
or two breaks in protocol are made within a session. If several
breaks in protocol are allowed in any one condition (as may
be the case in such an approach), the ideal of having the in-
dependent variable be the only aspect of treatment that varies
between conditions is lost. Thus, we recommend that investi-
gators employ the more conservative practice of categorizing
each therapist utterance against a checklist of allowed and
not-allowed techniques.

Expectancy and Credibility Checks

Research on drug efficacy in the medical field has yielded im-
portant findings concerning the power of client expectancy
for improvement, faith, and hope. Such investigations have
traditionally found that placebos (i.e., chemically inactive
substances used in comparison to active drugs) often yield
improvements in health despite their biologically inert
natures. Given the psychological mechanisms undoubtedly
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involved in the pharmacological placebo effect, these factors
are also powerfully involved in psychotherapy effects. Thus,
all conditions involved in an experimental clinical trial need
to be equivalent in the degree to which participants in each
condition expect to improve and how credible they believe
the rationale for the conditions is. If the conditions differ on
these crucial variables, a confound potentially exists, and we
cannot rule out differential expectancy or credibility as the
sole explanation of any observed outcome differences
between conditions.

In measuring how much participants expect to change and
perceive the demand to change, investigators often adminis-
ter expectancy and credibility scales. Because such ratings
may increase or decrease over sessions as improvements
occur or do not occur, these scales are best administered early
in therapy—for example, after the first session when the ra-
tionale and description of the therapy’s techniques have been
provided to the client. Analysis indicating condition equiva-
lence on these variables is critical to ruling out the role of
these common factors in contributing to any observed differ-
ential outcome among conditions.

Dropout and Attrition

Psychotherapy outcome studies, like all longitudinal studies,
are at risk for losing clients who choose to discontinue their
participation during or after therapy. Some common reasons
for discontinuation include dissatisfaction with the therapy or
therapist, failure to experience signs of improvement, dis-
comfort with the emotions elicited in treatment, and a lack
of time to devote to sessions or out-of-session activities
(e.g., homework).

According to Lettieri (1992), dropout refers to participants
who discontinue treatment while treatment is still being ad-
ministered, whereas attrition refers to the loss of participants
during the follow-up period of assessment. Investigators
should have predetermined criteria for what constitutes a
dropout (i.e., how many missed sessions) and what consti-
tutes attrition (i.e., how many missed follow-up assessments).
Either occurrence potentially compromises the scientific in-
tegrity of the investigation. Unambiguous interpretations of
between-group differences rest upon the statistically legiti-
mate assumption that random assignment results in groups
that are identical on the host of known and unknown client
characteristics that might affect outcome, thus holding these
variables constant across conditions. Consequently, large
dropout or attrition rates undermine the likely validity of that
assumption. Separately, differential rates regardless of overall
rate particularly reduce confidence in group equivalence,
given that these groups are de facto different. Although statis-
tical comparisons between completers and noncompleters on

available pretherapy assessments and demonstration of non-
significance between these two groups is often used to argue
that overall rates or differential rates are less likely to cause
this interpretive problem, investigators need to remember that
such comparisons are only conducted on existing measures
and do not address the many other ways not assessed that
might influence outcome.

On the other hand, differential dropout rates also offer an
important dependent variable, even though the internal valid-
ity of group comparisons is severely compromised. It is im-
portant to know whether one intervention will yield higher
rates of dropout than will another therapy in applied settings.
Investigators should also keep track of and report participants’
reasons for dropout because such information might be useful
later. For example, if a treatment package requires that partic-
ipants complete very time-consuming and complex home-
work assignments between sessions, and dropout clients
report this to be a reason for discontinuing participation,
although effective for clients who complied with homework
demands, such a treatment package may not be at all effective
for clients who lacked the desire or time to comply with such
demands. With such information, investigators can work on
ways to develop interventions that address the problem, are ef-
fective, and have low rates of dropout. For example, designers
of treatment protocols may take steps such as making home-
work assignments more manageable and realistic or devising
ways to strengthen the therapeutic relationship so that clients
are more willing to remain in treatment. Kazdin (1998) has
suggested further strategies to prevent attrition, including pro-
viding reminders for appointments and instituting monetary
incentives or compensation. Developing a strong alliance be-
tween the principal investigator and participants may also
minimize attrition rates.

The methodological concerns outlined in this section are
important considerations in designing therapy outcome stud-
ies. Their implementation maximizes the likelihood that con-
ditions will be equivalent on numerous factors that would
otherwise present rival hypotheses for why between-group
differences emerged. In addition to these methodological
considerations, several client-participant characteristics also
need to be taken into account. The following section outlines
these client-participant concerns.

INDEPENDENT VARIABLE CONSIDERATIONS:
CLIENT-PARTICIPANT CONCERNS

Sources of Participants

Of special consideration in conducting psychotherapy out-
come research are the sources from which clients are drawn.
Some common sources of clients include referrals from other

schi_ch09.qxd  9/6/02  12:19 PM  Page 226



Independent Variable Considerations: Client-Participant Concerns 227

mental health agencies or private practitioners in the area, self-
referrals, and responses to media advertisements. As with all
other independent variable considerations, participant source
would ideally be distributed evenly across the conditions of
the experiment in order to avoid confounds and maximize the
strength of cause-and-effect conclusions at the study’s termi-
nation. Investigators should keep track of the sources from
which clients are drawn so that these figures can be reported
and tested for between-group equivalence and so that the gen-
eralizability of the findings can be assessed.

Client-Participant Characteristics

The means, standards deviations, ranges, and frequencies of
particular client characteristics (especially any variables
known to relate to outcome) should be reported, regardless of
whether such characteristics are a part of the selection criteria
(see next section). Variables such as age, gender, ethnicity,
medication status, marital status, educational level, socioeco-
nomic status, and sexual orientation then need to be analyzed
for equivalence across conditions in order to rule out potential
confounds. Reporting of such variables also aids in evaluating
the external validity of the findings and is indeed a criterion
for status as an empirically supported treatment (APA Task
Force on Promotion and Dissemination of Psychological Pro-
cedures, 1995; Chambless et al., 1996).

Selection Criteria

Inclusion and exclusion criteria for admittance into a research
study must be specified before selection of clients begins. Ef-
ficacy studies typically focus on a particular diagnostic group.
However, investigators need to specify which comorbid con-
ditions would or would not preclude admission to the study.
As with other variables, relatively equivalent rates of specific
comorbid disorders between conditions would optimize inter-
nal validity. Comorbidity selection criteria also affect external
validity. The more strict the exclusion criteria, the less gener-
alizable the results will be. This is of particular importance to
external validity of research on disorders with high comorbid-
ity rates. For example, if the diagnostic group under investi-
gation involves individuals with major depressive disorder,
excluding anxiety disorders would severely limit the general-
izability of the findings, given that anxiety and depression
tend to co-occur (Sanderson, DiNardo, Rapee, & Barlow,
1990). Recent emphasis at the National Institute of Mental
Health on the growing importance of effectiveness (naturalis-
tic setting) research (described later) and concerns about the
external validity of carefully controlled efficacy studies
involving homogeneous samples that are not characteristic
of clients seen in typical practice settings has resulted in

recommendations by a recent NIMH work group that selec-
tion criteria in efficacy studies be relaxed (cf. Rush, 1998).

When deciding on the selection criteria to be used for a
study, investigators face an important trade-off. The more ho-
mogeneous the sample due to restrictive selection criteria, the
less error variance is likely to be present and thus the greater
the likelihood of a strong signal-to-noise ratio for detecting
between-condition differences. However, restrictive selec-
tion criteria reduces the generalizability of the conclusions.

Representativeness

Investigators should keep track of all referred clients and the
reasons for which any were excluded. This practice aids in
determining the characteristics of the entire sample of poten-
tial participants and thus allows for an assessment of general-
izability of the final sample. Also important is that such a
practice provides heuristic data on the number of individuals
who have the target disorder or problem under investigation.

One particularly important limit to generalizability to
keep in mind is that the final sample of participants consists
of clients who were willing to participate in a research
program. This may be indicative of a higher severity of the
problem, higher motivation to change, or greater expectancy
or credibility than would normally be found in the general
population of individuals having the target disorder. There
may also be several other client characteristics associated
with this willingness that are unknown but potentially related
to treatment responsiveness.

Although the previously discussed external validity con-
cerns have important practical implications, it is imperative
not to compromise the internal validity of a study in order to
improve its external validity. Again, the primary goal of
therapy outcome research is to establish specific cause-and-
effect relationships by eliminating as many potential rival
hypotheses as possible. Researchers certainly want their
findings to have significant implications for applied settings,
but the ideals of rigorous scientific experimentation cannot
be sacrificed in order to achieve this goal. If a study has no
or limited internal validity, the issue of external validity be-
comes moot, regardless of the setting in which the investiga-
tion occurred. We discuss this issue in more detail later in
this chapter.

Severity and Duration of the Problem

A particularly important methodological concern is that
the severity and duration of the problem under investigation
be assessed, reported, and balanced across conditions.
Severity and duration of the problem are two of the most
likely and potent confounding variables if not equated across
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conditions because they are so likely to affect outcome in
and of themselves.

Concurrent and Past Treatment

Acquisition and reporting of information regarding the pres-
ence of past or concurrent psychopharmacological or psy-
chological treatment for each of the conditions under
investigation allows for the evaluation of possible influences
of such treatments on clients’ outcomes. Because excluding
clients who are currently undergoing pharmacological treat-
ment may introduce a significant threat to the generalizabil-
ity of findings (clients in naturalistic settings are often
medicated), researchers may include such clients as long as
this variable is balanced across conditions. However, hold-
ing the dosage constant (with the physician’s approval) dur-
ing the treatment period is essential so that any observed
changes can be attributed to the independent variable and are
not confounded by changes in dosage during the course of
psychotherapy or the interaction of dosage change with the
psychotherapy effects. It is also customary to allow concur-
rent pharmacological treatment only if the client has been
medicated for 1 month or longer, so that drug effects have
stabilized. Finally, daily monitoring and reporting of dosage
and frequency can be used to verify unchanging medication
levels during the trial.

Concurrent psychosocial treatment is typically an exclu-
sionary criterion based on the probability that such treatment
will interfere with the treatment package being administered.
Indeed, this is analogous to common clinical practice in
applied settings. Clinicians rarely agree to see a client in
therapy when that client is in a separate psychotherapeutic
relationship. This is due to the potential for conflict or
incompatibility of the separate clinicians’ advice or therapeu-
tic process. One especially threatening possibility occurs
when the concurrent psychosocial treatment addresses issues
that the current investigation only addresses in one of its con-
ditions. The result would be tantamount to a breach of proto-
col integrity. Because investigators cannot know how many
of these breaches have occurred, it may be most prudent
simply to exclude potential participants who are concurrently
being seen in any other psychosocial treatment. However,
if such participants are included in the investigation, it is
crucial to report this inclusion and balance the presence of
concurrent treatment across conditions. For any psycho-
logical or medical intervention variables included, the re-
search report should include statistical analyses to assess
main and interaction effects involving those variables on out-
come measures.

Diagnosis

In psychotherapy studies on the effects of an intervention on a
particular disorder, selection criteria for the central presenting
problem (typically, the principal diagnosis) are specified at the
outset of the study. Investigators need to indicate the system of
diagnosis used and the method for obtaining diagnoses. Most
therapy outcome studies conducted in the United States and
many other countries employ DSM-IV criteria and utilize pre-
viously developed semistructured interviews (e.g., the Struc-
tured Clinical Interview for DSM-IV Axis I Disorders: SCID;
First, Spitzer, Gibbon, & Williams, 1997; see also the Anxiety
Disorders Interview Schedule for DSM-IV: ADIS-IV; Di
Nardo, Brown, & Barlow, 1994) to arrive at the diagnoses. In
order to lower the likelihood of false positive diagnoses, relia-
bility checks and analyses are invaluable in reducing error
variance and increasing the validity of conclusions. In order
to perform reliability checks, ideally two independent inter-
views by different interviewers would be administered, and
reports should indicate acceptable levels of training and quali-
fications of the interviewers. Some diagnoses have high inter-
rater reliability, and thus dual interviews may be conducted on
only a randomly selected sample of potential clients (com-
monly around 20%). Other diagnoses, however, have low in-
terrater reliability and thus require dual interviews by separate
diagnostic assessors on every potential client. In these cases,
inclusion in the research study would be restricted to cases in
which both assessors agree on the diagnosis or staff discussion
and consensus takes place to resolve any disagreements.An al-
ternative to having two independent interviews is to conduct
only one interview and have a separate assessor listen to the
audiotaped interviews in order to make a diagnosis. Problems
with this approach, however, make this strategy undesirable.
First, this practice is insensitive to the possibility that clients
may change their answers from one interview to the next. In-
deed, in our own research laboratory, we have often found that,
upon hearing a question being asked a second time, clients re-
port that being asked the question the first time caused them to
think about it more carefully and thus arrive at a response dif-
ferent from the one they originally gave. Second, clients may
respond differently to different interviewers. Thus, although
dual interviews are more expensive and time consuming, they
greatly reduce the possibility of false positive diagnoses and
are particularly crucial for diagnostic categories known from
past research to have poor interassessor reliability.

When performing diagnoses on potential participants, re-
searchers should also assess the severity of the problem using
a valid and reliable measurement. Furthermore, the duration
of a problem should be assessed via interview, preferably by
more than one interviewer, in order to establish reliability of
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the client’s self-report. When possible, particularly in the
case of psychotherapy outcome research using children as
participants, corroborating evidence of severity and duration
of the problem should be obtained via reports from other
individuals who have had regular contact with the client.

The considerations outlined in this section are intended to
maximize the probability that client-participant characteris-
tics are equivalent across conditions and thus do not pose
rival hypotheses for why differences between conditions
were found. Attention to these considerations also helps to in-
crease the external validity of findings so as to make them
more generalizable to other settings. In addition to consider-
ing these important client-participant characteristics, investi-
gators should similarly pay attention to specific therapist
characteristics. These concerns are discussed in the following
section.

INDEPENDENT VARIABLE CONSIDERATIONS:
THERAPIST CONCERNS

Therapists’ characteristics introduce variables worthy of
attention in psychotherapy research. Their background, pre-
vious training, and prior experience both in general and with
regard to the current diagnosis under consideration and the
current treatment protocol should all be described. Treatment
providers are typically individually supervised by the princi-
pal investigator of the research study in order to ensure strict
adherence to the protocol and high-quality administration of
the interventions.

It is crucial for the internal validity of the investigation
that more than one therapist be employed to provide treat-
ment and that these therapists are crossed as a factor with
therapy conditions (i.e., each therapist treats an equal num-
ber of clients in each condition). Protocol clinicians bring
their own (highly numerous) individual qualities and char-
acteristics to the therapeutic process, thus introducing the
possibility of main or interaction effects based on those
variables. If only a single therapist is employed, limited
generalizability exists for the findings, and internal validity
would be compromised to the degree that this single set of
therapist characteristics interacts with conditions to yield
the observed between-condition differences. Employing
multiple therapists crossed with conditions increases exter-
nal validity and internal validity, allowing for the statistical
isolation of condition effects collapsed over the therapist
characteristics represented by the protocol clinicians. Inves-
tigators will also be able to statistically analyze for effects
involving the therapist factor. If there are main or interac-
tion effects, clues are provided for the future empirical

pursuit of what therapist characteristics were causatively in-
volved, leading to additional knowledge about mechanisms
of change.

Therapist bias in regard to preferences for one condition
of the experiment over another also introduces an important
potential confound in any intervention outcome study. Such
a bias may influence outcome by leading to subtle and un-
intentional systematic differences in the way treatment or
nonspecific processes occur across conditions. Thus, in
addition to balancing therapists across experimental condi-
tions, experimenters may want to obtain (early in therapy)
therapist ratings of how credible they perceive each treat-
ment condition to be and how much they expect their clients
to improve in each condition. Such a practice provides a
quantified means of assessing therapist bias, and equiva-
lence of ratings across conditions would increase internal
validity. On the other hand, if differential ratings are found,
there is also a rare but powerful and exciting possibility that
greater change occurs in the condition in which therapists
have the lowest expectations. This outcome is quite likely
when the therapists are newly trained in one method but
well-experienced in comparison conditions. If the unfamil-
iar experimental condition yields superior gains despite
therapist bias in favor of the other condition, then therapist
bias can be ruled out as a potential confound (cf. Paul,
1966, for an example). As mentioned previously, differential
quality of therapy due to therapist bias or differential expe-
rience is less of a danger in dismantling, additive, and para-
metric designs, due to the fact that clinicians are likely to be
equally experienced in all of the components of the design
and are cognizant of the fact that it is not yet known which
elements or parameters of an intervention are crucial to its
efficacy.

So far, we have outlined various independent variable
considerations associated with selection of a design, general
methodological concerns, as well as client-participant and
therapist concerns. The following section outlines considera-
tions associated with the selection and measurement of
dependent variables.

DEPENDENT VARIABLE CONSIDERATIONS

Multiple Domain Assessment

When assessing the amount of change exhibited by clients
undergoing therapy, it is important to use more than one
domain of assessment as well as more than one method of
assessment. Although relevance to the disorder and cost in
terms of time, expense, or availability will no doubt affect
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how many measures can be obtained, domains of assess-
ment would ideally include cognition, affect, behavior, and
physiology. Ascertaining the level at which participants are
functioning in each of these domains constitutes a more thor-
ough, comprehensive approach than does any one level in
isolation. By assessing multiple domains, the researcher will
also be able to determine whether change is occurring in a
broad range of areas or whether change is limited to a specif-
ically defined realm. NIMH has also begun to encourage out-
come researchers to investigate the effects of interventions
beyond mere symptom reduction. Thus, investigators are
asked to assess an intervention’s impact on a client’s broader
functioning in the world, such as physical health and social
role functioning.

It is also useful for investigators to rely on different
methods of assessing change. Pre- and posttherapy ques-
tionnaires, daily diaries, assessor ratings from interviews
and sessions, observational measures, third-person reports,
and physiological assessments provide just a sample of the
options available for a multimethod approach to assessing
change. Investigators can assess for a convergence or diver-
gence of findings both across the different domains of as-
sessment and across the different methods. Discrepancies
across the domains of assessment may provide important in-
formation regarding how best to improve the treatment
package in future investigations. For example, if a particu-
lar intervention yields significant behavioral changes but
fails to produce a change in cognitive or affective function-
ing, future modifications to the treatment protocol might
include previously absent techniques or more potent tech-
niques for targeting cognition (e.g., adding deeper cognitive
therapy) and emotion (e.g., adding deeper emotional pro-
cessing techniques).

In 1994, the American Psychological Association and
Vanderbilt University hosted the Core Battery Conference in
an effort to develop a standardized battery of measures in-
tended for use by psychotherapy outcome researchers. As
part of the conference, special attention was devoted to
reaching a consensus on the domains of assessment investi-
gators should measure when determining the efficacy of a
therapeutic intervention (see Horowitz, Strupp, Lambert, &
Elkin, 1997). These domains of assessment included (a) the
severity of the individual’s subjective distress; (b) the level of
impairment evident in the individual’s life functioning (e.g.,
in interpersonal relationships, self-care, and work); and
(c) the frequency of occurrence of an individual’s symptoms.
An examination of the individual’s self-evaluation and mal-
adaptive interpersonal behavior was also recommended for
investigators of therapies aimed at anxious and personality
disordered populations.

Assessors

Treatment outcome studies often require the employment of
several staff members for conducting diagnostic and other as-
sessment sessions as well as for collecting and managing the
vast amount of data typically associated with these studies.
These individuals also deserve special attention in planning
the methodology of an experiment. Assessors and data col-
lectors should always be kept blind to condition to avoid bi-
asing effects on or biased interpretations of the data procured
in the experiment. Such individuals should also be balanced
across conditions to avoid the potentially confounding factor
of assessor characteristics (analogous to crossing therapists
with conditions). Furthermore, because assessor characteris-
tics may introduce error variance for a particular client’s data,
the same individuals should be used to conduct all assess-
ments (i.e., pre-, post-, and follow-up assessments) for any
one client-participant in an effort to reduce such variance.

Follow-Up Assessment

In order to assess whether therapeutic changes are sustained
over time after treatment has ended, investigators need to
conduct follow-up assessments. This crucial phase of the
experiment is relatively low in cost and yields important in-
formation about whether observed posttreatment changes
are maintained. A minimum follow-up period of 1 year is
often recommended, although several studies have assessed
change up to 2 or 3 years after treatment has ended. It is a
good idea to include several follow-up assessments to
allow for detection of nonlinear trends. Thorough follow-up
measurement is ideal—that is to say, the same multiple
domain assessments employed at pretherapy and postther-
apy should be used at follow-up periods. Because further
psychological or pharmacological treatment subsequent to
the experimental trial and outside of the project can obvi-
ously affect follow-up improvements, investigators should
also assess types and frequencies of such interventions at
the follow-up interview. It is particularly important to ana-
lyze for between-group differences in these variables;
differential rates of subsequent treatment would indicate a
potential rival hypothesis regarding follow-up outcome
differences (or similarities) between compared conditions.
Follow-up outcome analyses may also be conducted com-
paring participants who did and did not receive further
treatment, as well as comparing conditions that in separate
analyses include and do not include clients who did receive
subsequent therapy.

The dependent variable considerations listed previously
help to ensure that the assessment of clients-participants is
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thorough and not subject to error variance. An additional con-
sideration related to dependent variables has to do with the
methods used by investigators when analyzing the data from
their studies. The next section details methods of analyzing
data from therapy outcome studies.

STATISTICAL ANALYSIS OF DATA

Many traditional and newly emerging statistical analyses
exist for the analysis of outcome data. The reader is referred
to chapters in this volume that provide a comprehensive
overview of those data-analytic techniques. In this section we
merely summarize a few traditional approaches commonly
used in past therapy research.

Before presenting outcome results, tests for condition
equivalence on pretherapy demographic and dependent vari-
ables need to be reported in order to ensure the absence of po-
tentially confounding differences between conditions prior to
the beginning of treatment. An important consideration when
conducting these analyses, however, is that there is often in-
sufficient power to detect moderate effect size differences
when comparing groups only on baseline measures. This is
due to the reduced group ns that are required as a result of re-
peated measures designs, such as those employed in therapy
outcome research. Thus, investigators are advised to practice
caution when concluding that groups did not differ on pre-
treatment variables, because in fact moderate differences
may actually exist.

After one has ensured that groups did not differ on
pretherapy variables, primary outcome analyses on base-free
measures of change should be conducted and reported. When
these analyses are performed, it is advisable to reduce as
much error variance as possible by removing the variation
shown by clients on pre-therapy scores from later assess-
ment scores. The most common choice is analysis of covari-
ance (ANCOVA). This analysis is advisable when initial tests
indicate that there were no differences in pretherapy scores,
and it is necessary when the tests indicate that differences did
exist. Random assignment typically prevents the emergence
of pretherapy differences, but it is unfortunate when such
differences do emerge. In these cases, using covariance-
adjusted postscores statistically removes the pretherapy score
influence. It should be noted, however, that this does not en-
sure that the clients in the different experimental conditions
were not psychologically different, even though their scores
were made to be mathematically equivalent. If clients differ
across conditions on any one characteristic, they may also be
different in other psychological processes and may therefore
respond to treatment differentially. Thus, when pretherapy

differences exist, investigators should exercise caution in
drawing conclusions on outcome results.

There are several statistical considerations to take into ac-
count when using multiple measures from multiple domains.
Some measures show significant condition effects merely be-
cause using a large number of measures capitalizes on chance
(Type I error), and this likelihood increases as the number of
measures utilized increases. Data analysts need to therefore
make adjustments. One option is to employ a Bonferroni ad-
justment (see Miller, 1981) in which the predetermined alpha
level is divided by the number of outcome measures to arrive
at a new alpha level for all analyses. This adjustment is
widely seen as overly conservative. An alternative is to use
Simes’ (1986) improved approach which provides adjusted
alpha levels which protect against Type I error but are less
stringent.

The best option, however, is to conduct multivariate
analyses of covariance (MANCOVA) on the set of main out-
come measures, particularly when the set of measures is
being included based on some underlying empirical or theo-
retical rationale. For example, it would be appropriate to use
MANCOVA when assessing multiple self-report measures
of anxious symptomatology. Separate MANCOVAs can be
run on sets of multiple measures reflecting areas of function-
ing that are not theoretically or empirically related to each
other. If the MANCOVA indicates that a significant condi-
tion effect is present, then the investigator has several op-
tions from which to choose when conducting post hoc
comparisons. Stevens (1996) outlines three possible post hoc
procedures, ranging from least to most conservative. The
least conservative approach is to analyze Hotelling T 2s and
univariate t tests, in which one first conducts all pairwise
multivariate tests (T 2s) to determine the pairs of groups that
differed on the set of dependent variables, and then conducts
individual univariate t tests (each at the .05 level) to deter-
mine the specific variables that are contributing to the multi-
variate pairwise differences from the first step. A moderately
conservative approach is to analyze all pairwise multivariate
tests as described above, and then construct a confidence
interval using Tukey’s simultaneous confidence interval tech-
nique in order to determine which variables are contributing
to each pairwise difference from the first step. Finally, the
most conservative approach is to create Roy-Bose simultane-
ous confidence intervals, a procedure in which all pairwise
and complex comparisons are examined for each dependent
variable of interest. Use of this more conservative procedure,
however, severely minimizes the amount of power in the
analyses, and thus Stevens argues against its use. For specific
examples of how to employ each of these follow-up proce-
dures, the reader is referred to Stevens (1996).
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Within-condition t tests are also useful for determining
whether a specific condition actually showed significant
change for any given dependent measure. This statistical
procedure is especially important for follow-up assessments
in order to ascertain whether a condition is generating in-
creased, maintained, or decreased improvement relative to
posttherapy levels.

Special consideration should be given to participants with
missing data. Investigators can usefully analyze the results
separately on (a) only clients without any missing data and
(b) all clients wherein missing data are replaced either by
regression-determined values or by using the client’s last
available assessment score (end point analysis). Of course,
the greater the amount of missing data, the less confident one
can be about one’s conclusions, especially if analyses with
and without clients having missing data yield different re-
sults. (For a detailed discussion of approaches to handling
missing data, the reader is referred to the chapter by Graham,
Cumsille, & Elek-Fisk in this volume.)

Finally, power analyses should be conducted in order to
verify a low probability of Type II error (see Cohen, 1988).
Insufficient power resulting from small sample sizes may
help to explain the absence of a difference between any two
conditions. (For a detailed discussion of power analyses, the
reader is referred to the chapter by Wilcox in this volume.)

As we have described in this section, several considera-
tions factor into the statistical analysis of data in psy-
chotherapy outcome research. An emerging recent concern,
however, has been that investigators demonstrate the practi-
cal significance of their interventions in addition to showing
statistical significance. In the next section, we present con-
siderations associated with demonstrating that a given inter-
vention leads to clinically significant change.

CLINICALLY SIGNIFICANT CHANGE

In psychotherapy outcome research, statistically significant
change does not necessarily imply clinical significance. Al-
though the convention in behavioral sciences and particularly
in treatment outcome research (Kazdin & Wilson, 1978;
Meltzoff & Kornreich, 1970) has been to employ statistical
significance tests with primary outcome measures to infer
whether differences exist between groups, such a practice
ignores the fact that statistical significance often has little
relation to the practical importance of the effect (Jacobson,
Follette, & Revenstorf, 1984). Furthermore, by relying on
statistical significance tests in order to determine the effec-
tiveness of treatment, information about the variability of
outcome among clients is de-emphasized, thus leaving no

way to determine the proportion of clients who benefited
from the treatment (Jacobson et al., 1984).

Thus, in addition to testing for the statistical significance
of a treatment, it is also important to assess to what extent
the therapy-induced change is of practical importance for the
client. Many researchers have thus advocated using clinical
significance as a criterion for evaluating the effectiveness of
psychotherapy. However, there has been much disagreement
in the field in regard to what constitutes clinical significance.
Some suggestions have included: improvement shown by a
large proportion of the clients (Hugdahl & Ost, 1981); a
change that is large in magnitude (Barlow, 1981); an improve-
ment in the everyday functioning of the client (Kazdin &
Wilson, 1978); an elimination of the presenting problem
(Kazdin & Wilson, 1978); and attaining a level of function-
ing that is indistinguishable from that of the nondeviant popu-
lation (Kazdin & Wilson, 1978; Kendall & Norton-Ford,
1982).

One common approach has been to calculate the percent-
age of clients in each condition who show an operationally
defined amount of improvement on a specified set of mea-
sures (also termed responder status). This measure of clini-
cally significant change is often arbitrarily set at 20% (i.e.,
clients achieved a 20% change from their scores at prether-
apy). Investigators differ in how many posttherapy measures
are considered in evaluating whether a given client is a re-
sponder, although most commonly investigators require that
a client show 20% improvement on the majority of main out-
come measures.

Responder status is an effective means of communicating
how many clients displayed at least some response to treat-
ment. However, it is a fairly weak means of assessing clini-
cally significant change. If reported, it should be combined
with the more stringent criterion of high end-state function-
ing, which is defined as the percentage of clients from each
condition that is now functioning at so-called normal levels
on a majority of main outcome measures. Here, normal is
typically defined as a posttherapy or follow-up score falling
within the normal or functional range. Operationally defined
normal functioning is often a score falling within one stan-
dard deviation of normative means or, in the absence of nor-
mative data, a score deemed normal on the basis of its face
validity (e.g., a daily diary anxiety score of 20 or less on a
0–100 point scale, where 20 was labeled as slight anxiety).
However, as Jacobson, Roberts, Berns, and McGlinchey
(1999) point out, the criteria chosen for such face valid mea-
sures are often arbitrary (e.g., Jansson & Ost, 1982) or highly
subjective (e.g., Barlow & Mavissakalian, 1981).

Jacobson et al. (1984) have proposed three potential
operational definitions of clinically significant change in
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functioning: (a) the level of functioning at posttherapy falls
outside the range of the dysfunctional population such that
the posttherapy score falls two standard deviations beyond
the mean (in the direction of functionality) for that pop-
ulation; (b) the level of functioning at posttherapy falls within
the range of the functional population such that functionality
begins at two standard deviations from the mean for the nor-
mal population; and (c) the level of functioning at postther-
apy suggests that the subject is statistically more likely to be
in the functional than in the dysfunctional population (i.e.,
the posttherapy score is statistically more likely to be drawn
from the functional than the dysfunctional distribution). The
authors suggest that definition (a) is a more stringent criterion
than (b) and that when the dysfunctional and functional dis-
tributions overlap, (c) is the best choice. In order to use these
criteria, however, norms need to be available on the distribu-
tions of functional and dysfunctional individuals. If norms
are unavailable (or if norms are available on a random sam-
ple of individuals such that both functional and dysfunctional
people are represented in the sample), the authors suggest
employing definition (a) in deciding the clinical significance
of a treatment (Jacobson et al., 1984; Jacobson & Truax,
1991). Importantly, however, Jacobson et al. (1999) stress
that any method of determining clinical significance can only
be as good as the psychometric properties of the instruments
of measurement.

In addition to defining clinically significant change, it is
important to know the degree of change that has taken place
as a result of therapy. To address this concern, Jacobson and
Truax (1991) suggest employing a reliable change index,
whereby the index is equal to the difference between the
pretest and posttest scores, divided by the standard error of
difference between the two test scores. Thus, in conjunction
with defining the functional performance of clients according
to the criteria above, the reliable change index provides a
measure for whether observed change is indicative of more
than mere measurement error.

In conclusion, reporting responder status and end-state
functioning is an effective means of characterizing the level
of clinically significant change from two different perspec-
tives. In addition, one may also want to consider both the
appropriate definition of functional performance and the reli-
able change index for an assessment of the degree of clinically
significant change elicited by an intervention. By reporting
the amount of clinically significant change, clients as con-
sumers are in a better position to make educated decisions
about which therapy will aid them in achieving clinically sig-
nificant—not merely statistically significant—improvement.
Additionally, scientific investigators will be able to ensure
that their treatment packages offer significant symptom

alleviation for clients while meeting the scientific goal of
establishing specific cause-and-effect conclusions about a
particular intervention.

Thus far, we have presented the various methodological
considerations associated with between-group psychotherapy
outcome research in terms of independent and dependent
variables as well as data analytic concerns. When combined,
these suggestions can yield highly controlled investigations
in which highly specific cause-and-effect conclusions can
be drawn. However, for various reasons such large studies
cannot always be conducted. In the following section, we
describe some of the commonly used small-N experimental
designs and discuss the strength of cause-and-effect conclu-
sions associated with each design.

SMALL-N EXPERIMENTAL DESIGNS

Between-group experimental designs are the most com-
monly used approaches to evaluating the efficacy of a ther-
apy. However, such highly controlled investigations may not
be conducive to research in applied settings, in which inves-
tigators may not have access to a large number of individuals
meeting the criteria for the same disorder or in which re-
sources may be limited. Moreover, scientists may wish to
conduct a rigorous scientific investigation with a small num-
ber of clients or evaluate the effectiveness of an approach in
a preliminary fashion with a few clients before embarking
on a large-scale, expensive between-group design. Finally,
there are times when the characteristics of the disorder (e.g.,
rare occurrence in the population) make it unlikely that a suf-
ficient number of participants will be available. For these
reasons, small-N designs are commonly instituted. It is pos-
sible and desirable for practicing clinicians to employ these
types of designs whenever possible both to evaluate their
therapy interventions and to contribute to science. In small-N
research, inferences are made about the effectiveness of
the treatment based on systematically presenting different
conditions to a single client-participant over time or to
different clients at systematically different times and track-
ing the clients’ progress during phases of the experiment.
Unlike most between-group investigations, small-N designs
require frequent assessments over time, sometimes as many
as several observations per day or week. The reason for this
requirement is that the investigator must examine the pattern
and stability of performance during each phase of the exper-
iment. Furthermore, because such designs often rely heavily
on behavioral assessments, they are most appropriate for
treatments targeting operant behavior and less so for emo-
tional (respondent) behavior.

schi_ch09.qxd  9/6/02  12:19 PM  Page 233



234 Psychotherapy Outcome Research

All small-N designs begin with a baseline assessment in
which the frequency, duration, and intensity of the behavior
under consideration are tracked and measured for several
days before treatment is implemented. These baseline data
serve as a prediction of what the client’s behavior would be
in the immediate future if the intervention were not insti-
tuted. It is important that the baseline measures show a stable
rate (i.e., absence of a slope in the data and little variability).
A slope would indicate that there is already a tendency for
the behavior to be increasing or decreasing over an assess-
ment period and thus changes observed after treatment im-
plementation would not be clearly interpretable. If there is
evidence of large variability (i.e., fluctuation over time) in
the baseline data, it will be more difficult to ascertain
changes due to treatment in the midst of such “noise.” The
most common small-N experimental designs include the
ABAB design, the multiple baseline design, and the chang-
ing criterion design.

ABAB Design

The ABAB design alternates the baseline condition (A) with
the intervention condition (B). Cause-and-effect inferences
can be drawn if the client’s functioning improves during the
B phase, reverts back in the direction of the baseline level
during the second A phase, and then again improves during
the second B phase. Kazdin (1998) offers variations on the
ABAB design such that if the implemented treatment (B)
fails to produce an improvement in functioning, the clinical
scientist may institute a different treatment (B2). Alternate in-
terventions (Bx) may be tested until a change in behavior is
detected. After a change in behavior has emerged, then the
no-intervention (A) phase should again be implemented and
followed again by the intervention (Bx). In every A or B
phase, it is important to wait until the behavior is stable be-
fore moving to the next phase.

The ABAB design presents a practical dilemma for the
clinical scientist. During the second A (baseline) phase of
the design, the client’s behavior must revert toward baseline
levels if causal inferences are to be unambiguously drawn.
However, from a clinical standpoint, this reversion in be-
havior is undesirable, given that a clinician hopes the
client’s behavior continues to improve or at least remains
stable even without continued intervention. From a scien-
tific standpoint, however, if the client’s behavior fails to
return to the original baseline during the second A phase, a
multitude of rival hypotheses exist for why the problematic
behavior improved during the intervention phase and
preclude drawing a cause-and-effect conclusion about the
intervention.

The most likely candidate for the ABAB design is a
problem behavior that is under the control of environmental
contingencies (i.e., operant or instrumental behavior). The
design is rarely possible with many types of emotional prob-
lems (i.e., respondent behavior). The advantage of the next
design is that it is suitable for experimental evaluations of
treatments for either operant or respondent behaviors.

Multiple Baseline Design

In the multiple baseline design, baseline data are collected
concurrently on two or more baseline targets, and the inter-
vention is applied to each target at systematically different
points in time. There are three basic versions of the multiple
baseline design, differing in what the multiple targets are:
(a) different behaviors within the same client; (b) the same
behavior among different clients; or (c) the same behavior
within the same client across different situations. Thus,
depending on the version of the design chosen, the behav-
ior, the client, or the situation is the variable that is targeted
for treatment applications at any given phase of therapy.
After the initial baselines are stable on all targets, the clinical
scientist implements intervention for one behavior, client, or
situation while leaving the other behavior(s), client(s), or sit-
uation(s) under baseline (nontreated) conditions. After the
treated target improves and stabilizes, treatment is then im-
plemented for the next behavior, client, or situation while
all measures continue to be administered. The clinician can
draw causal inferences if each target changes only when the
intervention is implemented and fails to change prior to
intervention.

Two considerations are important when conducting
multiple baseline research. First, one needs to implement
at least two baselines, but utilizing three or four baselines
may strengthen the validity of causal inferences. For ex-
ample, an investigator implementing an after-school inter-
vention with emotionally troubled children may choose
the same behavior across different children as the target. If
one child is administered the intervention, continued base-
line assessment must be performed on a minimum of one
other child. However, if the investigator collects baseline
data on two or three other children and observes that
the behavior remains stable in those children while the
treated child’s behavior improves, the strength of causal
inferences is stronger than it would be if only one other
child had been employed as a comparison. The investigator
can then go on to implement the treatment with a second
child while continuing to collect baseline data on the re-
maining two children and so on until all four children have
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been treated. By employing more than two baseline partic-
ipants, the investigator is able to assess whether those
behaviors still exposed to the baseline condition remain
stable and whether treatment initiation reliably results in
improvements in a replicable fashion. Thus, more confi-
dence exists in the inference that the intervention caused
the behavior change.

Second, it is essential that the targets be independent.
Because this design requires that a behavior changes when
and only when the treatment is implemented, investigators
need to ensure that change in one target will not likely yield
change in another target that is still being exposed to the
baseline condition. If the targets are interdependent such that
the effects of one target carry over to another, the clinician
will have less confidence in the conclusion that the interven-
tion caused the change in behavior.

Changing-Criterion Design

In the changing-criterion design, the baseline assessment is
followed by implementation of treatment, at which time a
predefined level of performance (i.e., a criterion) is estab-
lished. After the client’s performance meets or surpasses
the goal, the criterion is made more stringent. The criterion is
continuously changed until the final goal has been reached. If
the behavior changes as the criterion is changed, then it
is likely that the intervention and not some extraneous vari-
able caused the change. However, because extraneous
variables could still account for general change in any one
direction, the clinician may make bidirectional changes in
the criterion in order to assess whether the behavior follows
in the appropriate direction. The disadvantage of this practice
is that the client may begin to engage in the unwanted be-
havior again, a scientifically important change, but poten-
tially harmful clinically. It should be noted that such a design
is limited to demonstrating gradual as opposed to rapid
changes due to the need for a changing criterion (Kazdin,
1998).

A variety of more complex designs that make use of one or
more of the basic designs described previously and that allow
for outcome studies analogous to the dismantling, additive,
and parametric between-group designs are also available.
The interested reader is referred to Hersen and Barlow
(1977).

In this section, we have described the small-N ABAB,
multiple baseline, and changing-criterion designs, as well as
the methodological considerations associated with each of
these approaches. The following section provides a discus-
sion of the distinction between and considerations surround-
ing efficacy and effectiveness research.

SCIENTIFIC RESEARCH IN THE
NATURALISTIC SETTING

The present chapter has focused on the various experimental
approaches for evaluating the efficacy of therapeutic inter-
ventions and the methodological considerations necessary in
conducting such investigations. We have emphasized the im-
portance of employing rigorous scientific methodology in the
quest for increasingly specific cause-and-effect conclusions
from internally valid investigations. The types of studies that
we have been describing are often called efficacy studies and
are characterized by the high degree of methodological rigor
typical of clinical research conducted under controlled condi-
tions. Features of this kind of therapy research include the en-
rollment of carefully screened and diagnosed clients who are
given a specific number of therapy sessions in two or more
randomly assigned comparison conditions administered by
clinicians who have been thoroughly trained in each of the
highly operationally defined treatments that are described
in detail in protocol manuals, supervised closely by project
investigators, and checked for protocol adherence by inde-
pendent assessors listening to tape recordings of the therapy
sessions. All of these features are of course incorporated to
ensure the greatest degree of control over the experiment in
order to reduce error variance and to provide the most unam-
biguous conclusions from the investigation.

Among those who believe that therapy research is indeed
capable of directly answering applied questions like Is this
therapy effective? or Which therapy is most effective?, some
have argued that the results of efficacy investigations are not
relevant to the applied setting because they lack external va-
lidity (cf. Elliott, 1998). That is, the highly controlled and re-
strictive circumstances of efficacy studies are so unlike what
occurs in the real world of clinical intervention (e.g., hetero-
geneous clients with frequently complex problems and co-
morbid conditions, absence of protocol manuals defining
how to intervene, absence of supervision, and variable length
of treatment as determined by insurance policies or ability to
self-pay) that the results of rigorous efficacy experiments are
unlikely to generalize to actual clinical practice. If one is fo-
cused on the scientifically unanswerable questions about
therapy effectiveness (rather than on causal relationships),
then this criticism is well taken.

In the context of this criticism, a distinction is now often
made between efficacy investigations and what has been
termed effectiveness research (e.g., see Seligman, 1995).
Effectiveness research refers to therapy studies that are con-
ducted in real-world clinical settings. In such research, there
are often fewer or no restrictions on client participants (any-
one who comes to a clinic can participate), and participating
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therapists do not undergo any specialized training but admin-
ister their therapies as they usually do. Typically, the main
elements of the study that are controlled include the timing
and content of assessment materials used to measure out-
come and perhaps to measure client and therapist characteris-
tics. Such effectiveness research does have the advantage of
possessing greater external validity in the sense that it is more
representative of what typically occurs in practice settings
than is the case for typical clinical efficacy trials. Addition-
ally, this research approach does have the capability of
revealing potentially important correlational relationships
(e.g., assessing the predictive value of certain client charac-
teristics, therapist characteristics, and therapy process vari-
ables) that can lead the way to discovering critical moderator,
mediator, or predictor variables for further pursuit. Based on
a work group report (cf. Rush, 1998) arguing for the enor-
mous importance of obtaining valid findings about therapy in
actual clinical settings, the National Institute of Mental
Health has recently placed high priority on funding this type
of research.

Despite its potentially greater external validity, however,
three things need to be kept in mind about effectiveness
research. First, generalizability problems do not disappear.
There is no guarantee that the results discovered in one clini-
cal setting with its types of clients, therapists, and procedures
will generalize to other clinical settings that have somewhat
different characteristics. Thus, it is critical that the investiga-
tor document and report those characteristics and procedures
in order to help other researchers and clinicians to evaluate
the potential relevance of the results to their own settings.
Second, the best that effectiveness research (as it is typically
performed) is able to provide is the discovery of correla-
tional, and not cause-and-effect, relationships. Experimental
designs and carefully controlled methodologies are required
for causative conclusions. Finally, there is a danger in effec-
tiveness studies that any demonstration of significant im-
provement among client participants may be erroneously
attributed to the provision of therapy. As we have seen
throughout this chapter, such a conclusion is not possible,
given the large number of reasonable alternative explanations
for such an outcome. Without a comparison condition that
holds certain potential causes (e.g., history, maturation, pro-
vision of a sympathetic listener) constant, there is no way to
conclude unambiguously that therapy was the actual cause of
any of the observed changes. Findings that possess no inter-
nal validity are of no use, regardless of how much external
validity the study has.

Despite our obvious bias toward carefully controlled ther-
apy investigations that are focused on discovery of causal
relationships (because that is indeed the only outcome that

scientific research can yield by its very nature, cf. Borkovec &
Castonguay, 1998), it is important to point out a critical
role for applied research. Local clinical sites can conduct
research studies that are aimed at improving the quality of
their services, even if such research is designed in a way that
does not allow the types of unambiguous causal inferences
generated by the rigorous designs and methodologies
described in this chapter. One could, for example, assess client
and therapist characteristics and correlate these variables
with client outcomes to search for potential predictors of
therapeutic gains, compare masters-level therapists to PhD
therapists within an agency, contrast the improvements
observed in clients who have received psychotherapy as
customarily delivered in the agency to clients who are given
medication for their psychological problems, or even compare
the outcomes of clients who happened to have received
(nonrandomly) different forms of psychotherapy (a compara-
tive design) offered by different therapists within the agency.
Clinical sites conducting such research can use such informa-
tion to identify and make increasing use of the types of
services that are found to be associated with maximal client
outcomes. It may not matter to the researchers what the causal
elements are for maximized change; they merely wish to
determine the best services for their clientele and to constantly
improve those services. In conducting such research, two
points need to be kept in mind. First, conclusions reached by
such investigations are limited in generality only to the partic-
ular clinical site involved. Second, even for these local
conclusions, because many rival hypotheses remain, causal
conclusions are not possible. Consequently, the results do
not contribute to basic knowledge in the field. Even more
important, however, is that one cannot be certain that the vari-
ables investigated and found to be associated with better
outcomes are indeed the reason for (i.e., the cause of) the
superior improvements. Thus, maximizing their use in one’s
clinical service may not actually result in the desired incre-
ments in client change. Continued evaluation of those vari-
ables would, however, provide the necessary feedback to
allow continuing evolution of services being administered.
The reader is referred to texts by Newcomer (1997); Shadish,
Cook, and Campbell (2002); and Bickman and Rog (1998) for
information on designs, methodologies, and considerations
pertaining to applied research.

On the other hand, a new and growing movement
has been occurring within the field of clinical psychology
that gives promise to the creation of psychotherapy re-
search that can maximize both internal and external validity.
Practice research networks are being organized within prac-
tice communities and mental health agencies wherein a
common core assessment battery will be administered and
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collaborative research efforts between practicing clinicians
and clinical scientists will be established. The creation
of such a research infrastructure will provide great opportu-
nities for clinically relevant research within the naturalis-
tic setting on a large scale. The greater optimism in this
movement comes, however, from a growing recognition
that experimental studies are both necessary and possible
within such an infrastructure (cf. Borkovec, Echemendia,
Ragusea, & Ruiz, 2001). Although it remains to be seen how
this approach to clinical research unfolds, there is the real
possibility in the near future that well-designed practice re-
search networks will be established maximizing both inter-
nal and external validity in their research efforts, and that as
a consequence considerable basic knowledge about psy-
chopathology and therapeutic change mechanisms will
emerge that can contribute to the development of increas-
ingly effective forms of intervention.

CONCLUSIONS

Like any experiment, the goal of a psychotherapy outcome
investigation is to establish cause-and-effect conclusions.
Such conclusions are achievable by instituting experimental
designs in which all variables are held constant except the
single variable of interest. Additionally, through the use of
the strong inference approach, investigators can repeatedly
construct rival hypotheses about observed relationships be-
tween variables and are thus well equipped to uncover in-
creasingly specific cause-and-effect conclusions about those
relationships. Ultimately, through the use of this procedure
and a methodologically rigorous approach to outcome re-
search, investigators can obtain highly specific pieces of
knowledge about a single observed relationship.

Although the no-treatment and common factors compari-
son designs do hold constant some important variables
that may contribute to observed change, we have shown why
their employment does not allow for an examination of the
active ingredients of a treatment package. Additionally, the
comparative design contains a large number of threats to
internal validity and thus its use is problematic if one’s goal
is to establish specific cause-and-effect relationships between
variables. We have demonstrated throughout the present
chapter that the scientific ideal of holding constant all vari-
ables except the single variable of interest is best achieved by
instituting the component control (dismantling), additive
(constructive), catalytic, and parametric designs in an effort
to establish causal conclusions about the mechanisms of
change and the basic nature of a particular psychological
condition.

We have also described the various methodological con-
siderations that must be taken into account when conducting
psychotherapy outcome investigations. The application of
these prescriptions (e.g., random assignment within waves,
equation of session parameters, the use of detailed therapy
manuals, integrity checks, expectancy and credibility checks,
a standardized approach to diagnosis, crossing therapists
with conditions) strengthens the specificity of causal conclu-
sions by holding important variables constant within and
between conditions. Important dependent variable considera-
tions (e.g., assessment multiple domains of functioning,
conducting follow-up assessments, assessing clinically sig-
nificant change) ensure that investigators gather quality data
that will reflect the changes caused by a given intervention. 

Finally, we have outlined other scientific approaches to as-
sessing change, particularly in smaller groups of individuals.
Such investigations are useful in treating infrequently occur-
ring conditions or in conducting preliminary research on
potential cause-and-effect relationships in psychotherapy.
Finally, conducting methodologically rigorous studies in
naturalistic settings may optimize internal and external valid-
ity and contribute to basic knowledge about psychological
disorders and mechanisms of change.

By using a basic science approach to psychotherapy out-
come investigations and thus making the ultimate goal of
such investigations the establishment of highly specific
cause-and-effect conclusions, we consequently are able to
discover increasingly effective ways of treating individuals
who are suffering from psychological problems. It is pre-
cisely through upholding these rigorous scientific ideals that
we are able to uncover the specific nature of disorders and the
mechanisms of change necessary to alleviate the symptoms
associated with them.

APPENDIX: CHECKLIST OF RECOMMENDATIONS
FOR INVESTIGATORS OF PSYCHOTHERAPY
OUTCOME RESEARCH

1. Decide what type of design will be employed (no-
treatment, common factors, component control, additive,
catalytic, or parametric). The more elements held
constant across conditions, the more specific the cause-
and-effect conclusions that can be drawn from the design.

2. Investigators should conduct power analyses to deter-
mine sample size.

3. Participants should be randomly assigned to conditions.
Block random assignment within waves should be
employed if participants are entering the study over an
extended period of time.
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4. Conditions should be matched on length, number, and
frequency of sessions. For dismantling and additive
designs, a common factors component must be added to
single-component conditions in order to equate them on
length of sessions with the multicomponent condition.

5. Protocol manuals should be used to operationalize the
independent variable of the investigation. They should
include an outline of the rationale for treatment, theoret-
ical foundations of the therapy, and session-by-session
goals and techniques when possible.

6. Integrity and adherence checks should be performed on
20–25% of randomly selected tapes from each condition
of the study. Raters blind to condition should categorize
each therapist utterance against a checklist of allowed
and not-allowed techniques and utterances. Investigators
should make a priori decisions regarding the number of
protocol breaks allowed before a client’s data will be
excluded from the analyses.

7. Conditions should not differ in terms of clients’
expectancy to change or how credible they think the
rationale for treatment is. Thus, credibility-expectancy
scales should be administered after the rationale for
treatment has been provided (usually after the first
session).

8. Conditions should be equal in terms of how many clients
have discontinued treatment while it is being adminis-
tered, as well as how many clients have been lost during
the follow-up period of assessment.

9. Sources of participants (i.e., referrals from private practi-
tioners, self-referrals by clients, responses to media
advertisements) should be equally distributed across
conditions.

10. Demographic characteristics (e.g., age, marital status,
level of education, ethnicity) should be equivalent across
conditions.

11. Inclusion and exclusion criteria should be specified before
patient recruitment begins. Comorbidity of disorders
should be equivalent across conditions. Exclusion of co-
morbid disorders presents a limit to the generalizability of
findings; however, a more homogeneous sample reduces
the amount of error variance present.

12. To assess the representativeness of the sample under
investigation, investigators should track reasons for
participant exclusion.

13. Severity and duration of the problem should be assessed,
reported, and balanced across conditions.

14. Concurrent or past treatment must be balanced across
conditions and reported.

15. For investigations of specific diagnostic groups, opera-
tional definitions of the system employed to make diag-
noses should be specified, and reliability checks on
diagnoses should be conducted and reported.

16. Therapist characteristics should be described, and more
than one therapist must be employed.

17. Therapists should treat an equal number of clients in
each condition.

18. Therapist bias should be assessed and reported. Such rat-
ings should be equivalent across conditions.

19. Multiple domains of patient functioning (e.g., cognitive,
affective, behavioral, physiological) should be assessed,
and these assessments should take several forms (e.g.,
self-report, observational, physiological).

20. Assessors and data collectors should be kept blind to
condition and should be balanced across conditions. Fur-
thermore, the same individuals should be used to conduct
all assessments for any one client in order to reduce error
variance.

21. Follow-up assessment(s) of at least 1 year should be con-
ducted in order to determine the degree of maintenance
of change. Several follow-up assessments should be em-
ployed to allow for the detection of nonlinear trends, and
each assessment should include multiple domains.

22. Statistical tests for condition equivalence on pretherapy
variables should be conducted and reported. Nonequiv-
alence on any variables represents a potential rival
hypothesis for differential change between conditions.

23. Statistical correction methods for multiple tests (e.g.,
Bonferroni correction) must be employed when multiple
measures from multiple domains are analyzed.

24. Analyze between-condition effects using MANCOVA on
the set of main outcome measures.

25. Within-condition statistical tests should be employed to
determine the degree of change from pretreatment to
posttreatment and follow-up assessment periods.

26. Sufficient power must be demonstrated before an equiv-
alence between conditions is interpreted as indicating a
true absence of differences.

27. Operational definitions of clinically significant change
should be analyzed and reported.
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Health psychology can be defined as the application of theo-
ries, methods, and research findings in basic and applied psy-
chology to the study and promotion of physical health. As in
the closely related interdisciplinary field of behavioral medi-
cine, health psychology is founded on the assumption that
psychological factors and physical health are reciprocally
determined. For example, daily habits (e.g., exercise, diet),
psychological processes (e.g., emotions), individual differ-
ences (e.g., personality traits), social relationships, and levels
of functional activity both influence and are influenced by
physical health. Unlike other applied subdisciplines (e.g.,
clinical and counseling psychology), health psychology con-
cerns emotional health and adjustment only to the extent that
they are influences on or consequences of physical diseases
or disorders.

Health psychology formally emerged in the 1970s, culmi-
nating in the establishment of the Division of Health Psychol-
ogy (38) of the American Psychological Association in 1978
(Wallston, 1997). It was preceded by and still enjoys close as-
sociations with a variety of psychological fields, including

pediatric psychology, rehabilitation psychology, and psy-
chophysiology. In its development, health psychology has
drawn heavily—in terms of concepts, methods, and
existing literature—from these and other psychological fields,
especially clinical, social, personality, experimental, and phys-
iological psychology. During the same period, the interdisci-
plinary field of behavioral medicine was formally established
(G. E. Schwartz & Weiss, 1978). It addresses overlapping con-
cerns, but includes methods, accumulated knowledge, re-
searchers, and practitioners from fields beyond psychology,
especially medicine, epidemiology, public health, genetics,
nursing, and other health professions and sciences. The roots
of health psychology and behavioral medicine can be traced
through older related fields (e.g., psychosomatic medicine),
many specific developments in biomedical and behavioral sci-
ence over the preceding 50 years, and the steady expansion of
psychology’s role in medical education and health care. How-
ever, research and application at this interface have expanded
at a remarkable rate since 1980, to the point that health is a pri-
mary focus in psychology and psychological considerations
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are increasingly common in biomedical research and health
services.

Given its evolution from other fields in psychology and its
location at the intersection of behavioral and biomedical
science, health psychology utilizes a very broad array of re-
search methods. This breadth of topics and methods may
indeed be the most daunting challenge to health psychology
researchers and consumers of their work. There are few, if
any, specific methods that are truly unique to the field. Most
of the topics covered in this volume, for example, are rele-
vant to health research. Hence, broad traditional methodolog-
ical training is a prerequisite for this work. Yet the application
of traditional psychological methods to problems of physical
health and illness poses many complex challenges. 

This chapter provides an overview of these issues. It
begins with a discussion of the scope and context of health
psychology research, as these are critical background consid-
erations in the design and evaluation of research in the field.
Next, key methodological issues in each of the three central
topics or domains of the field are addressed—the role of
behavior (e.g., smoking, physical activity levels) in the de-
velopment and prevention of disease, the role of stress and
emotion as more direct psychobiological influences on dis-
ease, psychological aspects of acute and chronic illness and
medical care, and the effects of psychosocial interventions as
additions to traditional care. The chapter concludes with a
review of classic issues in research design and methodology
as they relate to health psychology, followed by a discussion
of emerging and future issues. Although a thorough review of
research methods in health psychology would itself require a
sizable volume and hence is well beyond the scope of this
chapter, it is possible to introduce and illustrate the unique
methodological challenges and opportunities in this rapidly
evolving field. Indeed, one very appropriate goal of this chap-
ter could be to facilitate the application of the other topics
covered elsewhere in this volume to the specific domain of
health and disease.

THE SCOPE AND COMPLEXITY OF HEALTH
PSYCHOLOGY RESEARCH

As this volume describes, methodological principles can be
articulated in the abstract, but their effective use requires a
nuanced understanding of the specific application. The
strengths and weaknesses of any specific study design and the
value of its contribution depend heavily on the content and
context of the question. That context involves not only the
state of the prior literature on the topic, but also the broader
issues and perspectives in which it is embedded. Both the

content and context of health research are often unfamiliar to
students, practitioners, and consumers of behavioral science.
As a result, even researchers with considerable experience in
other psychological fields can have considerable difficulty
in applying their skills to the interface of the behavioral and
biomedical sciences.

Three Domains of Health Psychology

The variety of research questions in health psychology can be
organized into three broad and interconnected topics. The
first—health behavior and risk reduction—examines the
effects of daily habits and other behaviors (e.g., smoking, in-
activity, diet) on the risk of physical disease. After reliable
behavioral risk factors are identified, subsequent research
examines possible moderators of their effects (e.g., gender,
family history of specific diseases, ethnicity, etc.), in order to
identify population subgroups for whom these behavioral
risks are particularly dangerous. Other studies examine the
multiple determinants of these behavioral risk factors. These
determinants of health behavior can include a broad range of
factors, ranging from cultural, economic, and social factors
(e.g., socioeconomic status, education, ethnicity), to intra-
individual psychosocial factors (e.g., belief, attitudes) and
even biological influences (e.g., biochemistry of addiction).
Research on the nature, moderators, and determinants of be-
havioral risk factors guides the development and evaluation of
risk reducing interventions. Intervention research of this types
asks two basic questions. First, What interventions are effec-
tive in changing health behavior and maintaining these
changes? Second, Do these interventions reduce the incidence
of disease? The most common intervention approaches run the
full range from traditional psychological treatments with
individuals (e.g., counseling, behavior therapy) to population-
based interventions (e.g., public education, policy, or advertis-
ing campaigns). Although a few specific behaviors have
received the most attention because of their central role in the
most common causes of morbidity and mortality (e.g., smok-
ing, diet, exercise), interventions address a very wide variety
of end points—from the use of seatbelts and sunscreen to
participation in health risk screenings.

In addition to psychological effects on health and illness
through the pathway of lifestyle and health behavior, the sec-
ond major topic in the field—stress and health, or psychoso-
matics—concerns more direct psychobiological influences
on disease. Perhaps the oldest issue at the interface of bio-
medical and behavioral science concerns the effect of stress,
negative emotions, and related characteristics of people (e.g.,
personality traits) and their social environments (e.g., isola-
tion vs. support) on the development and course of physical
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disease. Studies in psychosocial epidemiology examine the
effects of such risk factors on the incidence of disease in ini-
tially healthy populations, and their impact on the course of
disease among individuals with a specific, established condi-
tion. These risk factors range from broad—higher-order
factors such as socioeconomic status to characteristics of in-
dividuals, such as personality and emotional adjustment.
After psychosocial risk factors (e.g., social isolation, chronic
anger, hostility) have been identified, other research exam-
ines the mechanisms underlying these statistical associations.
If the behavioral or lifestyle mechanisms described previ-
ously do not account fully for these associations, the primary
focus of mechanism studies becomes the psychobiological
correlates of psychosocial risk factors that could plausibly
affect the pathophysiology of a given disease. In a maturing
bio-behavioral science, these mechanisms are informed by
basic research in medical physiology and closely tied to cur-
rent research on the pathophysiology of specific diseases. In
addition to human epidemiological and clinical research on
psychosocial risk factors and human psychobiological re-
search on the underlying mechanisms, research in this area
often utilizes animal models that permit stronger experimen-
tal tests of psychosocial influences on disease and more
definitive albeit invasive evaluations of underlying mecha-
nisms. Animal research permits tests that would be obviously
unethical in humans, but the issue of generalizability to
human disease is a central concern. Ultimately, psychoso-
matic research in this area guides the development and eval-
uation of interventions (e.g., stress management) intended to
prevent or manage disease through the disruption of un-
healthy psychobiological processes or through the promotion
of stress-buffering resources.

This latter type of intervention research could also be
considered an example of the third major topic in health
psychology—psychosocial aspects of physical illness and
medical care. Research in this area examines the psychoso-
cial impact (e.g., emotional functioning, functional activity
levels, pain) of physical illness and other medical events on
patients and their families. Not all people with a given type
and severity of disease experience the same psychosocial im-
pact. Hence, the determinants of individual differences in
these impacts is an important topic in this area, as it identifies
high risk groups in need of assistance and guides the devel-
opment and evaluation of interventions designed to maxi-
mize functioning and well-being. A related topic addresses
the psychosocial impact of standard medical and surgical
care, again with the ultimate goal of maximizing benefits and
minimizing the negative consequences and side effects of
these regimens and procedures. In many cases (e.g., diabetes),
the standard medical care of a condition is largely behavioral,

such as modifications in diet, activity levels, and adherence to
prescribed medical regimens. The effectiveness of these
approaches and the identification of potentially modifiable
determinants of their effectiveness are important topics in
health psychology research, as such research can help to
maximize the effectiveness of standard care. Finally, the
effects of psychosocial additions or even alternatives to tradi-
tional medical and surgical care are an increasingly important
topic.

This brief review illustrates the relevance of traditional
methodological topics in psychology to research in health
psychology. Psychological, behavioral, and psychophysio-
logical assessment, measurement and analysis of determi-
nants of such variables, and the evaluation of behavioral
interventions are essential elements of the field. However,
transposing these traditional methodologies to the “new key”
of health and illness is a complex process, especially in light
of the wide range of risk factors, medical conditions, and in-
tervention approaches included in the field.

Levels of Analysis and the Biopsychosocial Model

During the emergence of health psychology and behavioral
medicine, Engel (1977) described important limitations of the
traditional biomedical model of health and illness as reflecting
alterations in biochemistry and the structure and function of
organ systems. As an alternative, Engel proposed the biopsy-
chosocial model, which describes health and disease as re-
flecting the reciprocal interplay of biological, psychological,
and sociocultural processes. This model quickly became a
cornerstone of these fields. Rather than a potentially reduc-
tionistic view of health and illness, the biopsychosocial model
is based in the broad perspective of systems theory (von
Bertalanffy, 1968), depicted in Figure 10.1. Systems theory
conceptualizes natural phenomena—including health and
disease—as involving hierarchically arranged levels of analy-
sis, ranging in complexity from small, simpler units such as
cells to large, complex, and superordinate factors such as
communities and even cultures. Each level of analysis in-
volves its own conceptual models and related research meth-
ods, but each is influenced by adjacent levels. Therefore,
processes within a given level cannot be fully understood
without consideration of the neighboring levels. Further,
models and methods traditionally belonging to separate levels
of analysis must frequently be integrated in order to investi-
gate biopsychosocial perspectives on health and behavior
more directly.

The far-reaching criticism of the traditional biomedical
model posed by Engel’s alternative is clear. Coronary heart
disease, for example, cannot be reduced simply to the biology
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Figure 10.1 Hierarchical Biophysical Model

of the slow and progressive narrowing of the arteries that
supply blood to the heart and the pathophysiology of acute
coronary events (e.g., myocardial ischemia, thrombosis,
arrhythmia). Rather, these essential considerations must be
placed in the context of individual psychosocial, interper-
sonal, and sociocultural processes. Individual health behav-
iors, psychobiological processes, and the social, cultural,
and economic factors in which they are embedded are
equally important in any comprehensive understanding of
coronary disease and virtually all of the major sources of
morbidity and mortality.

Conventional scientific training and research are usually
located comfortably within one of these various levels of
analysis. Yet, research in health psychology explicitly es-
chews the single-level approach, and must be conducted at
least with an appreciation of the embeddedness of a given
question, if not an active integration of cross-level method-
ologies. From the perspective of systems theory and the
biopsychosocial model, the challenges and burdens for
the producers and consumers of health psychology research
are obvious. The concepts, accumulated knowledge, and
methods of several disciplines are highly relevant to health
psychology. The resulting conceptual and methodological

pluralism necessary for the most informative research is in-
consistent with many traditional disciplinary identities and
conventional approaches to training. Such broad expertise
poses major demands on researchers and scholars. These
burdens are typically eased in health psychology research
through interdisciplinary collaboration. But even this strat-
egy requires broad training and expertise for the individuals
comprising a research team, in order to manage the difficul-
ties of cross-disciplinary communication.

Health and Disease Across the Life Span

For each of the major topics in health psychology, the specific
questions and methods are heavily influenced by the age of
participants and the natural history of disease. Specific mani-
festations or indications of health change across the lifespan,
as do the nature of threats to health and the prevalence of
specific diseases and disorders. For example, accidents and
violence are the main cause of morbidity and mortality in
childhood, adolescence, and young adulthood, but chronic
illnesses such as cancer and cardiovascular disease predomi-
nate later. Similarly, the determinants of behavioral risk fac-
tors, the role of psychosocial risk factors and their underlying
psychobiological mechanisms, and the appropriateness of
various intervention strategies all change in important and
far-reaching ways across the life span and the course of a
disease. The determinants of initiation of smoking in adoles-
cence are very different from the key influences on mainte-
nance and cessation of smoking in adulthood, as are the
optimal methods for intervention. Similarly, the psychosocial
challenges posed by early stages of cancer (e.g., behavioral
risk factors, early detection) are very different from those
posed by its later stages (psychobiological mechanisms in
progression, psychosocial impacts of medical and surgical
care, etc.). Further, the outcomes of interest and the optimal
methods for assessing them and their determinants vary as
well. For example, the effects of chronic headaches on acad-
emic functioning are a critical concern among school-age
children, whereas vocational functioning is obviously more
relevant for adults. In very young children, self-reports of
pain and symptoms may be problematic, whereas they are the
optimal indicators of the same condition for adults.

Because health psychology can reasonably be seen as in-
cluding pediatric psychology, geropsychology, and every age
group in between, collaborations among types of psycholo-
gists are as important and necessary as the interdisciplinary
collaborations described previously. Just as health psycholo-
gists must be cognizant of the embeddedness of their work in
biological and sociocultural levels of analysis, they must also
recognize its embeddedness in the life span and related stages
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and processes of development. The nature of research ques-
tions and the methods used to pursue them must be informed
accordingly.

Multiple Contexts of Health Psychology Research

Just as age, developmental stages, and phases of disease de-
velopment and course are key contexts for health research
within psychology, there are additional contexts outside of
psychology to be considered. They determine the relative
importance of research questions, shape the specific focus of
those questions, and influence the selection of methodolo-
gies. Public health and epidemiology are perhaps the most
obvious examples of allied disciplines that provide an essen-
tial context. The prevalence and incidence of specific threats
to health and how these patterns vary across segments of the
population shape the research agenda in health psychology.
Answers to the question What afflicts us? are a driving force
in this agenda. This includes not only the most common
causes of death, but also the most common sources of mor-
bidity, impairments in functional status or activity (i.e., dis-
ability), and threats to well-being (e.g., pain).

The epidemiological perspective explains the central
place in the field of some conditions, such as heart disease,
cancer, and chronic pain, as well as more recent topics, such
as HIV and AIDS. Variations in sources of morbidity and
mortality across age, sex, ethnicity, and socioeconomic status
provide additional guidance from the epidemiological or
public health perspective. One could argue, for example, that
the field has paid too little attention to women’s health, child-
hood injuries, the elderly, depression, drug abuse, and vio-
lence. If the public health and epidemiology perspective is
extended to a worldwide view, the field arguably pays too lit-
tle attention to many issues, including hunger, access to basic
medical care, and infectious disease in nonindustrialized
nations (Creer et al., in press). Some of these issues arguably
lie near or beyond the boundaries of traditional definitions of
health psychology, but this perspective sharpens our appreci-
ation of the field’s strengths and limitations.

A second obvious context for health psychology research
is medical science and care. Increasingly, health psychology
research must be informed by an appreciation of the patho-
physiology of specific diseases, in order to make certain that
the connections between behavior and disease are explicit
and plausible. General, black-box models in which the nature
of connections between behavior and disease are not speci-
fied rarely make valuable contributions to the field in its
current state, and if they do it is only in the beginning stage of
investigations of a new topic. Much more detailed models of
the links between psychological and biological realms are

now required as guides to theory-driven research. In studies
of predictors of specific diseases, current standards for the as-
sessment and classification of those medical conditions are
essential in order to maximize the impact of psychological
research. Similarly, studies of the psychosocial consequences
of disease must utilize current knowledge and methods of
medical science to capture adequately the nature and severity
of a given condition. Finally, questions about the value of
psychosocial interventions as additions to traditional medical
and surgical care must be informed by a clear and current un-
derstanding of that care, as well as of the specific ways in
which it is delivered. Only then can the additional role of
health psychology interventions be adequately addressed.

A final context of increasing importance is health eco-
nomics and health care financing. Additional influences on
the prioritizing of topics within the research agenda of health
psychology are answers to the questions How are we spend-
ing our money?, What are we getting for it?, and How can we
spend less without a loss of public health? Obvious and per-
vasive behavioral and psychosocial influences on sources of
health care expenditures (e.g., smoking) highlight the grow-
ing importance of the field. Economic impacts of health
psychology interventions (e.g., reductions in health care uti-
lization and expenditures) are important frameworks for
evaluations of their effects and importance, and behavioral
outcomes (e.g., functional activity levels and quality-of-
life–adjusted years) are arguably the most important and
universally relevant metric for evaluating the effects and
relative benefits of all aspects of health care (R. M. Kaplan,
1994). In a period of spiraling health care expenditures and
the rapid advance of often terribly expensive medical tech-
nologies, this perspective is essential in any substantive role
for health psychology research.

Methodological Implications of the Scope and
Complexity of Health Psychology

From even this brief review, it should be clear that the con-
cepts and methods of traditional research in psychology are
necessary but not sufficient in the study of health and illness.
Health psychology research requires breadth of knowledge
not only within psychology but also beyond it. Ironically,
research in health psychology often suffers equally from
inadequate incorporation of methods and perspectives
outside psychology and insufficient use of traditional psycho-
logical approaches. That is, long-standing concerns in psy-
chological methods (e.g., construct validity, assessment of
change) are as common a source of methodological limita-
tions as are failures to adequately incorporate methodological
considerations and approaches outside of psychology. Many
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researchers in the field identify this situation as both a
demanding challenge and a source of profound interest. Prac-
tically, it requires broad and extensive training, including
experiences that facilitate the development of interdiscipli-
nary collaborations and encourage familiarity with ongoing
developments in the neighboring fields.

HEALTH BEHAVIOR AND RISK REDUCTION

The nature of threats to the health of industrialized nations
changed profoundly during the last century. Advances in
public health and medicine (e.g., sanitation, vaccines, antibi-
otics) reduced dramatically the previous, terrible toll of
infectious disease. Replacing these conditions as the major
sources of morbidity and mortality were chronic illnesses
such as cardiovascular disease and cancer. Importantly,
epidemiological research has identified a variety of behav-
ioral factors that confer much of the risk of these conditions.
Tobacco use, a diet high in saturated fat, low levels of regular
physical activity, and other aspects of the modern lifestyle in
industrialized nations increase the risk of heart disease,
stroke, cancer, hypertension, diabetes, and several other seri-
ous illnesses. Behaviors—specifically, unsafe sexual prac-
tices and injection drug abuse—are also the primary modes
of transmission of HIV infection. Behavior (e.g., drinking
and driving, seat belt use) is also central in the risk of
accidental injury and death. Finally, knowledge of and partic-
ipation in health risk assessments (e.g., mammography, blood
pressure screening) can facilitate the potentially lifesaving
early detection of serious illnesses. These developments set
the stage for much of the current role of health psychology
(Matarazzo, 1980). The explication of the determinants of
these behaviors and the subsequent design, evaluation, and
implementation of related risk-reducing interventions com-
prise perhaps the greatest potential contribution of the field. 

Conceptualizing and Measuring Outcomes in 
Health Behavior Research

As in all areas of behavioral research, the use of reliable and
valid measures of health behavior is essential. Yet, this seem-
ingly basic task is often problematic in health behavior
research. Some of the difficulty in this area stems from
incomplete or invalid conceptual models of the nature of
health behavior. The classic literature on measurement and
its more recent refinements underscore the necessity of clear
and complete preoperational conceptual specification of the
construct to be assessed as an essential prerequisite to valid

assessment. Health behavior research has often been limited
in this regard.

For example, despite common assumptions, individual
health behaviors are not closely correlated (Norris, 1997).
People who smoke may or may not consume a high-fat diet.
Further, many individual health behaviors are not particularly
stable over time. Despite the best of intentions, high levels of
regular physical activity may wane. Hence, measurements
based on an implicit model of stable, generally healthy (vs.
unhealthy) lifestyles are not appropriate, as they may fail to
capture much of the specific and changing nature of impor-
tant health behavior. More frequent assessments of circum-
scribed behavior provide a more informative approach.

Given the rather straightforward nature of many health be-
haviors (e.g., smoking vs. nonsmoking; daily vs. infrequent
exercise; frequency of inclusion of fruits and vegetables in
one’s diet), self-reports of health behavior would seem to be
an obvious, appropriate, and inexpensive approach to assess-
ment. All of the usual threats to the reliability and validity of
self-reports (e.g., inaccuracies in recall) are relevant to this
domain. However, social desirability is particularly impor-
tant, as most health behaviors are well known by the general
public and have clear evaluative connotations (Patrick et al.,
1994). It is widely believed that smoking is unhealthy and
unwise, that exercise is good, that regular consumption of
high fat foods is bad, and that unprotected sexual intercourse
is potentially dangerous to oneself and to others. Hence, al-
ternative or additional methods of assessment are needed,
such as behavioral observations, mechanical measurement
(e.g., movement sensitive devices for activity assessments),
biochemical validation (e.g., exhaled carbon monoxide, or
plasma cotinine validation of smoking status; Glasgow et al.,
1993). In most topics in health behavior research, well-
validated assessments are available and supported by large
measurement literatures (Dubbert, in press; Niaura &
Abrams, in press; Wadden, Brownell, & Foster, in press).

In many types of studies of health behavior, technically
involved or time-consuming assessments are not feasible, as
in the case of large epidemiological studies of the prevalence
of these habits, their distribution across segments of the pop-
ulation, and predictors of their relative frequency. Such stud-
ies are often very useful, as they have adequate statistical
power to detect even small effects, and can help elucidate the
determinants and effects of these behaviors. However, when
self-reports of health behavior are used in these studies,
artifacts associated with social desirability must be consid-
ered as alternative explanation of the observed effects. For
example, the personality trait of conscientiousness is gener-
ally positively valued in Western cultures. Hence, correla-
tions between self-reports of this trait and self-reports of
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regular exercise, prudent dietary patterns, and engagement in
preventive practices (e.g., dental flossing) could be inflated
by the common or overlapping variance in socially desirable
response styles. Such alternative explanations for potentially
important associations among health behaviors and predictor
variables obtained through self-reports should be evaluated
in smaller or better-funded studies involving more com-
pelling assessments.

This potential artifact is particularly troubling in the
context of intervention research. Except for very unusual in-
stances in which the “treatment” is not communicated
directly and explicitly to participants (e.g., community or
policy-level interventions involving taxes or restrictions in
access to cigarettes), health behavior change interventions
typically convey a clear message that such change is both
highly desirable and possible. Hence, there is a clear demand
characteristic inherent in these interventions. If outcomes are
assessed primarily through self-reports, then seemingly sig-
nificant and important treatment outcome effects could be in-
flated by the tendency to respond to clear demands for
healthy behavior with socially desirable self-reports. Of
course, this alternative interpretation can be managed in part
through the inclusion of comparison conditions that differ on
the active ingredients of the intervention but are otherwise
equivalent in demands for change. Nonetheless, multimethod
assessments that go beyond self-reports are valuable addi-
tions to the outcome assessment protocol in health behavior
change studies.

More recent research evolving from the cognitive psy-
chology of memory and recall suggests another very impor-
tant caution in the use of self-reports of health behavior. If
individuals already know that they have a specific disease or
are at high risk for some reason (e.g., positive family history),
then hypothesis-driven recall could bias their self-reports of
well-established behavioral risk factors (Croyle & Loftus,
1993). That is to say, knowing that (a) one has a specific dis-
ease and (b) a particular behavior is a contributing factor in
that disease can lead to a confirmatory bias in which the indi-
vidual “finds” evidence of his or her elevated standing on this
behavioral risk factor. In epidemiological research, compar-
isons between individuals with known disease and healthy
controls on possible behavioral risk factors is a common
strategy. However, all such cross-sectional studies of risk
contain this potential interpretive limitation if they rely on
self-reports of health behavior. 

As previously noted, virtually all of the major topics in
health behavior have accumulated a fairly advanced assess-
ment literature. Clearly, the design of health behavior
research should make extensive use of these literatures
(Dubbert, in press; Kelly & Kalichman, in press; Niaura &

Abrams, in press; Wadden et al., in press). Consumers of
health behavior research should also be familiar with the
optimal methods of assessment in a given domain, as well as
with the general issues outlined in the preceding discussion.

Testing Health Behavior Models

Despite its relatively brief history, health psychology includes
several highly detailed and quite useful conceptual models of
the determinants of health behavior, as well as the processes
involved in change and maintenance of such change. The
transtheoretical or stages of change model (Prochaska &
DiClemente, 1984), self-efficacy theory (Bandura, 1977),
health belief model (Janz & Becker, 1984), and relapse pre-
vention model (Marlatt & Gordon, 1985) are perhaps the most
influential perspectives in research on various aspects of the
determinants of health behavior, the process of related
changes, and influences on maintenance of such changes
(Weinstein, Rothman, & Sutton, 1998). Clear theories that
generate specific predictions have a positive effect on the
quality of research and on the likelihood that it will produce
cumulative knowledge (Meehl, 1978). Examples of the key
constructs in these models are listed in Table 10.1.

In order to reap the benefits of such theories, the measures
of these key constructs must be reliable and valid. Yet, all
too often measures are developed for use in a single study
and are not subjected to adequate psychometric evaluation.
For example, apart from the tests of primary hypotheses in
such studies, often there is no independent evidence that
measures of the key predictors of health behavior actually
assess the specific construct of interest—that is, that they

TABLE 10.1 Psychological Influences on Health Behaviors 

Person Variable Example 

Health-relevant encodings • Internal representations of health and
risk.

• Attentional strategies in processing
health information.

Health beliefs and expectations • Outcome expectancies for health
behaviors.

• Self-efficacy for health behaviors.

Affects • Emotional impact of health 
information.

• Feelings about the self.

Health goals and values • Desired health outcomes and their
subjective importance.

• Health-relevant goals and life tasks.

Self-regulatory competencies • Knowledge and strategies for over-
and skills coming barriers to change.

• Planning and problem solving for
relapse and maintenance.

Note. Adapted from S. M. Miller, Shoda, and Hurley (1996; p. 73).
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display convergent and discriminant validity. The latter is of
particular concern, given the closely related constructs listed
in Table 10.1 (Weinstein, 1993). It is quite possible that dis-
tinctly labeled but functionally highly overlapping variables
are examined across studies, but this redundancy is not rec-
ognized due to a failure to conduct formal studies of conver-
gent and divergent validity (i.e., discriminant validity). The
broad theories of determinants of health behavior receive
much more attention than do the smaller—but critical—
measurement theories implicit in such research. However, the
extent to which the measures of health beliefs, self-efficacy,
and related constructs specifically assess the intended con-
struct is no less important a component of the nomological
net in evaluating the theory than are the primary associations
of these measures with health behavior outcomes.

Health behavior theories often specify conditions under
which a potential determinant of health behavior (e.g., out-
come expectancies) will have a larger or smaller effect on the
behavioral outcome. Other elements of these theories often
specify additional constructs through which a given determi-
nant exerts its effects. Yet, these questions of moderation and
mediation, respectively, are often confused (Weinstein, 1993),
and often they are not tested with the appropriate statistical
procedures (Baron & Kenny, 1986; Holmbeck, 1997). To have
their maximum positive effect on the cumulative value of
health behavior research, models of health behavior must gen-
erate specific conceptual questions and predictions, which are
then tied directly to appropriate statistical hypotheses and
tests. These linkages among measurement, design, and analy-
sis should be guided by conceptual models at each step.

Some models of health behavior appropriately include
biological determinants of health behavior. For example, a
growing body of research has demonstrated that smoking in-
volves genetic predispositions and addictive mechanisms
that limit or moderate the effectiveness of behavioral inter-
ventions (Niaura & Abrams, in press). Similarly, behavioral
interventions for weight loss must contend with genetic
predispositions and underlying biological impediments to
weight loss (Wadden et al., in press). The same behavioral
risk status may reflect varying levels of biological contribu-
tions, and hence comprehensive models and studies of the
determinants of risk behavior must consider such factors. For
many years, traditional biomedical research has been appro-
priately criticized for failing to include psychosocial factors;
health psychology research must avoid the parallel error.
Hence, study samples must be carefully assessed and de-
scribed on relevant biological contributions to health behav-
ior, and their role in moderating or mediating the effects of
psychosocial determinants of health behavior examined.

Some of the most influential models of the determinants
of health behavior and processes underlying change include
critical temporal dimensions. For example, stage models
posit a sequence of time-linked processes through which
health behaviors change (e.g., Prochaska & DiClemente,
1984). Often, these models are tested in cross-sectional stud-
ies, rather than the prospective research designs that provide
the strongest and most valid test of such models. In cross-
sectional tests, the predictions of stage models regarding the
discreteness, nature, and sequence of stages can be artifactu-
ally supported (T. Q. Miller, 1994; Weinstein et al., 1998).
Hence, cross-sectional tests of stage models and other tempo-
ral theories must be seen as preliminary and their findings
interpreted as providing limited support.

However, in the design and interpretation of prospective
studies, care must be taken to make sure that the timing of
assessments corresponds to the underlying model. For ex-
ample, the highly influential relapse prevention model of
Marlatt and Gordon (1985) specifies a variety of time-linked
influences on the likelihood and implications of initial fail-
ures to maintain desired changes in health behavior. Some
of the constructs are seen as exerting their effects over both
long and short periods of time (e.g., behavioral skills or
competencies). Others are equally important in the model,
but exert their effects over much briefer, delimited periods
(e.g., urges to smoke, exposure to high risk situations or
cues for smoking). Designs that assess predictors of relapse
initially and health behavior change several weeks or
months later would provide strong and sensitive tests of the
former class of predictors, but would provide much less sen-
sitive and potentially quite inaccurate tests of the impor-
tance of the more fleeting determinants of relapse. As a
complement to the more traditional prospective designs,
studies that incorporate frequent assessment of these con-
structs on a daily or even more frequent basis can be ana-
lyzed with hierarchical linear modeling (HLM) techniques
to provide very sensitive tests (e.g., Shiffman et al., 1994;
Shiffman, Paty, Gnys, Kassel, & Hickox, 1996; Shiffman
et al., 1997). A typical protocol might assess urges to smoke
or overeat on an hourly basis over several days, and exam-
ine their concurrent and prospective associations with these
unhealthy behaviors. Such designs can be constructed so as
to include even advanced questions involving mediators and
moderators of these effects, and test both intra-individual
(i.e., idiographic) and traditional interindividual (i.e., nomo-
thetic) associations. However, the measurement and analysis
challenges in this daily experience, diary, or experience
sampling research are considerable (Affleck et al., 1999;
J. E. Schwartz & Stone, 1998).
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The explanatory value of models of health behavior likely
varies across several factors. Notably, gender, ethnicity, and
socioeconomic status are themselves important influences on
behavioral aspects of risk, but these factors might also alter
the effects of key concepts in models of health behavior. For
example, concerns about weight gain might be differentially
involved in the initiation and cessation of smoking among
adolescent girls as opposed to boys, and this difference could
alter the importance of other predictors of health behavior
(e.g., health beliefs, self-efficacy expectations). Similarly,
socioeconomic status and associated living circumstances
likely alter access to safe and enjoyable places to exercise.
These effects not only likely influence activity levels directly,
but would also likely moderate the importance of other deter-
minants of the adoption and maintenance of regular exercise.
Thus, the external validity or generalizability of health behav-
ior research is an important but understudied question.

Behavioral Risk Reduction and
Preventive Interventions

After important predictors of health behavior have been iden-
tified, interventions can be designed and evaluated in a
theory-driven manner. The range of intervention approaches
in health behavior and prevention research poses obvious
methodological challenges. For example, in smoking re-
search, traditional psychological and behavior therapy ap-
proaches delivered in individual or small group formats are a
mainstay of research (Niaura & Abrams, in press). However,
large-scale approaches (e.g., advertising, policy programs,
combined approaches) in which organizations (e.g., schools)
or communities are the unit of analysis are increasingly com-
mon. These latter approaches reflect the fact that researchers,
public health officials, and policy makers increasingly recog-
nize that prevalent behavioral risk factors must be addressed
not only at the level of individuals, but also in more
population-based approaches that incorporate behavior
change principles. Such large-scale interventions pose partic-
ular challenges in study design and quantitative evaluation,
most of which are beyond our present scope.

In the more traditional individual and small group
approaches, many issues described above and other method-
ological considerations quite familiar to intervention re-
searchers are relevant. For example, adequate assessments of
health behavior outcomes must be included, especially in
cases in which the inherent expectations or demands for
change communicated in such interventions could lead to
overestimates of treatment effects when outcomes are assessed
solely through self-reports. Independent assessments of the

integrity of intervention protocols are important in order to
establish that independent variables were implemented appro-
priately and reliably (Waltz, Addis, Koerner, & Jacobson,
1993). Similarly, comparison conditions must be carefully se-
lected so as to control nonspecific factors potentially influenc-
ing health behavior outcomes. In many cases, the intervention
research literature has matured to the point at which simple
comparisons with no-treatment or waiting-list controls are not
appropriate. Rather, designs drawing comparisons between
new interventions and standard treatments previously found to
be effective are appropriate, as are dismantling designs in
which the elements within compound effective interventions
are examined to identify the critical component or components
(Kendall, Flannery-Schroeder, & Ford, 1999). However, the
application of these classic issues in intervention research de-
sign (e.g., assessing intervention integrity, selection of com-
parison groups) must be considered carefully in some types of
health behavior change research, as when interventions are
very brief (e.g., informational or motivational interventions)
and delivered by physicians or other health professionals
during routine care. The methodological issues are clearly
relevant, but traditional strategies must be adapted to fit the
specific intervention approach and context.

Across most health behavior changes (e.g., smoking cessa-
tion, exercise, and diet programs) several common problems
emerge. First, most people can successfully initiate short-term
changes, but the maintenance of these changes is severely
limited (Brownell, Marlatt, Lichtenstein, & Wilson, 1986). In
some cases (e.g., smoking cessation, weight loss), return to
preintervention behavior or conditions are the most common
outcome (Dubbert, in press; Niaura & Abrams, in press;
Wadden et al., in press). Hence, even in well-controlled ran-
domized designs, initial health behavior changes immediately
following treatment are rarely of substantive importance. In
many cases, substantive contributions to the literature require
follow-up periods of a year or longer.

The need for longer follow-up periods exacerbates a com-
mon problem in intervention research—the statistical man-
agement of dropouts and missing outcome data. Nonrandom
attrition is a clear threat to internal validity in health behavior
change intervention, especially in light of the fact that such
dropouts can plausibly be attributed to treatment failures or
relapse. For example, participants in smoking cessation or
weight loss interventions who relapse may not return to treat-
ment for fear of embarrassment. If such failure-driven
dropouts are differentially distributed across treatment and
comparison conditions, conclusions regarding group differ-
ences can be invalid. This likelihood is the justification of
traditional intent-to-treat analyses, in which all randomized
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participants are included and pretreatment levels on key out-
comes are substituted for missing data (Flick, 1988; Kendall
et al., 1999). However, dropout status may not be equivalent
to full relapse, and in applications in which missing data may
be common and unavoidable (e.g., large-scale programs) the
traditional, conservative approach may produce highly mis-
leading results.

Hence, in recent years, this standard approach has been
challenged and a variety of potentially more informative al-
ternatives proposed (Little & Yau, 1998; Shadish, Hu, Glaser,
Kownacki, & Wong, 1998). These techniques have in com-
mon a goal of estimating the effect on outcome results of a
range of assumptions about the status of dropouts. However,
none of these techniques are substitutes for valid information
on participants. Therefore, in designing and conducting
health behavior change research, minimizing dropouts and
missing data is a paramount concern. In reporting and evalu-
ating such research, information about the degree of missing
data, its distribution across treatment arms, its correlates with
pretreatment factors (e.g., demographic characteristics, ini-
tial severity, etc.), and the potential impact on the validity of
statistical tests and related conclusions about the significance
and magnitude of intervention effects (or the lack thereof)
must be reported and considered carefully.

When interventions are delivered to more than one indi-
vidual at a time, the nesting of observations within groups
and the resulting potential dependencies among the observa-
tions must be considered. Previously unacquainted individu-
als within small groups, members of a couple or family,
students within a given classroom or school, or residents
within a community assigned to a treatment and receiving
that intervention together do not provide truly independent
observations. Hence, treatment of their data as representing
independent observations can seriously violate the underly-
ing assumptions of many traditional statistical techniques.
Typically this failure to recognize dependencies leads to an
overestimate of the significance of intervention effects (Feng,
Diehr, Peterson, & McLerran, 2001). The most common ver-
sion of this problem is when psychosocial interventions are
delivered in small groups of previously unacquainted partici-
pants. Unique features of individual groups, such as positive
versus negative group climate, cohesion, or morale, can alter
the effectiveness of treatment (Etringer, Gregory, & Lando,
1984). This issue is problematic in many areas of health be-
havior change (e.g., Rooney & Murray, 1996) and is quite fa-
miliar in other areas of traditional psychological intervention
research (Crits-Christoph & Mintz, 1991). Recent HLM
models and other techniques can be adapted to this design
problem, with additional benefits (e.g., more efficient
management of missing observations) beyond the accurate

estimate of intervention effects while recognizing depen-
dency among observations across individuals (Feng et al.,
2001).

As in all areas of psychological intervention research,
valid evidence that a treatment program produces statistically
significant changes in health behavior is important, but such
evidence begs the question of the magnitude, importance, or
clinical significance of those effects (Kendall, 1999). In the
case of health behavior change, however, many of the typical
methods of quantifying clinically significant change (e.g.,
comparisons with normal populations) are not ideal when
population norms are not necessarily desired states (e.g.,
degree of overweight, level of regular physical activity, di-
etary consumption of saturated fat). In some cases, such as
smoking cessation, clearly defined outcomes (i.e., nonsmok-
ing status) have obvious clinical significance, given their
demonstrated association with future health outcomes. In
others, such as weight loss, the levels of risk reduction can be
estimated from epidemiological evidence regarding the risk
factor. However, the degree of risk associated with excess
pounds, frequency and intensity of exercise, and intake of fat
as calculated from prospective studies of the health effects of
these risk factors provides at best an indirect indication of the
likely health benefits accruing from a change in these charac-
teristics of a given magnitude. Hence, some index of effect
size and the percentage of intervention participants display-
ing changes within each of several ranges (e.g., weight losses
of 5–10%; 10–15%, etc.) should be regularly reported and
compared to what is known about the likely health effects of
such changes. It is interesting to note that participant satis-
faction with treatment results may be a misleading index for
some types of health behavior change. For example, re-
ductions in excess body weight that have clear medical
significance for the reduction of serious health risk and im-
provements in health are actually below the level of weight
loss that participants rate as the minimal loss necessary to be
satisfactory (Wadden et al., in press).

Ideally, the impact of health behavior interventions could
be evaluated on the basis of their effects on morbidity and
mortality; in most cases, however, this is not feasible, given
that such beneficial consequences of even very effective
interventions may take many years to emerge. For example,
successful interventions for smoking cessation in young
adults would not produce notable effects on cardiac, pul-
monary, or cancer morbidity or mortality for decades.
Further, it is important to recognize that the associations be-
tween even the most well-documented and important risk
factors (e.g., smoking) and health outcomes are probabilistic,
and even the most effective interventions have effect sizes in
the small to moderate range. Hence, the likely—and usually
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modest—impact of even an effective intervention can be
estimated by the product of the effect size for the association
of the risk factor with disease and the effect size for the inter-
vention effect on the risk factor (R. M. Kaplan, 1984). This is
one reason that even in large trials, significant effects on
documented morbidity and mortality have proven elusive
(Hancock, Sanson-Fisher, & Redman, 1997). However, this
is not to say the preventive interventions are ill-advised, as
health behavior changes in a large segment of the population
would likely have important effects on the incidence of
prevalent diseases that are heavily influenced by behavior. 

STRESS AND DISEASE

Perhaps the oldest questions at the interface of behavioral
and biomedical science involve long-suspected effects of
stress, emotion, and other aspects of mind on physiological
changes, disease, and other important outcomes of the body
(McMahon, 1976); Effects of stress, emotion, social rela-
tions, and other risk and resilience factors on disease certainly
were central in the emergence of health psychology and be-
havioral medicine, as they were in the earlier field of psycho-
somatic medicine. A broad array of rapidly evolving methods
is brought to bear on such questions, producing increasingly
specific and scientifically compelling answers.

The basic model guiding this area of research holds that
characteristics of people (e.g., emotions, personality traits)
and aspects of the environment (e.g., social networks, job
stress) can affect the pathophysiology of disease. In general,
these effects are believed to occur through the intervening
effects of physiological changes associated with stress and
emotion (Lovallo, 1997). Of course, these same characteris-
tics of people and their environments could influence dis-
ease through the pathway of health behavior or lifestyle, as
described previously. For example, social support could
reduce one’s risk of heart disease because it attenuates
physiological stress responses that would otherwise acceler-
ate atherosclerosis, or because it encourages better health
behavior (e.g., a more prudent diet, less alcohol consump-
tion, and more frequent exercise). Hence, this alternative
explanation must be addressed in many studies of these
more direct psychobiological influences on disease (Adler
& Matthews, 1994; Cohen & Rodriguez, 1995; Smith &
Gallo, 2001).

Several types of research comprise this general topic in
health psychology. Psychosocial epidemiology relates person-
ality or social-environmental risk factors to health outcomes.
This work is of necessity observational and nonexperimental
in nature, and therefore provides evidence of associations

between psychosocial variables and health outcomes. Animal
research provides the opportunity for more compelling exper-
imental manipulations of psychosocial variables and invasive
assessments of disease processes and outcomes. However, as
previously noted, the generalizability of such studies to
human disease is a complex and critical question. Human
mechanism research tests models of the psychophysiological
links between psychosocial inputs and health outcomes.
Finally, intervention research examines the impact of stress-
reducing interventions and related treatments on disease
processes and outcomes.

Each of these types of research should be guided by a clear
and current model of the pathophysiology of the disease in
question, including the ways in which this process changes
over the natural history of the specific illness. In some cases,
general associations between psychosocial risk factors and
longevity or all-cause mortality are potentially quite impor-
tant. These outcomes are obviously important and any reliable
predictor of them is inherently of interest. Further, general as-
sociations with health and longevity are quite useful in initial
investigations of a potential psychosocial risk factor. How-
ever, such associations beg the question of what specific
diseases or conditions are affected, during what stage of their
development and course, and what mechanisms account for
the observed effects. Hence, more general associations, after
they are established as reliable, should be followed by tests of
more specific associations and mechanisms.

In most cases, the pathophysiology of the disease of inter-
est (e.g., coronary heart disease, cancer, HIV, hypertension) is
at least generally articulated in current biomedical research,
providing the foundations for this type of research. For exam-
ple, coronary heart disease begins with fatty deposits at the
sites of microscopic injuries to the lining of the coronary ar-
teries, appearing as early as late childhood or early adoles-
cence. The further deposition of lipids, inflammation, and
other processes at these sites leads to the slow, progressive,
but asymptomatic narrowing of the arteries as the atheroscle-
rotic plaques or lesions intrude into the artery opening. Much
later in the natural history of the disease, other events (e.g.,
myocardial ischemia, thrombosis, arrythmia) produce the
overt manifestations of coronary heart disease (e.g., chest
pain, myocardial infarction, sudden death). Hence, statistical
associations between psychosocial risk factors and coronary
heart disease outcomes (e.g., myocardial infarction, coronary
death) observed in epidemiological studies could reflect an
influence at one or more of the very different stages in this
long and complex natural history, affected through one or
more of many specific psychobiological mechanisms (Smith
& Ruiz, in press). Therefore, models of the potential effects
of a psychosocial risk factor on CHD must attend to this

schi_ch10.qxd  9/6/02  12:22 PM  Page 251



252 Health Psychology

complex array of changing, medically plausible connections.
Further, the design and timing of risk-reducing interventions
would clearly depend on a more refined understanding of the
specific processes involved.

Epidemiological Studies of Psychosocial Risk

Reliable associations between psychosocial risk factors and
disease are the empirical cornerstone of research in this area.
Without such evidence, there is little justification to assert
that personality, stress, emotions, or characteristics of the so-
cial environment affect health. Studies of this type examine
characteristics that might influence the development of dis-
ease, but also of interest are the associations of these charac-
teristics with the prognosis of established disease. Studies of
both types have common potential methodological limita-
tions, as well as unique ones.

The Limitations of Cross-Sectional Designs

The potential association between psychosocial risk factors
and health outcomes has often been examined with very lim-
ited research designs and methods of assessment. For exam-
ple, cross-sectional comparisons of participants’ levels of a
given risk factor in groups with and without a given disease
have been common. However, many psychosocial variables
(e.g., negative emotions, coping strategies or styles) could
plausibly both influence and be influenced by physical illness
(Cohen & Rodriguez, 1995). Hence, the direction of causal-
ity is a very serious concern in cross-sectional designs. Fur-
ther, studies of this type (i.e., cross-sectional case-control
designs) often compare patients suffering from a specific
condition recruited from a medical clinic of some sort with
controls recruited from a convenient population (e.g., hospi-
tal employees or medical outpatients on routine visits).
Selection processes differ across such groups, and those
processes may be associated with the psychosocial risk factor
of interest. For example, patients with early stages of asymp-
tomatic cancer undergoing treatment in a specialty clinic may
be characterized by a greater degree of health worry than are
individuals with a similar level or stage of cancer who have
not yet sought medical attention. Hence, health worries and
associated variables (e.g., negative emotionality) are likely to
be overrepresented in the clinic sample. Therefore, psychoso-
cial differences between cases and controls could reflect
selection processes rather than the presence versus absence
of the disease.

Given the maturing status of the field, cross-sectional de-
signs should be used only in initial investigations, and they
should be interpreted cautiously and replicated with more

compelling prospective studies as soon as possible. Some
newer cross-sectional approaches are available that are less
susceptible to these limitations. For example, noninvasive
imaging techniques are available to assess asymptomatic
atherosclerosis in population-based samples of outwardly
healthy individuals (e.g., Iribarren et al., 2000).

The Assessment of Health End Points

Even in prospective studies, the history of health psychology
and behavioral medicine has included recurring problems
with the health outcomes assessed in studies of psychosocial
risk factors. Self-reports of physical symptoms or related be-
haviors (e.g., visits to a physician) are often interpreted as
reasonable indications of actual disease. This approach to
quantifying health outcomes blurs the critical distinction
between illness behavior and disease. Illness behavior refers
to things that people typically do when suffering from a
major or even minor disease or illness (e.g., report symptoms,
visit a doctor, etc.), whereas disease refers to the underlying
objective condition (e.g., infection, etc.). These indicators are
typically highly correlated, and self-reports of symptoms and
health status predict future health—including mortality—
even when controlling for independently assessed initial
health (Idler & Benyamini, 1997; McGee, Liao, Cao, &
Cooper, 1999). Hence, self-reports of symptoms and health
status clearly contain variance relevant to actual health and
disease.

However, illness behavior and actual illness are far from
perfectly correlated. More important is that the unique vari-
ance in illness behavior that is not associated with actual dis-
ease may itself be associated with purported psychosocial
risk factors. For example, individual differences in neuroti-
cism or negative affectivity are correlated with the tendency
to report physical symptoms in the absence of—or that
exceed—actual disease (Costa & McCrae, 1987; Watson &
Pennebaker, 1989). These same characteristics also reliably
predict actual disease and mortality (Smith & Gallo, 2001).
Hence, a statistical association between a measure of nega-
tive emotionality and self-reported physical symptoms could
reflect an actual psychosocial effect on disease, an effect on
unfounded somatic complaints, or some combination of these
very different phenomena. When the question of interest in-
volves actual disease, care should be taken to measure it di-
rectly. Further, when illness behaviors are assessed as the
outcome, generalizations about associations with actual ill-
ness and disease are unjustified. In studies of initially healthy
populations and groups with established disease, care must
be taken to distinguish between end points that might be in-
fluenced by illness behavior—such as (re)hospitalizations in
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response to worrisome symptom presentations—from those
that unambiguously reflect actual disease (e.g., documented
myocardial infarction).

The Assessment of Psychosocial Predictors

The assessment of psychosocial predictors of health and dis-
ease in epidemiological and clinical studies of psychosomatic
associations has also been problematic. In one common limita-
tion, measures of personality characteristics or aspects of the
social environment are often included without adequate evi-
dence that they assess the predictive construct of interest (i.e.,
convergent validity) and not a competing construct (divergent
or discriminant validity). In developing accurate statistical
accounts of risk factors, the meaning of scores on assessments
of psychosocial risk factors does not matter—only their
predictive utility is of interest. However, unlike actuaries,
researchers in health psychology are typically interested in
testing theories or models of the potential psychosocial
influences on subsequent health and disease. Therefore, the
construct validity of these assessments is a primary concern.
Obviously, reliable prospective associations between measures
of stress, emotion, personality, or social environments and sub-
sequent disease are a critical component of the empirical foun-
dation of the field. However, without independent evidence
that measures of these psychosocial factors are valid, the im-
portance of such prospective findings is severely limited.

In a closely related problem, the array of personality char-
acteristics and features of the social environment studied as
risk factors has proliferated without adequate attention to the
potential overlap or even redundancies among measures pur-
porting to assess distinct risk factors. Scales with very differ-
ent names may in fact be psychometrically indistinguishable
(Smith & Gallo, 2001). For example, measures of individual
differences in anxiety and depression may be so highly corre-
lated as to be indistinguishable, and may be more accurately
interpreted as assessing the broader trait of neuroticism or neg-
ative affectivity (Watson et al., 1995). This issue of overlap
with previously established, broad personality traits has even
been evident when scales are developed to assess very spe-
cific, novel individual differences, such as optimism (Smith,
Pope, Rhodewalt, & Poulton, 1989) and hardiness (Funk,
1992). Finally, psychosocial epidemiology implicitly parses
the list of risk factors into characteristics of individuals (e.g.,
personality, emotion) and aspects of the social environments
they inhabit (e.g., social support). However, measures of so-
cial risk factors often display evidence of heritability in be-
havioral genetics research (Kendler, 1997; Plomin, Reiss,
Heatherington, & Howe, 1994) and substantial associations
with measures of well-established personality traits (Pierce,

Lakey, Sarason, Sarason, & Joseph, 1997). Hence, even
though a measure of labeled social support or social isolation
may have a very consistent predictive association with subse-
quent health, it is not obvious that it is a characteristic of the
social environment that in fact confers that risk. Compelling
evidence of convergent and discriminant validity is quite use-
ful in strengthening that interpretation; without it, many very
different conclusions are equally plausible.

This literature could be strengthened if widely accepted
frameworks and established methods were used in the con-
struct validation process. For example, the traits and invento-
ries associated with the five-factor model of personality could
be used to examine the similarities, differences, and potential
redundancies of personality characteristics examined as po-
tential risk factors (Smith & Williams, 1992). A version of the
five-factor model that includes basic dimensions of interper-
sonal behavior (Trapnell & Wiggins, 1990) has been used in
similar evaluations of measures intended to assess aspects of
the social environment (Gallo & Smith, 1999; Trobst, 2000).
These well-established nomological nets provide a concep-
tual and methodological context for a systematic and cumula-
tive literature on psychosocial risk factors, in which construct
validity is a central concern and the overlap and alternative
interpretation of measures of psychosocial risk are identified
routinely. At a minimum, all studies of psychosocial risk
should attend directly to the issue of the validity and speci-
ficity of the main predictive measures.

Third Variables and Correlated Risk Factors

Many of these issues are inherent in or at least exacerbated
by the correlational nature of epidemiological studies. The
problem of third variables must always be considered in crit-
ical evaluation of the results of such studies. As described
previously, many of the alternative third variables are obvi-
ous confounds (e.g., initial health status, selection factors) or
are conceptually quite different from the predictor of interest
(e.g., health behaviors). Such variables provide alternative
explanations for associations observed in epidemiological
research. Careful assessment of these third variables and
their inclusion in multivariate analyses can reduce their plau-
sibility. However, their role cannot be ruled out completely,
given the possibility of their imperfect measurement and
resulting undercorrection of their contribution to observed
associations. Other third variables suggest alternative path-
ways linking psychosocial risk factors and health outcomes,
beyond the hypothesized psychobiological mechanisms in
this research area. For example, analyses that control health
behaviors associated with a psychosocial risk factor can
appropriately be seen as testing alternative models. If
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personality characteristics and features of the social environ-
ment predict subsequent health and disease, but statistical
control of smoking, diet, exercise or other lifestyle factors
eliminates this effect, then a specific mediational model
of the epidemiological association has been supported. Of
course, partial mediation in such cases may suggest multiple
mechanisms (e.g., health behavior and psychobiological
pathways) linking risk factors and health outcomes. Other
third variables take the form of correlated psychosocial risk
factors. For example, both depressive symptoms and low so-
cial support are reliable risk factors for the initial develop-
ment of CHD, and predict recurrent cardiac events and death
among patients with established cardiovascular disease
(Krantz & McCeney, 2002; Smith & Ruiz, in press). In epi-
demiology, the standard approach to correlated risk factors is
the statistical test of their independent effects, such as in
multiple linear or logistic regression models. In some in-
stances, this is quite sensible. For example, if both smoking
and low levels of physical activity predict CHD and if these
behavior are reliably correlated, then risk stratification and
prevention strategies can be effectively designed only after
their unique or independent effects are established. How-
ever, in the case of psychosocial risk factors like depression
and social isolation, the standard approach may be both use-
ful and potentially misleading. At one level, the independent
predictive effects of depression and social isolation are inter-
esting and important. If the general approach is accepted, the
validity of the findings is threatened only to the extent that
the predictors are closely correlated. In such cases, multi-
collinearity renders the effects of estimates of independent
effects unstable. However, there are many reasons that these
characteristics are related, as depression is known to be both
a cause and a consequence of problematic social relations
(Davila, Bradbury, Cohan, & Tochluk, 1997; Johnson &
Jacob, 1997). Therefore, the forced statistical separation of
the characteristics creates a counterfactual (Meehl, 1970) or
artificial circumstance in which the unique variance in either
depression or social isolation may not be representative of
the construct that confers risk. Further, the shared variance
may reflect the process most relevant to disease (e.g.,
chronic isolation and conflict engendered by and promoting
depressive behavior). Therefore, the most familiar strategy
of testing statistically created independent effects must be
viewed with caution.

Sometimes, the covariation among psychosocial risk fac-
tors occurs across levels of analysis in the biopsychosocial
model. For example, individual differences in hostility and
other negative cognitive or affective processes are associated
with low socioeconomic status. It is important to note that low
socioeconomic status not only confers risk of serious illness

and early mortality when measured at the level of individuals
(e.g., their education or income), but the SES of the individ-
ual’s place of residence (e.g., average income levels) also con-
fers independent risk (Yen & Kaplan, 1999). These recently
documented place effects raise a host of alternative interpreta-
tions in psychosocial epidemiology. For example, low neigh-
borhood SES could confer risk because it promotes stress and
negative emotions. Alternatively, reports of stress and nega-
tive emotion could be a noncausal correlate of some other
health-threatening aspect of low-SES environments (e.g., low
levels of perceived control). Some evidence suggests that reli-
gious participation (e.g., church attendance) is associated with
reduced risk of serious illness and improved longevity
(McCollough et al., 2000). Yet this could reflect either some
sort of intra-individual effect (e.g., dampened stress responses
stemming from attenuated appraisals of threat in everyday
activities) or the operation of a correlated place effect (e.g.,
increased exposure to supportive and agreeable people).

Alternative strategies for dealing with correlated psy-
chosocial risk factors are increasingly available, but not yet
widely used. For example, cluster analytic strategies and some
types of factor analysis can be used to group individuals—
rather than variables—on the basis of patterns of co-occurring
personality and social environmental characteristics (Gallo &
Smith, 1999). The covariation among individual differences
(i.e., personality traits), individual SES, and the SES of the
local environment suggest a variety of causal models. Person-
ality traits could mediate the effects of SES on health, or they
could be a noncausal marker for those effects. Hierarchical
causal models, such as SES place effects on health mediated
by personality or emotional characteristics, can be tested in
appropriate statistical models, if the sampling strategy has
been designed appropriately (i.e., individuals nested within
multiple neighborhoods). The general point to be taken from
this discussion is that correlations among psychosocial risk
factors—rather than simply a confounding nuisance—reflects
the complexities of everyday life. Hence, choices among var-
ious statistical approaches to the issue should be based on a
clear understanding of their potential limitations and prefer-
ably guided by underlying conceptual models. Ideally, the
resulting analytic approaches can be used to test directly com-
peting conceptual models of the associations between risk
factors and health outcomes.

Sampling in Epidemiological and Clinical Risk
Factor Studies

Another common limitation in epidemiological studies
involves sampling. Ideally, a large, carefully selected repre-
sentative sample is recruited, assessed with well-validated
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psychosocial measures, and then followed for the many years
necessary for the emergence of serious illness in sufficient
frequency to permit sensitive tests of prospective associa-
tions. However, this is a very slow and expensive approach
to testing hypotheses about psychosocial influences on dis-
ease process. In many instances, small samples of conve-
nience (e.g., medical students, college freshmen, military
draftees, etc.) that have undergone psychosocial screenings
for other purposes are available in archival data sets. These
archives present important opportunities to accelerate the
progress of psychosocial epidemiological research through
the time-saving process of prospective studies that are avail-
able much more rapidly and inexpensively. Current health
outcomes (e.g., survival, current diagnoses) can be related to
the psychosocial data collected years ago. However, the psy-
chosocial assessments available are quite likely less than
ideal, relative to the standards described previously. Further,
the selection process not only places the obvious limitations
on the generalizability of the results to other groups, but may
also be the source of other interpretive limitations. For exam-
ple, the validity of self-reports of negative psychosocial char-
acteristics may be suspect among individuals who underwent
such assessments as part of college admissions or similar pro-
cedures. Hence, the scientific value of studies of such conve-
nience samples involves a trade-off between a more rapid
development of the literature versus more definitive studies.

Sampling in clinical studies of psychosocial risk factors
as predictors of the course of established disease pose other
potential limitations. For example, if a risk factor (e.g.,
depression) exerts an effect on the initial development of a
life-threatening disease (e.g., CHD), persons who survive
long enough to be recruited into clinical studies will not
provide a representative sample for studying this risk factor.
Persons who survive despite a high level of the risk factor
are likely to be more resilient to its negative effects than are
those who did not survive the initial presentation of the
disease (T. Q. Miller, Turner, Tindale, Posavac, & Dugoni,
1991; R. B. Williams, 2000). Of course, questions about the
psychosocial predictors of the course of a disease are impor-
tant in and of themselves, and the appropriate sample consists
by definition of those who survived its initial presentation.
However, if a risk factor has a significant effect in initially
healthy samples and not among those with established dis-
ease, this may reflect moderation of its effects by the nonran-
dom selection into clinical populations.

Effect Sizes

Valid evidence of reliable associations between psychoso-
cial risk factors and subsequent disease or mortality raises a

final question; is the effect large enough to be of interest or
practical concern? Certainly, any significant association is
quite likely to be conceptually interesting, as it suggests a
potential influence of the mind on the body. But the clinical
or practical significance is a different matter. When the in-
dexes of effect size commonly used in epidemiology (e.g.,
relative risk ratios) are converted to metrics more familiar to
psychologists (e.g., R2), they often appear small. Very im-
portant risk factors typically explain less than 10% of the
variance in objectively measured morbidity or mortality.
However, individual predictors would not be expected to
account for a large portion of the variance in complex, mul-
tifactorial diseases. Further, even small effects take on
added importance when they predict prevalent and poten-
tially serious diseases.

Animal Models

Given the interpretive ambiguities inherent in the observa-
tional or correlational nature of epidemiological research, an-
imal models of psychosocial influences on disease provide a
valuable complementary methodological approach. Animals
can be randomly assigned to experimental manipulations of
environmental stress or other purported risk factors, and in-
vasive methods can be used to assess critical end points. The
condensed natural history of disease and life span of many
species, relative to humans, is also useful. For most of the
major diseases (e.g., atherosclerosis, hypertension, cancer,
diabetes, etc.), animal models have been developed in basic
biomedical research. These models are usually based on
rodents or nonhuman primates, and can be readily adapted to
examine psychosocial influences on the development and
progression of disease. Further, pharmacological or even sur-
gical interventions are available to manipulate the mecha-
nisms believed to link psychosocial risk factors to disease
end points. Hence, animal models are a central source of
evidence in psychosomatic research (Carroll & Overmier,
2001).

However, this approach contains obvious limitations as
well. The most basic involves the equivalence of the animal
disease or physiological mechanism and the human phenom-
enon of interest. Typically, this issue has been addressed in
the early stages of development of an animal model of a spe-
cific condition, but research should always be designed and
evaluated with this issue in mind. Further, even if basic issues
of parallel pathophysiology in humans and the animal model
are addressed adequately, the equivalence of the human
psychosocial influence of interest and its experimental ani-
mal analogue must be considered. Species-specific patterns
of social behavior, for example, must be considered in
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developing an experimental analogue of social-environmen-
tal stress.

Psychobiological Mechanisms

As noted above, most current models of psychosocial influ-
ences on the development and course of disease identify
the endocrine and autonomic correlates of stress and negative
emotion as the primary pathway or mechanism (Lovallo,
1997). Briefly, through the endocrine responses (e.g., cortisol
release), direct neural innervation by the sympathetic or
parasympathetic branch of the autonomic nervous system, or
both, the physiological effects of stress can initiate or hasten
the development of a variety of disease processes if such re-
sponses are sufficiently pronounced, frequent, and pro-
longed. These mechanisms are most clearly identified in the
case of the pathophysiological links between psychosocial
risk factors and the development of cardiovascular disease
(e.g., Krantz & McCeney, in press; Smith & Ruiz, in press)
and disease processes mediated by the immune system, such
as cancer (Andersen, in press; Andersen, Kiecolt-Glaser, &
Glaser, 1994). However, a great variety of psychobiological
models have been developed either by extending basic car-
diovascular and immunological models to other diseases or
by focusing on the physiology of other organ systems. Exam-
ples include rheumatoid arthritis (Keefe, Smith, Buffington,
Studts, & Caldwell, in press), headache, and other types of
chronic pain (Holroyd, in press; Turk & Okifuji, 2002), gas-
trointestinal disorders (Blanchard & Scharff, in press;
Levenstein, in press), diabetes (Gonder-Frederick, Cox, &
Ritterband, in press), and wound healing (Kiecolt-Glaser,
McGuire, Robles, & Glaser, in press a, in press b).

This lengthy list of conditions with widely varying patho-
physiologies underscores issues discussed earlier. Current re-
search must be based on plausible models of the potential
specific links between psychosocial processes and the patho-
physiology of specific conditions. Older black-box models
and those based on general models of stress and physiologi-
cal arousal are no longer sufficient. Further, because most of
these conditions are influenced by health behaviors and ele-
ments of lifestyle, behavioral models must be ruled out as al-
ternative explanations, just as in psychosocial epidemiology.
For example, effects of chronic stress on the immune system
could be due to disrupted sleep or reductions in exercise
rather than more direct psychobiological mechanisms (Hall
et al., 1998).

Using the cardiovascular and immune mechanisms as
examples, the stress responses linking psychosocial
inputs and pathophysiological processes are complex. Even
simple increases in heart rate in response to experimentally

manipulated stressors involve both direct sympathetic and
parasympathetic neural innervation, as well as indirect
endocrine influences via the circulation. The list of elements
of the immune system known to be influenced by stress mech-
anisms, let alone the actual neural and endocrine pathways
involved in these effects, seems to expand exponentially with
each passing year (Ader, Felten, & Cohen, 2001; Kiecolt-
Glaser et al., in press). In addition to underscoring the impor-
tance of current conceptual models of pathophysiology, this
complexity poses basic problems in design and analysis. In
nearly all cases, state-of-the-art research by necessity as-
sesses multiple correlated features of the stress response of
interest. This mosaic of interdependent outcomes often re-
quires multiple statistical tests. Atheoretical approaches to the
control of Type I error rates (e.g., Bonferroni corrections) are
one option for dealing with multiple dependent variables, but
this method results in a potentially severe loss of statistical
power. Given the time and expense involved in many studies
of this type, overly conservative approaches to the problem
are ill-advised. Clear, conceptually driven, a priori organiza-
tion or prioritization of the list of outcomes can reduce the
problem to some extent. Further, the use of multivariate pro-
cedures and the interpretation of composite outcomes can be
useful (Huberty & Morris, 1989). The least acceptable ap-
proach, however, is the assessment of multiple components of
a complex system without a priori rank ordering of their
importance, followed by consideration of the unadjusted, sig-
nificant effects among many significance tests computed.

Psychobiological mechanisms are generally conceptual-
ized in two very distinct ways in this area of research. In the
first, variation in physiological reactivity in a given system in
response to potentially stressful stimuli is seen as reflecting
an individual difference. Some individuals, for example, re-
spond to daily stressors with particularly large and prolonged
increases in blood pressure and heart rate. This stable indi-
vidual difference, in turn, is hypothesized to place them at
risk for the development of cardiovascular disease (Manuck,
1994). In tests of this conceptual model, basic issues in the
assessment of individual differences have proven to be rele-
vant. For example, estimates of this individual difference
become more reliable with the addition of multiple stressors
and occasions of measurement (Kamarck, Jennings, Pogue-
Geile, & Manuck, 1994). Failure of responses to a single task
on a single occasion of stress reactivity testing to predict an
important health outcome may reflect a basic issue in
assessment—single items typically provide unreliable esti-
mates of an individual difference—rather than disconfirming
evidence of a psychosomatic hypothesis. Hence, when phys-
iological reactivity is conceptualized as an individual differ-
ence mechanism, research protocols should be designed so as

schi_ch10.qxd  9/6/02  12:22 PM  Page 256



Stress and Disease 257

to provide a reliable estimate, and evidence of that reliability
becomes an important criterion in evaluating such studies. 

The second conceptual model in this area considers phys-
iological reactivity not as a stable individual difference vari-
able, but as a mediating mechanism. Briefly, a psychosocial
risk factor (e.g., social isolation, trait anger) is believed to
affect health through its intervening effects on physiological
responses. The most basic research addressing this type of
model tests the predicted association between a measured or
manipulated psychosocial risk factor—typically previously
identified in epidemiological research—with some sort of
psychophysiological response to an experimental stressor.
This general approach raises other methodological concerns.
Of course, the issue of the construct validity of the measure
or manipulation of the psychosocial risk factor is a serious
concern, as discussed previously, as is the relevance of the
physiological response to what is known about the patho-
physiology of the disease of interest. However, an often over-
looked issue is the relevance of the experimental stressor. It is
common for researchers to use easily controlled and stan-
dardized stressors, such as reaction time tasks or mental
arithmetic. This has obvious advantages for reliability of im-
plementation of independent variables and measurement of
physiological responses. Yet the psychosocial risk factors of
interest may not be clearly related to these relatively artificial
and nonsocial challenges. Modeling the psychophysiological
mechanisms underlying psychosocial risk factors arguably
requires the use of conceptually relevant laboratory stress
paradigms. For example, in tests of the hypothesis that trait
anger and hostility confer increased risk of cardiovascular
disease through the mechanism of cardiovascular and neu-
roendocrine reactivity to stressors, mental arithmetic or sig-
naled reaction time tasks may provide a poor stressor in
which to examine the expected psychophysiological re-
sponse. Stressors more clearly relevant to this risk factor
(e.g., interpersonal conflict, provocation) are more appropri-
ate. A failure to find the expected association between a risk
factor and physiological response may reflect the use of an
inappropriate context or type of stressor rather than discon-
firming evidence. Hence, a specific conceptual model of the
psychosocial risk process is as important as the conceptual
description of pathophysiology.

However, this more ecologically valid modeling of risk
factors, relevant stressors, and their association with physio-
logical response poses its own problems. In manipulating
interpersonal constructs or social interactions in the psy-
chophysiology laboratory, measured psychosocial variables
or levels of manipulated stressors may be confounded with
artifacts (e.g., speech volume or rate, movement) that alter
physiological responses (Smith, Limon, Gallo, & Ngu, 1996;

Smith, Nealy, Kircher, & Limon, 1997). These potential arti-
facts must be measured or controlled in order to rule them out
as alternative explanations for associations between psy-
chosocial risk factors and physiological responses. The eco-
logical validity of such social psychophysiological studies
can be heightened further by studying these effects in the
context of actual relationship interactions, such as those
between spouses or friends. Further, care must be taken to
assess the psychological meaning or impact of these complex
stressors, in order to provide converging, independent
evidence of the successful and specific manipulation of con-
structs of interest (Smith, Gallo, & Ruiz, in press). Manipula-
tions intended to represent provocation, support, or efforts to
exert social dominance are likely to be quite complex and
could be interpreted by research participants in a variety of
ways. Interpretations of both expected associations between
psychosocial risk factors and physiological responses and the
failure to find them are strengthened by independent evidence
of the effectiveness and specificity of manipulations.

Even the most carefully crafted and assessed laboratory
manipulations of factors hypothesized to influence psy-
chophysiological responses will not truly capture the
experience of such factors in daily life. Hence, an important
complementary approach to studying psychobiological
mechanisms involves the assessment of ambulatory physio-
logical responses. Advances in the assessment of physiologi-
cal responses during daily activities (e.g., salivary cortisol
excretion, ambulatory blood pressure monitoring, etc.) can
be combined with dairy assessments of daily experiences
related to psychosocial risk factors (e.g., episodes of interper-
sonal conflict or job stress). Covariation between physiologi-
cal responses and risk factors can be tested using appropriate
statistical models (Affleck, Zautra, Tennen, & Armeli, 1999;
Jaccard & Wan, 1993; J. E. Schwartz & Stone, 1998). The
potential benefits in ecological validity inherent in this
approach are obvious, but it is not without limitations. For
example, the daily diary assessments of psychosocial risk
factors pose their own challenges in terms of reliable and
valid measurement. Further, the time frame (i.e., number of
days of monitoring) and method (e.g., interval- vs. event-
based) for sampling must be designed so as to capture ade-
quately the independent variable of interest. Finally, a variety
of complex decisions regarding implementation of the statis-
tical analyses must be addressed in order to reach valid
conclusions about the presence and magnitude of covariation
between psychosocial processes and ambulatory physiologi-
cal responses (Affleck et al., 1999).

Each of these issues concerns the validity of tests of the
association between a risk factor and a hypothesized mediat-
ing mechanism. It is important to note that they do not
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provide an actual test of the mediational model. Research on
such models typically addresses critical strands or pathways
in such models, but formal tests of mediation require assess-
ment of psychosocial risk factors, mediating mechanisms,
and disease outcomes. Such designs are very rare, given the
inherent time and expense involved. Hence, most research
related to mediational models of psychosocial risk and un-
derlying mechanisms must be interpreted cautiously. Failures
to find predicted relationships would be strong disconfirming
evidence, but confirming evidence for components of such
model must not be mistaken for support for the full media-
tional hypothesis. More complete mediational tests of the
more influential models will be important for the future of
this research area. Until they are available, basic questions
must be posed about any mechanism research (Cohen &
Rabin, 1998). Are the physiological responses plausibly re-
lated to what is known about the specific disease? If they are
biologically plausible, are they of sufficient magnitude and
frequency as to influence the pathophysiology of disease?

Stress and Risk-Reducing Intervention Research

When reliable psychosocial predictors of disease are identi-
fied in epidemiological research and studies of mechanisms
support the likely mediating role of the psychophysiology of
stress responses, then it is appropriate to develop and test in-
terventions intended to prevent or manage the disease by
modifying the psychosocial risk factor or its underlying
mechanism(s). Intervention research of this type should
address methodological issues common to most treatment
research (Kendall et al., 1999), with particular attention to
how these issues are altered in the specific context of health
research.

For example, all intervention research should carefully
document the process by which potential participants are
identified and recruited, in order to address issues of the sam-
ple’s representativeness. In the case of stress-reducing inter-
ventions for individuals with established disease, they may
come to be recruited after a multistage process of seeking
medical attention, possibly limited response to traditional
medical care (and hence, in need of additional treatment), and
referral to specialty clinics (Turk & Rudy, 1990). This com-
plex sequence of events is difficult to identify, and hence the
representativeness of the sample can be quite difficult to
document. Therefore, generalization of the results of such
treatment studies to other populations must be made very
cautiously. In terms of an adequate sample size, the choice of
an intervention outcome is a critical consideration. If psycho-
logical outcomes (e.g., stress and levels of other risk factors)
are the primary focus, prior intervention research can provide
a reasonable estimate of likely effect sizes and hence can

guide the necessary power calculations for determining sam-
ple sizes. In many cases, however, such as new applications
to a physiological mediating mechanism, such information
may be difficult to obtain. Further, if intervention effects on
medically documented morbidity or even mortality are of in-
terest, sample size requirements for reasonably sensitive
statistical tests will likely be considerable. In some cases, in-
termediate medical outcomes provide a compromise between
the need for compelling outcomes and the cost and difficulty
in treating and following enough participants for enough time
to test effects on rare or slowly changing disease outcomes.
For example, Blumenthal, Jiang, Babyak, and Krantz (1997)
examined the effects of a stress management intervention for
coronary patients on ambulatory ischemia as assessed via
Holter monitoring. This index itself predicts risk of recurrent
cardiac events and cardiac death, but shows sufficient vari-
ability across patients and over time to permit sensitive tests
of treatment outcome with a fairly small sample studied for a
brief period of time. In evaluating the results of stress or risk-
reduction interventions that produce effects on physical dis-
ease outcomes, small samples should be an obvious reason to
consider the findings tentative, as an a priori power analysis
would likely suggest that large samples are needed to detect
effects on such variables. 

Even after careful randomization, initial differences in the
health status of participants in different intervention and
control conditions is a potential concern. The evaluation of
the initial equivalence of randomized groups should include
medical assessments that are established and accepted in the
specific disease. Without such information, potentially small
initial differences in important prognostic indicators could
serve as an explanation for treatment effects (or the lack
thereof) on physiological or disease outcomes. As in the case
of behavioral risk-reducing interventions (e.g., smoking ces-
sation) described previously, assessment of adherence to
carefully described intervention procedures and the use of
appropriate analytic strategies when interventions are deliv-
ered to more than one individual at a time (i.e., participants
nested within therapy groups) are important but often over-
looked in psychosocial risk interventions. For the assessment
of psychosocial outcomes, the obvious advantages in ex-
pense and ease of administration associated with an exclusive
reliance of self-report measures of these risk factors should
be balanced by consideration of the interpretive limitations
imposed by such a strategy. As in the case of health behavior
change, most interventions for reducing stress or psychoso-
cial risk factors communicate a clear expectation for change.
Differences across treatment and comparison groups in this
demand can combine with the limitations of self-reported
outcomes to inflate apparent intervention effects. As in most
areas of intervention research, multimethod assessments of
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intervention effects are desirable (e.g., interview or signifi-
cant other ratings of social support, anger, anxiety, or stress).

The selection of appropriate comparison or control groups
can be complicated in this context (C. E. Schwartz, Chesney,
Irvine, & Keefe, 1997). Placebo or expectancy effects on
physiological outcomes are common, making some sort of
nonspecific factor or alternative treatment comparison appro-
priate (Turner, Deyo, & Loweser, 1994). The length of
follow-up and the frequency and timing of assessments of
physiological outcomes should be guided by an understand-
ing of the typical course of the disease or physiological
outcome of interest. Finally, the magnitude and clinical sig-
nificance of intervention effects should be examined. Except
in the obvious cases of recurrent morbid events or survival,
the selection of an approach or metric for evaluating clinical
significance can be difficult. Sometimes prior conventions or
criteria used for evaluating medical interventions can be
adapted for the evaluation of psychosocial interventions. For
example, if a reduction in blood pressure of 10 mmHg
achieved with antihypertensive medication is considered
clinically significant in the medical literature, the same bene-
fit achieved through stress management should be considered
clinically significant.

PSYCHOSOCIAL ASPECTS OF MEDICAL
ILLNESS AND CARE

Acute and chronic illnesses produce a variety of important
effects, such as painful symptoms, emotional distress, and
limitations in functioning. Further, the standard medical or
surgical management of these conditions can pose further
demands, such as adherence to potentially unpleasant med-
ication regimens or significant alterations in lifestyle.
Research on these impacts, the identification of potentially
modifiable predictors of variation in these effects, and the
utility of adjunctive psychosocial interventions must begin
with a thorough understanding of the specific medical con-
text—including the disease or health event in question, as
well as the standard medical care and the context in which it
is delivered (Smith & Nicassio, 1995). These aspects of the
context of medical illness and care are far-reaching influ-
ences of the patient’s experience, the identification of impor-
tant outcomes, and the feasibility of potential interventions.

Impacts of Acute and Chronic Illness

Most specific acute and chronic conditions have been exam-
ined in health psychology research. As a result, the key out-
comes of interest (e.g., specific symptoms, limitations in areas
of functioning) have been identified in most cases and may

have even been the subject of sophisticated assessment re-
search. In designing or evaluating research on acute and
chronic medical illness, a review of the relevant outcome as-
sessment literature is critical. Increasingly, this research is
published in the relevant medical outlets in a specific area
(e.g., rheumatology, cardiology, oncology). It is important to
determine the extent to which psychometric characteristics—
especially construct validity—have been examined in the spe-
cific medical context (i.e., disease or population) of interest.

Although this assessment literature has matured, several
problems are common. Some studies of medical populations
utilize measures that were developed for use in physically
healthy mental health populations, and their construct valid-
ity may not generalize across this dimension. For example,
the somatic items on depression inventories are highly diag-
nostic among individuals who do not have serious illnesses.
Yet, in medical populations, such items are likely to tap
symptoms or impacts of the disease, rather than indicate
affective disorder. A chronically medically ill person could
produce an elevated depression score on the MMPI or Beck
Depression Inventory, simply by accurately describing the
impact of their illness on fatigue, appetite, sleep, and their
concerns about appearance (Clark, Cook, & Snow, 1998;
McDaniel, Musselman, Porter, Reed, & Nemeroff, 1995;
Mohr et al., 1997; O’Donnell & Chung, 1997; Peck, Smith,
Ward, & Milano, 1989).

A related assessment problem occurs when measures of
emotional adjustment are selected while an inappropriate
conceptual model of the domain is implicitly being used.
Sometimes reflecting their clinical training, health psycholo-
gists often assess the emotional correlates of acute or chronic
medical illness exclusively with measures of depression and
related negative emotions or general levels of maladjustment.
The implicit assumption that measures of maladjustment and
emotional distress capture the emotional sequellae of medical
conditions is debatable, as few patients suffer diagnosable
emotional disorders. Models of the structure on normal vari-
ations in mood—such as the two-dimensional model of neg-
ative and positive affect proposed by Watson and Tellegen
(1985) may be more appropriate. It is important to note that
measures of depressive symptoms correlate with both high
negative affect and low positive affect. In medical popula-
tions, positive and negative affect have distinct correlates
(Smith & Christensen, 1996; Zautra et al., 1995). Hence, use
of measures of depressive symptoms to assess the emotional
impact of acute or chronic illness not only pathologizes nor-
mal emotional adaptation, but also may result in a loss of
specificity about the determinants of the emotional impact of
a given illness or medical crisis. 

In many illnesses or medical contexts (e.g., surgery,
childbirth, etc.), the most important outcomes (e.g., pain,
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symptoms, emotional adjustment) are most appropriately as-
sessed via self-reports. Other outcomes (e.g., functional
activity levels, adherence) are readily assessed with these
methods. Yet, even when self-reports are appropriate,
methodological limitations of this method may pose prob-
lems, such as overestimates of covariation among outcome
domains due to common method variance, or inflated esti-
mates of effect sizes when predictors (e.g., coping styles, so-
cial support) are assessed with the same method. Sometimes
self-reports of conceptually distinct outcomes or predictors
contain very similar item wording, exacerbating this prob-
lem. For example, covariation between reports of pain and
depressive symptoms may reflect an actual association
between these variables, the common effects of social desir-
ability or other response styles (e.g., suppression), or the
inclusion of similarly worded items on the corresponding in-
ventories. Multimethod approaches—despite the expense
and inconvenience—have much to recommend them in this
area of health psychology research.

Predictors of Impact

Similar issues arise in the assessment of predictors of the
impact of acute and chronic medical conditions. Cognitive
models of adaptation are widespread in this area, and self-
reports are typically the main way of assessing the key
constructs (e.g., self-efficacy, problem- and emotion-
focused coping, cognitive distortions, etc.). Even when in-
terpersonal processes are identified as critical influences on
adaptation (e.g., social support, conflict, etc.), self-report
methods are the most commonly used. Again, a variety of
artifacts can lead to the overestimation of effect sizes when
single methods are utilized. Scales intended to assess cogni-
tive or social constructs often contain item wording reflect-
ing affective distress, creating thinly veiled tautologies
(Coyne & Gotlib, 1983) in which psychometrically con-
flated measures are interpreted as providing estimates of
substantive associations. Each of these issues becomes a
more likely problem when scales intended to assess influ-
ences on adaptation to illness and other medical contexts
are used without adequate psychometric evaluation and re-
finement, especially formal studies of convergent and dis-
criminant validity.

Many of the influences on adjustment (e.g., coping
responses) and outcomes involve moment-to-moment or day-
to-day processes. Yet they are often assessed via general self-
reports of typical responses over long or indefinite periods of
time. There is growing concern that this approach to assess-
ing coping and other predictors of adaptation (as well as the
outcomes of interest themselves) is seriously inaccurate

(Coyne & Gottlieb, 1996; Stone et al., 1998). Participants
may simply be unable, by describing retrospective sum-
maries of their responses, to accurately describe processes
that vary in important ways over brief periods of time. Daily
experience sampling approaches (Affleck et al., 1999; Stone
et al., 1998) offer an important alternative, although it is not
without its own methodological and quantitative challenges.
Some prospective associations between potential influences
on adaptation and psychosocial outcomes do operate over
long periods of time and are therefore amenable to infre-
quent assessments. However, many processes are not and
therefore require the more intensive approach. In all cases, a
careful analysis of the specific medical context can suggest
which approaches regarding the frequency of assessment are
appropriate.

Design and Evaluation of Adjunctive Interventions

Interventions in this area range from the brief provision of sen-
sory and procedural information (Anderson, 1987; Auerbach,
1989) as a way to reduce distress and facilitate recovery in
brief medical procedures to multisession cognitive-behavioral
interventions for pain and disability (Keefe et al., in press;
Turk & Okifuji, in press). In other cases, increased adherence
to the behavioral components of standard medical care are the
main foci (e.g., diabetes, renal dialysis; Christensen & Ehlers,
in press; Gonder-Frederick et al., in press). In many instances,
such as cancer, heart disease, and arthritis, all of these are
relevant intervention targets, as is the progression of the
underlying disease itself. The selection of outcome measures
must begin with a careful consideration of the specific disease
and medical intervention context, as these factors determine
not only the selection of specific assessments, but also general
methodological approaches. In the case of most specific
illnesses and medical contexts, well-established measures
of clinically relevant outcomes are available, with prior
evidence of their sensitivity to interventions (Smith & Ruiz,
1999).

The primary features and considerations of experimental
design in psychological intervention research (e.g., choice of
comparison conditions, sampling, implementation and as-
sessment of independent variable, etc.; Haaga & Stiles,
2000; Kendall et al., 1999) are obviously relevant in this type
of intervention research, but again they will be shaped by the
specific medical context. Interventions vary from minutes to
many hours in length, and can be delivered by a wide variety
of personnel, including family members, nurses, physicians,
or psychologists. Similarly, the appropriate follow-up may
be a matter of hours, as in the case of the painfulness of
medical procedures, to months or years, as in the case of
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psychosocial interventions intended to reduce the recurrence
of cancer or coronary disease. Although appropriate compar-
ison groups often are standard medical practice (i.e., no
adjunctive psychosocial treatment), placebo effects are well-
established in many areas of acute and chronic illness. This
necessitates the consideration of more complex comparison
conditions.

A classic issue in psychological intervention research
involves the optimal matching of clients or patients and
specific interventions. Conceptually, these moderator designs
are quite similar in the context of medical illness and care,
but the array of individual differences and interventions can
be quite different. For example, the interactive or matching
effects of psychological differences among patients (e.g.,
high vs. low preference for involvement in health care) can
be crossed with alternative medical treatment options (e.g.,
home vs. in-center renal dialysis; Christensen & Ehlers, in
press). Medical individual differences (high vs. low illness
severity) can be crossed with psychosocial interventions
(Blumenthal et al., 1997). The quantitative analysis of these
moderator designs is similar to traditional intervention re-
search, but the range of relevant person (or condition) by
(medical or psychosocial) treatment questions is broad.

As we discuss later in this chapter, the evaluation of the
clinical significance of intervention effects is important in
this context. Many specific applications or contexts provide
easily quantified, clinically meaningful outcomes (e.g.,
length of labor or incidence of complications during child-
birth; days of hospitalization following bypass surgery; re-
ductions in blood pressure). Further, prior research may have
identified accepted criteria for clinical success, even when
outcomes of interest require subjective reports (e.g., reduc-
tions in the frequency of headache; Holroyd, in press).
Although specific conditions require specific measures in
order to provide optimally sensitive outcome assessment
(e.g., pain associated with arthritis vs. cancer pain), standard-
ized measures of pain, emotion distress, and functional activ-
ity can be added in order to compare the magnitude and
clinical significance of intervention effects across diseases
and medical contexts (Bergner, Bobbit, Carter, & Gilson,
1981; Derogatis, Fleming, Sudler, & DellaPietra, 1995;
Jensen, Turner, Turner, & Romano, 1996).

GENERAL ISSUES

Clearly, a variety of classic issues in psychological methods
are relevant to health psychology, albeit in the new key, so to
speak, of the interface between behavioral and biomedical

research and practice. Several of these issues are highlighted
in the following discussion.

The Active Use of Conceptual Models

Virtually all aspects of psychological research are grounded
in theory, even if this grounding is not explicitly recognized.
Even the most basic components of the research process are
guided in this way, including the small theories about the
connections between our research operations and the con-
structs we hope to understand. This is true even for the most
basic and central construct we hope to understand in the
field—health. As noted previously, research in the field is
often limited by simplistic assumptions about the validity of
measures intended to assess actual disease, as in the case of
self-reports of physical symptoms or visits to health care pro-
fessionals. These illness behaviors clearly share variance
with the construct of actual disease, but the unique variance
may also be systematically related to factors believed to in-
fluence actual health and disease. Clearly, there is more to
health than the simple presence versus absence of disease.
Functional activity levels, physical distress, subjective well-
being, and other constructs are important aspects of broad
conceptual definitions of health (Ryff & Singer, 1998). How-
ever, the individual elements of such multidimensional con-
structs are not all relevant for a given research question, and
researchers (and consumers of their work) should not gener-
alize across these correlated yet distinct elements. 

Similar care should be taken in the development and inter-
pretation of other central constructs in psychosocial models
of health and disease. In studies of health behavior and its
predictors, of more direct psychosocial influences on disease,
and of the predictors and outcomes of adjustment to acute
and chronic illness and care, clear conceptual models should
guide the development and psychometric evaluation of
measurement scales and procedures. A key aspect of the
conceptual context in this process should be the disease or
health outcome in question, as well as its standard medical
evaluation and management. That is to say, the grounding
conceptual models should attend equally to the relevant
psychosocial and biomedical elements. The field has suffered
in many instances from inadequate attention to the quality of
measurement of key concepts, and the needed improvement
in measurement will be facilitated by attending to its ground-
ing in conceptual models.

Opportunities for theory testing are often missed when re-
searchers perform routine tasks. For example, in controlling
possible behavioral confounds such as smoking or exercise
in prospective tests of the effects of social support or depres-
sion on subsequent cardiovascular disease, these analyses
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can easily be reconceptualized as conceptually driven tests of
competing models of the effects of these psychosocial risk
factors—specifically, a model in which their effects are
mediated by health behaviors relative to one that does not
involve behavioral mediation (Smith & Gallo, 2001). Some
of the traditions in other disciplines that often collaborate
with health psychology in research efforts are not as con-
cerned with theory testing; predictive statistical models are
sufficient in these traditions, and the potential slip between
construct and research operations may be of less concern.
Given their unique methodological tradition, health psychol-
ogists can often increase the yield of multidisciplinary
research by attending to opportunities for testing conceptual
models at each step.

One common opportunity for theory testing that is often
overlooked is in the area of intervention research. In evaluat-
ing interventions in the area of health behavior change and
risk reduction, modification of psychosocial risk factors, and
psychosocial adjunctive treatments for acute and chronic
illness, the interventions evaluated are often based on con-
ceptual models that otherwise have been tested almost exclu-
sively in observational, nonexperimental designs. As a result,
intervention studies provide very rare and valuable opportu-
nities to subject the guiding model to an experimental test.
This requires the inclusion of reliable and valid measures of
the key constructs hypothesized to influence the outcomes
of interest and targeted by the intervention. Traditional tests
of the significance and importance of intervention effects can
then also be supplemented by formal mediational analyses of
the those effects, testing the underlying models. In this way,
models of the determinants of health behavior, stress and
disease, and adaptation to illness can be tested through ex-
perimental manipulations of independent variables that are
typically only observed in concurrent and at best prospective
correlational designs.

Design and Sampling

In many of the research areas discussed previously, observa-
tional designs are an important component of research. Some
influences on health either cannot ethically or practically
be manipulated experimentally, or the expense of an experi-
mental study must first be justified by consistent supportive
findings from observational studies. In cross-sectional obser-
vational studies, the potential bidirectional relationship be-
tween psychosocial variables and physical health must
always be entertained as an alternative hypothesis. Prospec-
tive designs can be less ambiguous in this regard, but inter-
pretive ambiguities remain, especially the problem of third
variables. For example, the number of times an individual has

voted in presidential elections would likely be a reliable risk
factor for CHD over the subsequent decade. Of course, asso-
ciations between voting history and age, and between age
and CHD risk are the likely explanation, rather than any ef-
fects of voting per se. Although not all third variables are this
obvious, health and disease have multifactorial influences,
and each of the relevant factors is likely associated with
many other variables. Hence, the universe of alternative ex-
planations for correlational, albeit prospective effects is diffi-
cult to define, let alone rule out. Behavioral researchers may
need to take particular care to consider medical or health
status variables, including aspects of medical treatment.

The prevalence of most serious diseases increases with
age, and such diseases reduce life expectancy. As a result, the
age of the sample can influence the presence, magnitude, and
even direction of association between a behavioral or psy-
chosocial factor and health outcomes. The predictive utility
of even well-established risk factors changes over the life
span (G. A. Kaplan, Haan, & Wallace, 1999). Behavioral risk
factors may not predict disease early in life, simply because
the disease has not yet become manifest. The same risk factor
may not predict disease late in life, because those who died
because of this risk factor may be missing from the sample;
only those who are for some reason resilient have the risk fac-
tor and have survived long enough to be included in a later
adulthood sample (e.g., R. B. Williams, 2000).

As described previously, sampling in clinical studies
poses a very difficult challenge, in that entry into clinical
samples involves a very complex, multistep process involv-
ing access to health care, seeking such service, referral by
health professionals, response to prior interventions, and pat-
terns of dropout. It can be virtually impossible to define the
population such samples meaningfully represent (Turk &
Rudy, 1990). Finally, like other aspects of psychological and
biomedical research, health psychology can be fairly accused
as studying too many White middle- and upper-class men.
Although inclusion of more diverse samples in the field has
been improving (Park, Adams, & Lynch, 1998), the problem
remains. These demographic factors (i.e., ethnicity, SES, and
gender) are themselves associated with the prevalence, inci-
dence, and prognosis of most major health threats, and may
also moderate the effects of psychosocial variables and
interventions.

Evaluating Intervention Outcomes

In each of the three major topics in health psychology, inter-
vention research is a central focus. Can we modify unhealthy
behaviors, and do such changes reduce morbidity or postpone
mortality? Can we modify stress, negative emotions, and the
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psychophysiological mechanisms through which they impact
disease, and if so, do these interventions have beneficial
effects on morbidity and mortality? Finally, can adjunctive
psychosocial treatments reduce the negative impact of acute
and chronic medical conditions, improve adherence to med-
ical regimens, or otherwise improve the quality of life among
those with medical problems? As described in the preceding
discussion, classic issues in psychological and behavioral
intervention studies are relevant in each of these areas. How-
ever, there are additional methodological issues in health
psychology interventions that require consideration in the
application of the traditional principles and emerging con-
cerns in intervention research.

First, the overwhelming majority of interventions studies
in health psychology take the form of small, well-controlled
trials, with careful assessment of intermediate outcomes,
such as behavior change, temporary changes in physiology,
or specific symptoms. In their recent review, Schneiderman,
Antoni, Saab, and Ironson (2001) emphasize that these small
studies provide important and scientifically compelling evi-
dence regarding the feasibility of interventions and condi-
tions under which psychosocial factors influence disease
processes, quality of life, and other aspects of medical care
(e.g., adherence). However, evidence of impacts on morbid-
ity and mortality—the most important end points in tradi-
tional medical research—require much larger trials, given the
requirements for statistical power to detect effects on such
end points. Health psychology interventions will have a
greater impact on health care and medical practice if they are
supported in such trials. However, unlike those involved in
traditional clinical medicine research (e.g., evaluations of
new drug treatment protocols or surgical procedures), psy-
chologists are less accustomed to the design, conduct, and
analysis of multisite trial designs often required in such
research. Further, given their relatively more complex nature
as compared to drug trials, the delivery of psychosocial inter-
ventions consistently across multiple sites is a daunting
challenge.

The recent movement to develop standards for empirically
supported therapies in mental health (Chambless & Hollon,
1998; Chambless & Ollendick, 2001) has been applied at
least initially in health psychology (Compas, Haaga, Keefe,
Leitenberg, & Williams, 1998) and has a clear parallel in the
concept of evidence-based medicine (Sackett, Richardson,
Rosenberg, & Haynes, 1997). Hence, the application of the
concept of empirically supported therapies in health psychol-
ogy is consistent with trends in the broader field of health
care, and it presents the opportunity to compare the benefits of
behavioral interventions and traditional medical approaches
on the level playing field of established methodological

principles. This is likely to have considerable advantages for
health psychology if the evidence-based practice movement
in health care challenges long-standing beliefs in the medical
community about the relative value of behavioral versus tra-
ditional medical approaches. An emphasis on evidence-based
practice applied equally to behavioral and medical interven-
tions could influence policies regarding reimbursement and
other aspects of health care resource allocation.

The criteria for the status of empirically supported thera-
pies distinguish between evidence of efficacy and effective-
ness (Kendall et al., 1999). Paralleling the distinction between
internal and external validity, efficacy refers to evidence of
significant effects in carefully controlled trials using highly
selected patients or participants and specifically trained thera-
pists or providers. In contrast, effectiveness refers to evidence
of significant treatment effects in the context of actual clinical
or applied settings, with unselected recipients and actual
health care providers. The evaluation of efficacy in health
psychology intervention research is quite similar to the con-
text of mental health intervention research (e.g., description
of sample, random assignment, evaluation of reliability of
treatment implementation, etc.), with the exception that it in-
volves a very broad array of intervention targets, types of
intervention-delivering personnel, and contexts for delivery.
Table 10.2 illustrates this range by describing interventions as
falling along two dimensions—(a) the levels of analysis as de-
scribed in the biopsychosocial model, as described by Engel
(1977) and illustrated in Figure 10.1; and (b) the particular
stage of the health versus disease, from the prevention of risk,
to the reduction of risk, and to the management of the impact
of established disease. Hence, the nature of carefully con-
trolled trials that produce evidence of efficacy will vary enor-
mously, as will the real-world studies of effectiveness. In both
cases, for example, health psychology interventions may in-
volve treatments delivered by peers, parents, spouses, other
health care professionals (e.g., nurses, physicians), or
psychologists. Further, these interventions may be targeted
toward healthy persons or chronically ill persons, and may
be delivered to individuals, families, organizations, or
communities.

As noted previously, for interventions in each of the three
main content areas, evaluations of the importance or clinical
significance of intervention effects is an important concern.
In addition to indexes specific to individual behavior change
targets (e.g., weight loss, smoking cessation, blood pressure
reduction, change in headache frequency), health psycholo-
gists should also consider the suggestion of mental health
researchers to include quality of life in evaluations of clinical
significance (Gladis et al., 1999). As noted above, quality of
life is a key element of broader views of health outcomes
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TABLE 10.2 Level of Analysis and Phase of Disease Risk as Dimensions in Health Psychology Interventions

Phase

Level Primary Secondary Tertiary 

Individual Self-instruction guide Screening and behavior- Stress management
for HIV prevention change counseling for for individuals with

mild hypertension heart disease
Group Parents’ group training Supervised exercise Couples’ group for

in communicating with program for sedentary coping with cancer
teens about risk behaviors adults

Organization Work site education and Work site incentive Physical therapy and
exercise program for program for smoking vocational retraining
injury prevention cessation for injured workers

Community Neighborhood media Neighborhood support Improving access for
campaign to promote groups for caregivers disabled persons to
exercise in minority of chronically ill recreational facilities
populations

Institution- Enforcing laws banning Increasing health insurance Mandating a course of
Policy cigarette sales to coverage for smoking rehabilitation for

minors cessation treatment stroke victims

(R. M. Kaplan, 1994). It also figures prominently in recent
efforts to capture the full impact of intervention effects,
relative to their costs.

Increasingly, the effects of health interventions are evalu-
ated relative to their costs. In a climate of limited health care
expenditures, the value of interventions with demonstrated ef-
ficacy and effectiveness must considered along with the costs
associated with the intervention, in order to inform decisions
about the distribution or allocation of finite health care re-
sources (Ramsey, McIntosh, & Sullivan, 2001). Several key
concepts are often misunderstood in evaluating the effects of
interventions relative to their costs (R. M. Kaplan & Groessel,
in press). Cost-effectiveness refers to the monetary value of
resources used, relative to the health effects produced. For
example, smoking cessation interventions could be compared
in terms of the treatment delivery costs associated with the
production of 1 year of smoking abstinence (e.g., costs of de-
livery a counseling intervention to five smokers, one of whom
quits and remains smoke free for a year). This sort of compar-
ison can suggest differing strengths and weaknesses of inter-
vention approaches. Multicomponent, cognitive-behavioral
interventions for smoking delivered to individuals or small
groups may produce greater initial and maintained cessation
rates as compared to a brief interventions consisting of physi-
cian advice and self-help manuals dispensed during routine
medical visits. However, the very low costs of the latter could
make it the more cost-effective approach.

Cost-benefit analyses compare this same monetary value
of resources consumed in treatment to the monetary value of
all resources saved or created, including the monetary value of
impacts on other health care utilization and health outcomes

(e.g., economic productivity of recipients). Comprehensive
and accurate assessments of both the costs and the benefits
pose a significant challenge in this type of analysis (R. M.
Kaplan & Groessel, in press). A closely related concept is
often referred to as cost offset, in which psychosocial inter-
ventions can produce reductions in subsequent health care
expenditures that exceed the costs associated with the psy-
chosocial treatment (Chiles, Lambert, & Hatch, 1999; Fried-
man, Subel, Meyers, Caudill, & Benson, 1995). Specifically,
this concept compares the cost of the intervention to the costs
saved by reductions in other medical care (e.g., reduction in
health care utilization or the expense of continuing care),
independent of their health benefits.

Finally, a more comprehensive approach has been pro-
posed in which intervention effects for all types of health care
are compared in a standard metric for assessing a broad defi-
nition of health benefits. Cost-utility analyses compare the
value of resources used in delivering a specific intervention
or service to an outcome that combines mortality and quality
of life, including morbidity, functional status, and subjective
symptoms (R. M. Kaplan & Groessel, in press). For example,
the Quality of Life Adjusted Year (i.e., QALY; R. M. Kaplan,
1994) weights years of life by a summary of ratings of vari-
ous aspects of morbidity and functional status. The contin-
uum is bounded by a rating of 0.0 for death and 1.0 for
asymptomatic, optimal functioning. Interventions with simi-
lar effects on mortality could have very different effects on
quality of life adjusted years, as when one intervention is as-
sociated with significant side effects, incomplete relief of
symptoms, or continuing limitations in mobility or other
aspects of functional status. This approach permits an overall,
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comprehensive assessment of intervention effects—both pos-
itive and negative—in a metric that is broadly applicable. For
example, the cost-utility of coronary artery bypass surgery
could be compared to that associated with medical or even
behavioral management of coronary disease. Comparisons of
apples and oranges, so to speak, in health care research are in-
creasingly important as we face difficult questions involving
the allocation of limited health resources. Importantly, such
standardized and comprehensive outcome assessments define
a level playing field on which psychosocial and traditional
medical interventions can be compared objectively.

Communication

An often overlooked issue in discussions of research methods
is the dissemination of research findings. In traditional be-
havioral and psychosocial research, this issue is relatively
straightforward; we are generally communicating with simi-
larly trained professionals. The optimal audience for health
psychology research is much broader. If only other psycholo-
gists hear or read about the findings of such studies, then a
major goal of the research will not be obtained. Just as the
public health and medical contexts shape the importance and
nature of health psychology research, these potential audi-
ences must guide decisions about how and where the findings
are reported. Writing for medical or epidemiological audi-
ences is usually quite different than for behavioral scientists.
As in the case of research design, interdisciplinary teams are
often needed to accomplish this complex task.

METHODOLOGICAL CONSIDERATIONS IN
THE FUTURE OF HEALTH PSYCHOLOGY

Given that the context of research questions represents a crit-
ical influence on methodological decisions, it is useful to
conclude this overview of methods in health psychology by
considering the changes in context that will impact methods
in the field. For example, as noted previously, increasing
pressure on health care financing will both increase the po-
tential importance of health psychology interventions and
motivate the comprehensive assessment of their benefits and
costs. The concern with cost containment will also prompt
studies of the effectiveness in real world health settings of
interventions found to be efficacious in carefully controlled
trials. Changing demographics represent another contextual
influence on future methodological concerns. In industrial-
ized nations, the rising average age of the population and the
increasing proportion of the population that is elderly will

increase the need for incorporation of methods from geron-
tology and life span developmental psychology (Siegler
et al., 2002). This may also change the relative importance of
various health outcomes and identify the need for improved
assessments, such as an increased emphasis on functional sta-
tus and independent living. Yet just as the aging population
calls our attention to the later stages of the life span, it is in-
creasingly clear that the most common sources of premature
mortality and excess morbidity in later adulthood are heavily
influenced by behaviors and related characteristics that
emerge in childhood and adolescence (e.g., smoking, inactiv-
ity, obesity) (P. G. Williams, Holmbeck, & Greenley, in
press). Hence, developmental methods will play an increas-
ing part in the health psychology research across the life
span. The growing recognition that women and minorities are
underrepresented in all aspects of health research including
health psychology will prompt increasing attention to related
methodological issues, especially as the ethnic minority pop-
ulation increases in the United States.

Finally, developments in basic biomedical science and
clinical medicine will shape health psychology research.
Some of these developments will prompt new psychosocial
questions, such as psychological aspects of organ transplan-
tation (Olbrisch, Benedict, Ashe, & Levenson, in press)
and genetic testing (Lerman, Croyle, Tercyak, & Hamann, in
press). Biomedical science will provide new opportunities
for answering existing questions at the interface of behav-
ioral and biomedical science, as when new medical imaging
technologies provide unprecedented opportunities to exam-
ine disease processes noninvasively. Other developments
will refine our understanding of the pathophysiology of
disease, and in the process pose new questions about the
ways in which mind and body are reciprocally related. These
developments will make the continuing methodological
education of the health psychologist a critical and ongoing
concern, but the basic concepts and methods of behavioral
research will remain an equally essential foundation.

REFERENCES

Ader, R., Felten, D. L., & Cohen, N. (Eds.). (2001). Psychoneu-
roimmunology (3rd ed.). San Diego, CA: Academic Press.

Adler, N., & Matthews, K. (1994). Health psychology: Why do
some people get sick and some stay well? Annual Review of
Psychology, 45, 229–259.

Affleck, G., Zautra, A., Tennen, H., & Armeli, S. (1999). Multilevel
daily process designs for consulting and clinical psychology: A
primer for the perplexed. Journal of Consulting and Clinical
Psychology, 67, 746–754.

schi_ch10.qxd  9/6/02  12:22 PM  Page 265



266 Health Psychology

Andersen, B. L. (in press). Biobehavioral outcomes following psy-
chological interventions for cancer patients. Journal of Consult-
ing and Clinical Psychology.

Andersen, B. L., Kiecolt-Glaser, J. K., & Glaser, R. (1994). A
biobehavioral model of cancer stress and disease course. Ameri-
can Psychologist, 49, 389–404.

Anderson, E. (1987). Preoperative preparation facilitates recovery,
reduces psychological distress, and reduces the incidence of
acute postoperative hypertension. Journal of Consulting and
Clinical Psychology, 55, 513–520.

Auerbach, S. M. (1989). Stress management and coping research in
the health care setting: An overview and methodological com-
mentary. Journal of Consulting and Clinical Psychology, 57,
388–395.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of be-
havioral change. Psychological Review, 84, 191–215.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator vari-
able distinction in social psychological research: Conceptual,
strategic, and statistical consideration. Journal of Personality
and Social Psychology, 51, 1173–1182.

Bergner, M., Bobbit, R. A., Carter, W. B., & Gilson, B. S. (1981).
The sickness impact profile: Validation of a health status mea-
sure. Medical Care, 14, 57–67.

Blanchard, E. B., & Scharff, L. (in press). Psychosocial aspects of
assessment and treatment of irritable bowel syndrome in adults
and recurrent abdominal pain in children. Journal of Consulting
and Clinical Psychology.

Blumenthal, J. A., Jiang, W., Babyak, M. A., & Krantz, D. S. (1997).
Stress management and exercise training in cardiac patients with
myocardial ischemia. Archives of Internal Medicine, 157, 2213–
2223.

Brownell, K. D., Marlatt, G. A., Lichtenstein, E., & Wilson, G. T.
(1986). Understanding and preventing relapse. American
Psychologist, 41, 765–782.

Carroll, M. E., & Overmier, J. B. (2001). Animal research and human
health. Washington, DC: American Psychological Association.

Chambless, D. L., & Hollon, S. D. (1998). Defining empirically
supported therapies. Journal of Consulting and Clinical
Psychology, 66, 7–18.

Chambless, D. L., & Ollendick, T. H. (2001). Empirically-supported
psychological interventions. Annual Review of Psychology, 52,
685–716.

Chiles, J. A., Lambert, M. J., & Hatch, A. L. (1999). The impact of
psychological interventions on medical cost offset: A meta-
analytic review. Clinical Psychology: Research and Practice, 6,
204–220.

Christensen, A. J., & Ehlers, S. L. (in press). Psychosocial factors in
end-stage renal disease:An emerging context for behavioral med-
icine research. Journal of Consulting and Clinical Psychology.

Clark, D. A., Cook, A., & Snow, D. (1998). Depressive symptom
differences in hospitalized, medically ill, depressed psychiatric

inpatients, and nonmedical controls. Journal of Abnormal
Psychology, 107, 38–48.

Cohen, S., & Rabin, B. S. (1998). Psychologic stress, immunity, and
cancer. Journal of the National Cancer Institute, 90, 3–4.

Cohen, S., & Rodriguez, M. (1995). Pathways linking affective
disturbances and physical disorders. Health Psychology, 14,
374–380.

Compas, B. E., Haaga, D. A., Keefe, F. J., Leitenberg, H., &
Williams, D. A. (1998). Sampling of empirically supported
psychological treatments from health psychology: Smoking,
chronic pain, cancer, and bulimia nervosa. Journal of Consulting
and Clinical Psychology, 66, 89–112.

Costa, P. T., Jr., & McCrae, R. R. (1987). Neuroticism, somatic com-
plaints, and disease: Is the bark worse than the bite? Journal of
Personality, 55, 299–316.

Coyne, J. C., & Gotlib, I. (1983). The role of cognition in depres-
sion: A critical review. Psychological Bulletin, 94, 472–505.

Coyne, J. C., & Gottlieb, B. H. (1996). The mismeasure of coping
by checklist. Journal of Personality, 64, 959–991.

Crits-Christoph, P., & Mintz, J. (1991). Implications of therapist
effects for the design and analysis of comparative studies of psy-
chotherapies. Journal of Consulting and Clinical Psychology,
59, 20–26.

Croyle, R. T., & Loftus, E. F. (1993). Recollection in the kingdom of
AIDS. In D. G. Ostrow & R. Kessler (Eds.), Methodological
issues in AIDS behavioral research (pp. 163–180). New York:
Plenum.

Davila, J., Bradbury, T. N., Cohan, C. L., & Tochluk, S. (1997).
Marital functions and depressive symptoms: Evidence for a
stress generation model. Journal of Personality and Social
Psychology, 73, 849–861.

Derogatis, L. R., Fleming, M. P., Sudler, N. C., & DellaPietra, L.
(1995). Psychological assessment. In P. M. Nicassio & T. W.
Smith (Eds.), Managing chronic illness: A biopsychosocial
perspective (pp. 59–116). Washington, DC: American Psycho-
logical Association.

Dubbert, P. M. (in press). Physical activity and exercise: Recent
advances and current challenges. Journal of Consulting and
Clinical Psychology.

Engel, G. L. (1977). The need for a new medical model: A challenge
for biomedicine. Science, 196, 129–136.

Etringer, B. D., Gregory, V. R., & Lando, H. A. (1984). Influence of
group cohesion on the behavioral treatment of smoking. Journal
of Consulting and Clinical Psychology, 52, 1080–1086.

Feng, Z., Diehr, P., Peterson, A., & McLerran, D. (2001). Selected
statistical issues in group randomized trials. Annual Review of
Public Health, 22, 167–187.

Flick, S. N. (1988). Managing attrition in clinical research. Clinical
Psychology Review, 8, 499–515.

Friedman, R., Subel, D., Meyers, P., Caudill, M., & Benson, H.
(1995). Behavioral medicine, clinical health psychology, and
cost offset. Health Psychology, 14, 509–518.

schi_ch10.qxd  9/6/02  12:22 PM  Page 266



References 267

Funk, S. (1992). Hardiness: A review of theory and research. Health
Psychology, 11, 335–345.

Gallo, L. C., & Smith, T. W. (1999). Patterns of hostility and so-
cial support: Conceptualizing psychosocial risk factors as
characteristics of the person and the environment. Journal of
Research in Personality, 33, 281–310.

Glasgow, R. E., Mullooly, J. P., Vogt, T. M., Stevens, V. J.,
Lichetenstein, E., Hollis, J. F., Lando, H.A., Severson, H., Pearson,
K., & Vogt, M. (1993). Biochemical validation of smoking status
in public health settings: Pros, cons, and data from four low-
intensity intervention trials. Addictive Behaviors, 18, 511–527.

Gonder-Frederick, L. A., Cox, D. J., & Ritterband, L. M. (in press).
Diabetes and behavioral medicine: The second decade. Journal
of Consulting and Clinical Psychology.

Haaga, D. A. F., & Stiles, W. B. (2000). Randomized clinical trials
in psychotherapy research: Methodology, design, and evalua-
tion. In C. R. Snyder & R. E. Ingram (Eds.), Handbook of psy-
chological change: Psychotherapy procedure and practices for
the 21st century (pp. 14–39). New York: Wiley.

Hall, M., Baum, A., Buysse, D. J., Prigerson, H. G., Kupfer, D. J., &
Reynolds, C. F. (1998). Sleep as a mediator of the stress-immune
relationship. Psychosomatic Medicine, 60, 48–51.

Hancock, L., Sanson-Fisher, R. W., & Redman, S. (1997). Commu-
nity action for health promotion: A review of methods and out-
comes 1990–1995. American Journal of Preventive Medicine,
13, 229–239.

Holmbeck, G. N. (1997). Toward terminological, conceptual, and sta-
tistical clarity in the study of mediators and moderators: Examples
from the child-clinical and pediatric psychology literatures. Jour-
nal of Consulting and Clinical Psychology, 65, 599–610.

Holroyd, K. A. (in press). Assessment and psychological manage-
ment of recurrent headache disorders. Journal of Consulting and
Clinical Psychology.

Huberty, C. J., & Morris, J. D. (1989). Multivariate analysis
versus multiple univariate analyses. Psychological Bulletin, 105,
302–308.

Iribarren, C., Sidney, S., Bild, D. E., Liu, K., Markovitz, J. H.,
Roseman, J. M., & Matthews, K. (2000). Association of hostility
with coronary artery calcification in young adults: The CARDIA
study. Journal of the American Medical Association, 283,
2546–2551.

Jaccard, J., & Wan, C. K. (1993). Statistical analysis of temporal
data with many observations: Issues for behavioral medicine
data. Annals of Behavioral Medicine, 15, 41–50.

Janz, N. W., & Becker, J. H. (1984). The health belief model: A
decade later. Health Education Quarterly, 11, 1–47.

Jensen, M., Turner, L., Turner, J., & Romano, J. (1996). The use of
multiple-item scales for pain intensity measurement in chronic
pain patients. Pain, 67, 35–40.

Johnson, S. L., & Jacob, T. (1997). Marital interactions of depressed
men and women. Journal of Consulting and Clinical Psychol-
ogy, 65, 15–23.

Kamarck, T. W., Jennings, J. J., Pogue-Geile, M., & Manuck, S. B.
(1994). A multidimensional measurement model for cardiovas-
cular reactivity: Stability, and cross-validation in two adult
samples. Health Psychology, 13, 471–478.

Kaplan, G. A., Haan, M. N., & Wallace, R. B. (1999). Understand-
ing changing risk factor associations with increasing age in
adults. Annual Review of Public Health, 20, 89–108.

Kaplan, R. M. (1984). The connection between clinical health
promotion and health status: A critical overview. American Psy-
chologist, 39, 755–765.

Kaplan, R. M. (1994). The Ziggy theorem: Toward an outcomes-
focused health psychology. Health Psychology, 13, 451–460.

Kaplan, R. M., & Groessel, E. J. (in press). Applications of cost-
effectiveness methodologies in behavioral medicine. Journal of
Consulting and Clinical Psychology.

Keefe, F. J., Smith, F. J., Buffington, A. L. H., Gibson, J., Studts, J.,
& Caldwell, D. S. (in press). Recent advances and future direc-
tions in the biopsychosocial assessment and treatment of arthri-
tis. Journal of Consulting and Clinical Psychology.

Kelly, J. A., & Kalichman, S. C. (in press). Behavioral research in
HIV/AIDS, primary and secondary prevention, recent ad-
vances, and future directions. Journal of Consulting and Clini-
cal Psychology.

Kendall, P. C. (1999). Clinical significance. Journal of Consulting
and Clinical Psychology, 67, 283–284.

Kendall, P. C., Flannery-Schroeder, E. C., & Ford, J. D. (1999). Ther-
apy outcome research methods. In P. C. Kendall, J. N. Butcher, &
G. N. Holmbeck (Eds.), Handbook of research methods in clinical
psychology (2nd ed., pp. 330–363). New York: Wiley.

Kendler, K. S. (1997). Social support: A genetic-epidemiologic
analysis. American Journal of Psychiatry, 154, 1398–1404.

Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R.
(2002). Emotions, morbidity, and mortality: New perspectives
from psychoneuroimmunology. Annual Review of Psychology,
53, 83–107.

Kiecolt-Glaser, J. K., McGuire, L., Robles, T. F., & Glaser, R. (in
press). Psychoneuroimmunology: Psychological influences on
immune function and health. Journal of Consulting and Clinical
Psychology.

Krantz, D. S., & McCeney, M. K. (2002). Effects of psychological
and social factors on organic disease: A critical assessment of re-
search on coronary heart disease. Annual Review of Psychology,
53, 341–369.

Lerman, C., Croyle, T. T., Tercyak, K. P., & Hamann, H. (in press).
Genetic testing: Psychological aspects and implications. Journal
of Consulting and Clinical Psychology.

Levenstein, S. (in press). Psychosocial factors in peptic ulcer and in-
flammatory bowel disease. Journal of Consulting and Clinical
Psychology.

Little, R. J., & Yau, L. H. Y. (1998). Statistical techniques for
analyzing data from prevention trials: Treatment no-shows using
Rubin’s causal model. Psychological Methods, 3, 147–159.

schi_ch10.qxd  9/6/02  12:22 PM  Page 267



268 Health Psychology

Lovallo, W. (1997). Stress and health. Thousand Oaks, CA: Sage.

Manuck, S. B. (1994). Cardiovascular reactivity in cardiovascular
disease: “Once more unto the breach.” International Journal of
Behavioral Medicine, 1, 4–31.

Marlatt, G. A., & Gordon, J. J. (1985). Relapse prevention. New
York: Guilford.

Matarazzo, J. D. (1980). Behavioral health and behavioral medi-
cine: Frontiers for a new health psychology. American Psychol-
ogist, 35, 807–817.

McDaniel, J. S., Musselman, D. L., Porter, M. R., Reed, D. A., &
Nemeroff, C. B. (1995). Depression in patients with cancer:
Diagnosis, biology, and treatment. Archives of General Psychia-
try, 52, 89–99.

McGee, D. L., Liao, Y. L., Cao, G. C., & Cooper, R. S. (1999). Self-
reported health status and mortality in a multi-ethnic U.S. cohort.
American Journal of Epidemiology, 149, 41–46.

McMahon, C. E. (1976). The role of imagination in the disease
process: Pre-cartesian medical history. Psychological Medicine,
6, 179–184.

Meehl, P. E. (1970). Nuisance variables and the ex post facto design.
In M. Radner & S. Winokur (Eds.), Minnesota studies in the phi-
losophy of science: Vol. 4. Analyses of theories and methods of
physics and psychology (pp. 373–402). Minneapolis: University
of Minnesota Press.

Meehl, P. E. (1978). Theoretical risks and tabular asterisks: Sir Karl,
Sir Ronald, and the slow progress of soft psychology. Journal of
Consulting and Clinical Psychology, 46, 806–834.

Miller, S. M., Shoda, Y., & Hurley, K. (1996). Applying social-
cognitive theory to health protective behavior: Breast self-
examination in cancer screening. Psychological Bulletin, 119,
70–94.

Miller, T. Q. (1994). A test of alternative explanations for the stage-
like progression of adolescent substance use in four national
samples. Addictive Behaviors, 19, 287–293.

Miller, T. Q., Turner, C. W., Tindale, R. S., Posavac, E. J., & Dugoni,
B. L. (1991). Reasons for the trend toward null findings in research
on Type A behavior. Psychological Bulletin, 110, 469–485.

Mohr, D. C., Goodkin, D. E., Likosky, W., Beutler, L., Gatto, N., &
Langan, M. K. (1997). Identification of Beck Depression Inven-
tory items related to multiple sclerosis. Journal of Behavioral
Medicine, 20, 407–414.

Niaura, R., & Abrams, D. B. (in press). Smoking cessation:
Progress, priorities, and prospectus. Journal of Consulting and
Clinical Psychology.

Norris, F. H. (1997). Frequency and structure of precautionary
behavior in the domains of hazard preparedness, crime
prevention, vehicular safety, and health maintenance. Health
Psychology, 16, 566–575.

O’Donnell, K., & Chung, J. Y. (1997). The diagnosis of major
depression in end-stage renal disease. Psychotherapy and
Psychosomatics, 66, 38–43.

Olbrisch, M. E., Benedict, S. M., Ashe, K., & Levenson, J. L. (in
press). Psychological assessment and care of organ transplant
patients. Journal of Consulting and Clinical Psychology.

Park, T. L., Adams, S. G., & Lynch, J. (1998). Sociodemographic
factors in health psychology research: 12 years in review. Health
Psychology, 17, 381–383.

Patrick, D. L., Cheadle, A., Thompson, D. C., Diehr, P., Koepsell, T.,
& Kinne, S. (1994). The validity of self-reported smoking: A re-
view and meta-analysis. American Journal of Public Health, 84,
1086–1093.

Peck, J., Smith, T. W., Ward, J. J., & Milano, R. (1989). Disability
and depression in rheumatoid arthritis: A multi-trait, multi-
method investigation. Arthritis and Rheumatism, 32, 1100–1106.

Pierce, G. R., Lakey, B., Sarason, I. G., Sarason, B. R., & Joseph,
H. J. (1997). Personality and social support processes: A concep-
tual overview. In G. R. Pierce, B. Lakey, I. G. Sarason, & B. R.
Sarason (Eds.), Sourcebook of social support and personality
(pp. 3–18). New York: Plenum.

Plomin, R., Reiss, D., Heatherington, E. M., & Howe, G. W. (1994).
Nature and nurture: Genetic contributions to measures of the
family environment. Developmental Psychology, 30, 32–43.

Prochaska, J. O., & DiClemente, C. C. (1984). The transtheoreti-
cal approach: Crossing traditional boundaries of change.
Homewood, IL: Irwin.

Ramsey, S. D., McIntosh, M., & Sullivan, S. D. (2001). Design
issues for conduction cost-effectiveness analyses along side clin-
ical trails. Annual Review of Public Health, 22, 129– 141.

Rooney, B. L., & Murray, D. M. (1996). A meta-analysis of smoking
prevention programs after adjustment for errors in the unit of
analysis. Health Education Quarterly, 23, 48–64.

Ryff, C. D., & Singer, B. (1998). The contours of positive human
health. Psychological Inquiry, 9, 1–28.

Sackett, D. L., Richardson, W. S., Rosenberg, W., & Haynes, R. B.
(1997). Evidence-based medicine. New York: Churchhill
Livingstone.

Schneiderman, N., Antoni, M., Saab, P. G., & Ironson, G. (2001).
Health psychology: Psychological and biobehavioral aspects of
chronic disease management. Annual Review of Psychology, 52,
555–580.

Schwartz, C. E., Chesney, M. A., Irvine, J., & Keefe, F. J. (1997).
The control group dilemma in clinical research. Applications for
psychosocial and behavioral medicine trials. Psychosomatic
Medicine, 59, 362–371.

Schwartz, G. E., & Weiss, S. M. (1978). Behavioral medicine revis-
ited: An amended definition. Journal of Behavioral Medicine, 1,
249–251.

Schwartz, J. E., & Stone, A. A. (1998). Strategies for analyzing
ecological momentary assessment data. Health Psychology, 17,
6–16.

Shadish, W. R., Hu, X., Glaser, R. R., Kownacki, R., & Wong, S.
(1998). A method for exploring the effects of attrition in

schi_ch10.qxd  9/6/02  12:22 PM  Page 268



References 269

randomized experiments with dichotomous outcomes. Psycho-
logical Methods, 3, 3–22.

Shiffman, S., Fisher, L. A., Paty, J. A., Gnys, M., Kassel, J. D.,
Hickox, M., & Perez, W. (1994). Drinking and smoking: A field
study of their association. Annals of Behavioral Medicine, 16,
203–209.

Shiffman, S., Hufford, M., Hickox, M., Paty, J. A., Gnys, M., &
Kassel, J. (1997). Remember that? A comparison of real-time
versus retrospective recall of smoking lapses. Journal of
Consulting and Clinical Psychology, 65, 292–300.

Shiffman, S., Paty, J. A., Gnys, M., Kassel, J. D., & Hickox, M.
(1996). First lapses to smoking: Within subject analysis of real-
time reports. Journal of Consulting and Clinical Psychology, 64,
366–379.

Smith, T. W., & Christensen, A. J. (1996). Positive and negative
affect in rheumatoid arthritis: Increased specificity in the assess-
ment of emotional adjustment. Annals of Behavioral Medicine,
18, 75–78.

Smith, T. W., & Gallo, L. C. (2001). Personality traits as risk factors
for physical illness. In A. Baum, T. Revenson, & J. Singer (Eds.),
Handbook of health psychology, 139–173. Hillsdale, NJ: Erlbaum.

Smith, T. W., Gallo, L. C., & Ruiz, J. M. (in press). Toward a social
psychophysiology of cardiovascular reactivity: Interpersonal
concepts and methods in the study of stress and coronary
disease. In J. Suls & K. Wallston (Eds.), Social psychological
foundations of health and illness. Oxford, UK: Blackwell.

Smith, T. W., Limon, J. P., Gallo, L. C., & Ngu, L. Q. (1996).
Interpersonal control and cardiovascular reactivity: Goals,
behavioral expression, and the moderating effects of sex. Journal
of Personality and Social Psychology, 70, 1012–1024.

Smith, T. W., Nealey, J. B., Kircher, J. C., & Limon, J. P. (1997).
Social determinants of cardiovascular reactivity: Effects of
incentive to exert influence and evaluative threat. Psychophysi-
ology, 34, 65–73.

Smith, T. W., & Nicassio, P. (1995). Psychosocial practice in chronic
medical illness: Clinical application of the biopsychosocial
model. In P. C. Nicassio & T. W. Smith (Eds.), Managing chronic
illness: A biopsychosocial perspective (pp. 1–32). Washington,
DC: American Psychological Association. 

Smith, T. W., Pope, M. K., Rhodewalt, F., & Poulton, J. L. (1989).
Optimism, neuroticism, coping, and symptom reports: An alter-
native interpretation of the Life Orientation Test. Journal of
Personality and Social Psychology, 56, 640–648.

Smith, T. W., & Ruiz, J. M. (1999). Methodological issues in adult
health psychology. In P. C. Kendall, J. N. Butcher, & G. N.
Holmbeck (Eds.), Handbook of research methods in clinical
psychology (2nd ed., pp. 499–536). New York: Wiley.

Smith, T. W., & Ruiz, J. M. (in press). Psychosocial influences on
the development and course of coronary heart disease: Current
status and implications for research and practice. Journal of
Consulting and Clinical Psychology.

Smith, T. W., & Williams, P. G. (1992). Personality and health:
Advantages and limitations of the five-factor model. Journal of
Personality, 60, 395–423.

Stone, A. A., Schwartz, J. E., Neale, J. M., Shiffman, S., Marco, C.,
Hickox, M., Paty, J., Porter, L., & Cruise, L. (1998). A compari-
son of coping assessed by ecological momentary assessment and
retrospective recall. Journal of Personality and Social Psychol-
ogy, 74, 1670–1680.

Trapnell, P. D., & Wiggins, J. S. (1990). Extension of the Interper-
sonal Adjective Scales to include the big five dimensions of
personality. Journal of Personality and Social Psychology, 59,
781–790.

Trobst, K. K. (2000). An interpersonal conceptualization and quan-
tification of social support transactions. Personality and Social
Psychology Bulletin, 26, 971–986.

Turk, D. C., & Okifuji, A. (in press). Psychological factors in
chronic pain: Evolution and revolution. Journal of Consulting
and Clinical Psychology.

Turk, D. C., & Rudy, T. E. (1990). Neglected factors in chronic pain
treatment outcome studies—Referral patterns, failure to enter
treatment, and attrition. Pain, 43, 7–21.

Turner, J. A., Deyo, R. A., & Loweser, J. D. (1994). The importance
of placebo effects in pain treatment and research. Journal of the
American Medical Association, 271, 1609–1614.

von Bertalanffy, L. (1968). General systems theory. New York:
Braziller.

Wadden, T. A., Brownell, K. D., & Foster, G. D. (in press). Obesity:
Responding to the global epidemic. Journal of Consulting and
Clinical Psychology.

Waltz, J., Addis, M. E., Koerner, K., & Jacobson, N. S. (1993). Test-
ing the integrity of a psychotherapy protocol: Assessment of
adherence and competence. Journal of Consulting and Clinical
Psychology, 61, 620–630.

Watson, D., & Pennebaker, J. W. (1989). Health complaints, stress,
and distress: Exploring the central role of negative affectivity.
Psychological Review, 96, 234–254.

Watson, D., & Tellegen, A. (1985). Toward a consensual structure of
mood. Psychological Bulletin, 98, 219–235.

Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss,
M. E., & McCormick, R. A. (1995). Testing a tripartite model:
Vol. 1. Evaluating the convergent and discriminant validity of
anxiety and depression symptom scales. Journal of Abnormal
Psychology, 104, 3–14.

Weinstein, N. D. (1993). Testing four competing theories of health-
protective behavior. Health Psychology, 12, 324–333.

Weinstein, N. D., Rothman, A. J., & Sutton, S. R. (1998). Stage
theories of health behavior: Conceptual and methodological
issues. Health Psychology, 17, 211–213.

Williams, P. G., Holmbeck, G. N., & Greenley, R. N. (in press).
Adolescent health psychology. Journal of Consulting and Clini-
cal Psychology.

schi_ch10.qxd  9/6/02  12:22 PM  Page 269



270 Health Psychology

Williams, R. B. (2000). Psychosocial factors, health, and
disease: The impact of aging and the life cycle. In S. B. Manuck,
R. Jennings, B. S. Rabin, & A. Baum (Eds.), Behavior, health
and aging (pp. 135–151). Mahwah, NJ: Erlbaum.

Yen, I. H., & Kaplan, G. (1999). Neighborhood social environment
and risk of death: Multilevel evidence from the Alameda
County study. American Journal of Epidemiology, 149, 898–
907.

Zautra, A., Burleson, M., Smith, C., Blalock, S., Wallston, K.,
DeVellis, R., DeVellis, B., & Smith, T. W. (1995). Arthritis and
perceptions of quality of life:An examination of positive and neg-
ative affect in rheumatoid arthritis patients. Health Psychology,
14, 399–408.

schi_ch10.qxd  9/6/02  12:22 PM  Page 270



CHAPTER 11

Animal Learning

RUSSELL M. CHURCH

271

WHAT IS THE PROBLEM? 272
WHAT APPARATUS IS REQUIRED? 272

Mazes 272
Boxes 273
Basis for Choice of Apparatus 274

WHAT ANIMALS SHOULD BE USED? 274
HOW SHOULD THE INDEPENDENT AND DEPENDENT

VARIABLES BE MEASURED? 275
Transformations 276
Summary Measures 276

WHAT PROCEDURES SHOULD BE USED? 277
WHAT EXPERIMENTAL DESIGN SHOULD BE USED? 278

Independent Group Designs 278
Repeated Measures Designs 279
Single-Subject Designs 279
Problems Common to All Experimental Designs 279

HOW SHOULD THE DATA BE ANALYZED? 280
HOW SHOULD THE RESULTS BE EXPLAINED? 280

Operational Definitions of Cognitive Factors 280
Functional Relationships Between Input and Output

Variables 280
Principles of Behavior 281
Process Models 281

THE USE OF COMPUTERS AT ALL STAGES OF
THE RESEARCH PROCESS 281
Literature Search 282
Design of Experiments 282
Implementation of Procedure 283
Storage of Results 284
Analysis of Data 284
Development of Theory 284
Comparison of Theory and Data 285
Preparation of Manuscripts 285
Dissemination of Results, Including Data Archives 285

A CASE STUDY 285
What Was the Problem? 285
What Apparatus Was Required? 285
What Animals Should Be Used? 285
How Should the Independent and Dependent Variables

Be Measured? 285
What Procedure Should Be Used? 286
What Experimental Design Should Be Used? 286
How Should the Data Be Analyzed? 286
How Should the Results Be Explained? 286

REFERENCES 286

The purpose of this chapter is to describe how research in an-
imal learning has been conducted, not what has been discov-
ered. At one time most behavioral research was conducted by
individuals whose training was focused on the topics covered
by this chapter. Now many neuroscientists, with interest in
the functions of the brain, are also conducting research in an-
imal learning. Some of this research, even that published in
premier journals in the field, includes behavioral methods
that are flawed by problems in behavioral measurement, ex-
perimental design, or interpretation. A goal of this chapter is
to transfer what is fairly common knowledge in experimental
psychology to others who can make use of it. Often, several
alternative methods can be used to accomplish a particular
goal, and particularly for readers at the graduate level, it is
important to be able to make choices among these alterna-
tives wisely. Thus, I have included evaluative comments

about the strengths and weaknesses of the methods that are
described.

The organization of this chapter is much like the standard
organization of a journal article in experimental psychology
as described in the Publication Manual of the American
Psychological Association (American Psychological Associ-
ation, 2001a). Such articles have sections devoted to intro-
duction, method, results, and discussion. These sections are
designed to answer such questions as, What is the problem?
What apparatus is required? What animals should be used?
How should the independent and dependent variables be
measured? What procedure should be used? What experi-
mental design should be used? How should the data be ana-
lyzed? and How should the results be explained? Because
computers are being used in all stages of the research process,
a separate section is devoted to the use of computers in
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research in animal learning. The final section is a case study
of an experiment that illustrates how each of these questions
arose and how they were answered.

WHAT IS THE PROBLEM?

In any experimental study of animal learning it is important
to specify the problem under study. In some cases the prob-
lem may be simply to describe the typical behavior of
animals under well-specified conditions. In other cases the
problem may be to describe the capacity of animals to solve
well-specified problems. The early attention toward what was
called animal intelligence was an interest in the capacity of
animals (Thorndike, 1898; Washburn, 1936).

The purpose of some studies of animal learning is to
develop an apparatus, a procedure, or some measures of
behavior that provide a good basis for further experiments.
Examples of these include the development and use of the
radial arm maze for the study of working memory (Olton &
Samuelson, 1976) and the development and use of the operant
box for the study of contingencies of reinforcement (Skinner,
1938). The development of such reference experiments, which
involve a combination of apparatus, procedure, and measures,
can have an enormous influence on subsequent research. Even
the development of a procedure such as matching to sample
(Blough, 1960) or the development of a behavioral measure
such as the time at which the response rate changes from a low
to high (Schneider, 1969) can have a substantial influence on
subsequent research. The goal is to demonstrate that the new
apparatus, procedure, or measure leads to more reliable or
valid results than did previous methods.

In some cases the problem is simply to determine if two
variables, neither of which is controlled by the experimenter,
are related. In such correlational research the causes of the
behavior are unclear: Variable a may have affected variable b,
variable b may have affected variable a, or some unmeasured
variable may have affected both variables a and b. Many
studies of the relationship between brain processes are corre-
lational studies. For example, an investigator may record the
times of occurrence of spikes of a single neuron and the times
of occurrence of a behavioral response. Such a study will re-
veal the presence of a relationship between the two dependent
variables, but not a causal basis for the relationship.

Many studies are designed to identify the causes of be-
havior. The problem is to determine whether a particular in-
dependent variable controlled by the experimenter is related
to a behavioral dependent variable. To identify the specific
features of the independent variable that were responsible,
considerations of experimental design are particularly

important. In addition to determining whether a particular
variable affects a particular behavior, a more quantitative
problem is to specify the functional relationship between an
independent variable x and a behavioral dependent variable y.
The function may be linear, exponential, or any well-
specified form.

Finally, the problem of many studies is to test a particular
theory. This requires that the theory be precisely described
and that the observed variables be related precisely to
the concepts of the theory. Then the results of the experi-
ments can be compared to the predictions of the theory. In
some cases the theory may specify only that one treatment
will have a greater effect than another, but in others quantita-
tive results of an experiment can be compared to quantitative
predictions of the theory. This should include both standard
goodness-of-fit measures and considerations of model com-
plexity. An overly complex model may fit a particular set of
data but not generalize well to other data (Myung, 2000).

WHAT APPARATUS IS REQUIRED?

Field studies of animal learning provide information about
what animals do and what they are capable of learning. They
also lead to hypotheses regarding the variables responsible
for learning and performance. Tests of these hypotheses can
be carried out with field experimentation (Tinbergen, 1953).
In field experimentation the investigator manipulates some
independent variable in the animal’s natural environment;
in laboratory experimentation the investigator manipulates
some independent variable in an artificial environment. The
distinction between a natural and artificial environment is
sometimes blurred by the use of artificial environments that
have similarities to the natural environment. In some cases
these laboratory approximations to naturalistic environments
may be close approximations to the naturalistic environment;
in other cases researchers may use standard laboratory appa-
ratus. For example, the study of foraging behavior can be
conducted with field observation, field experimentation, or
laboratory experimentation. 

The two main types of laboratory apparatus for the study
of animal learning are mazes and boxes. A maze is an appa-
ratus in which the dependent variable is the location of the
animal; a box is an apparatus in which the dependent variable
is a response of the animal (i.e., what the animal does in a
location, not where it is).

Mazes

The first experimental study of learning of the white rat was
conducted in a wooden replica of a maze patterned after the
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hedge maze in the Hampton Court Palace in England (Small,
1900). This was a complex maze with many blocked paths,
but with one sequence of correct turns the rat could reach the
center of the maze, which contained food. Measures of per-
formance included the time required to reach the food and the
number of erroneous paths taken. With successive experi-
ences in the maze, the typical time to reach the goal and the
number of errors decrease. Subsequently, investigators used
much simpler mazes. A good history of the first 50 years of
the use of mazes is provided by Munn (1950). 

The simplest of all mazes is the straight runway, often
about 4 ft long, with food at the end of the runway. The mea-
sures of performance normally recorded are the response
latency (time to leave the starting chamber) and the running
speed (the time from leaving the starting chamber to reaching
the food, divided by the length of the runway). With succes-
sive experience in the runway, the typical latency decreases,
and the typical running speed decreases.

For the study of choice the simplest type of maze is the
T-maze. It consists of a straight runway and two arms to form
the shape of a T with food at the end of one of the arms. The
measures of performance normally recorded are latency, run-
ning speed, and particularly choice of the left or right arm.
The food may always be at the same arm, or it may be at the
arm that is identified by a particular stimulus that is assigned
to the arm on each trial at random.

For the study of working memory, the radial arm maze is
frequently used (Olton & Samuelson, 1976). The radial arm
maze consists of eight or more arms radiating from a central
point located in a room with distinctive cues. A standard pro-
cedure is to place food at the end of each of the arms and
record the pattern of responding to the various arms. An ani-
mal with a perfect working memory of which arms had been
visited would enter only those arms that have not yet been
visited (i.e., the arms that still have food). This apparatus is
also used for the study of reference memory with a modifica-
tion of the procedure in which some of the arms never have
food. Animals readily learn to distinguish between arms that
are sometimes baited and those that are never baited (refer-
ence memory), and they seldom reenter arms that have
already been baited (working memory).

For the study of navigation, the Morris water maze is
frequently used (Morris, 1981). This is a large round tub of
water that has been made opaque and that contains a small,
slightly submerged platform that is located in a room with
distinctive cues. The animal is typically released from
random locations around the periphery of the tub, and it
learns to swim toward the location of the submerged plat-
form and stand on it. The behavior is normally monitored
by a video camera that can be analyzed by a computer

program that identifies the location of the animal as a func-
tion of time.

Although a great deal of research in animal learning has
used the maze, three problems are notable. First, in some
cases the measure of behavior is dependent on the judgment
of the experimenter—as, for example, when time is measured
by a stopwatch or when entry into an arm is based on a deci-
sion by the investigator. This is a source of random error, and
it can lead to a biased measure of the animal’s behavior if
the experimenter has beliefs about what the animal should
be doing in a particular situation. Such measures should be
done blindly by an experimenter who cannot identify the pre-
vious treatment of the animal and who has no hypothesis
about what the animal should be doing. Some mazes have
been developed that provide a way for automatic recording of
behavior. Second, in most cases the animal must be fre-
quently handled during a session. Because it is not possible
to standardize such handling completely, it is a source of ran-
dom error, and if the experimenter has beliefs about what
the animal should be doing in a particular situation, it may
lead to biased handling of animals in the different groups.
Some mazes have been developed in which the animal does
not need to be handled between trials. Third, the stimuli
are difficult to describe in physical terms, and even more dif-
ficult to describe in terms of the proximal cues received by
the animal.

Boxes

About the same time that the first maze studies were being
conducted, research on animal learning was being conducted
in problem boxes (Thorndike, 1898). A problem box is an en-
closure with various features that can be manipulated. One of
the manipulations or a combination of several manipulations
opens the box, permitting the animal to leave the box and get
some food. Thorndike used many different problem boxes
with cats, dogs, and chickens. The primary objective measure
of performance was the latency to escape from the box.

The operant box developed by Skinner (1938) for rats is a
simplified version of a problem box that eliminates the need
to handle the animals after food reward. The box contained a
lever, a food cup, and a light. Food was delivered according
to some schedule of reinforcement based on time intervals
and numbers of responses. Four standard schedules of rein-
forcement are fixed interval, fixed ratio, variable interval, and
variable ratio. In a fixed interval schedule of reinforcement
the first response after a particular interval of time (such as
1 min) is followed by food; in a fixed-ratio schedule of rein-
forcement a particular number of responses (such as 20 re-
sponses) is followed by food. The variable interval and ratio
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schedules are specified by a distribution of time intervals or
number of responses that are characterized by the mean (such
as a 1-min variable interval schedule or a variable ratio
schedule of 20 responses). Many other schedules of rein-
forcement have also been used, but all of them are based on
contingencies of reinforcement based on times from well-
specified events and number of responses. More than a single
lever is used for choice experiments, and many experi-
ments require multiple stimuli or graded control of the di-
mensions of the stimulus. The basic data consist of the time
of occurrence of each stimulus, response, and food delivery.
These times are measured automatically when a mechanical
or electronic switch is closed with force, contact, breaking of
a photobeam, or some other means.

The operant box typically used for pigeons is similar in
concept to the one used for rats but differs in many details.
The typical response is a peck at a lighted disk, rather than
the pressing of a lever. In addition, the box is larger, and the
food typically is delivered for a fixed time (such as 3 s) rather
than a fixed amount (such as 45 mg). Other adjustments in the
details of the box must be made for other species, such as the
mouse.

In some animal learning experiments, electric shock has
been used instead of food. The shock presentation may be
contingent on a response (punishment) or on a stimulus
(conditioned emotional response); shock termination may be
contingent on a response (escape); or the shock may be omit-
ted contingent on a response (active avoidance). 

Basis for Choice of Apparatus

When it is adequate for the problem under investigation,
standard equipment should normally be used. Typically, such
equipment has gone through a long process of modification
guided by the performance by animals. For example, the
modern lever box for rats contains a lever of a particular size
located in a particular place that requires a particular force to
activate. If the lever were located higher on the wall or if it
required more force to activate, the performance of the rat
would undoubtedly be affected. Sources of fast movement
(such as rapid insertion and retraction of a lever) or loud
noises (such as solenoid activation of a feeder) have been
eliminated. With current standard equipment, there is no need
to shape the rat to press the lever—a well-handled rat on a re-
stricted diet that does not encounter frightening events such
as loud noises, fast movements, or unusual handlers, treat-
ments, or testing times will quickly learn to press the lever to
secure 45-mg pellets of food. The use of standard equipment
also facilitates attempts by other researchers to replicate the
experimental results. Of course, there are problems for which
the investigator must develop a new apparatus, but early

versions of a new apparatus are likely to contain some diffi-
culties for the animals. 

An apparatus that has typically been used for a particular
problem should generally be favored over some alternative
apparatus. This increases the comparability of results of mul-
tiple experiments within a given laboratory and between
laboratories. Of course, when sufficient understanding of a
phenomenon has been obtained with one type of apparatus, it
is often desirable to test the generality of the conclusions by
some investigation of the effect of similar treatments in a
very different apparatus.

Another consideration in the selection of testing apparatus
is the degree of the experimenter’s control of stimuli. This in-
cludes not only the control of the physical stimulus at the
source (such as the speaker or the light bulb) but also the
proximal stimulus at the location of the animal. It is generally
easier to control the proximal stimulus in a box than in a
maze, so it is better to use a box than a maze in those cases in
which either can be used.

An apparatus that requires little or no handling of the ani-
mals during the training task is highly desirable. Although in-
vestigators should make efforts to handle each animal in the
same way every day, this cannot be done precisely, and the
degree of variability cannot be properly measured. Typically,
animals trained in mazes require handling between succes-
sive trials, but animals trained in boxes require handling only
at the beginning and end of a long session. Thus, boxes are
generally better than mazes in cases in which either can be
used.

Finally, there are practical considerations in the choice
of apparatus, such as the cost and availability of the equip-
ment and the investigator’s experience with the apparatus and
with analysis of data obtained from it.

WHAT ANIMALS SHOULD BE USED?

Many investigators do research primarily or exclusively with
a single species of animals. This is often a good strategy be-
cause it is important to know the animals well. It enables the
investigator to recognize conditions that might make the ani-
mal frightened or angry, to appreciate the animal’s motiva-
tional state, and to identify health problems. With extensive
experience with a particular species an investigator can
develop an understanding of which tasks should be relatively
easy or difficult for the animal to learn.

Studies of animal learning have been conducted with
many species of mammals, birds, reptiles, amphibians, and
invertebrates. Most of the studies have been with mammals,
and the most frequently used species has been the rat. A
search of the PsychINFO database identifies thousands of
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studies of learning in the rat—many more than other mam-
malian species. The laboratory rat has been bred to be well
adapted for laboratory environments. With regular handling
it is docile, and in a relatively constant environment it is un-
afraid. Rats are easily trained to make particular responses, to
discriminate among stimuli, and to learn contingencies of re-
inforcement. They have been extensively used both for both
behavioral and for neuroscience research. Many other species
of mammals have also been used, including nonhuman pri-
mates, mice, rabbits, dogs, and cats. The choice of species
depends in part on the problem under investigation.

For the goal of extending knowledge of learning mecha-
nisms of animals to humans, nonhuman primates are pre-
sumed to be most relevant. Although most of this research
has been conducted with monkeys, such as the rhesus mon-
key, a few laboratories have the ability to conduct learning
research with gorillas, orangutans, and, particularly, chim-
panzees. The goal of such research often is to develop an
animal model of human behavior.

For the goal of understanding genetic mechanisms of be-
havior, the mouse has been the mammal of choice. Recently,
there has been a great increase in understanding the genetics
of the mouse, so more investigators have been attempting to
study the relationship of genetic manipulations to learning
mechanisms. Progress in this field has been impeded by the
limited understanding of the effects of various treatments on
the behavior of the mouse.

For the understanding of classical conditioning of a dis-
crete response (such as nictitating membrane response of the
eye, or the eyelid response), the rabbit has been found to be
an excellent animal because of its ability to be relatively
motionless under restraint. For animal learning experiments
with visual stimuli, the pigeon has been used extensively.
Many other species of birds have also been used, typically
for comparative purposes. Reptiles and amphibians have
been much less frequently used, primarily because of the
limited number of behavioral learning procedures that
are available.

Invertebrates have been used in animal learning experi-
ments for various purposes. In some cases the genetics is
particularly well understood (e.g., drosophila); in other
cases the neural mechanisms are particular well understood
(e.g., aplysia). In some cases, the results of conditioning
experiments with an invertebrate (e.g., honey bee) are
remarkably similar to the results of similar experiments
with mammals (e.g., rat). Such findings provide consider-
able support for the existence of general laws of learning
(Bitterman, 2000).

For the purposes of comparison among species it is some-
times desirable for an investigator to conduct research with
multiple species of animals. This avoids a concern that

differences in the training conditions in different laboratories,
rather than species differences, were responsible for the dif-
ference in the results. One approach is to sample a wide range
of species informally. When this is done, acquiring similar
results from the different species indicates that the phenome-
non has wide generality. Another approach is to identify
species that are similar genetically but that typically live in
different ecological niches. This provides evidence for the
relationship between ecology and behavior. Comparative
studies are difficult to interpret because of the concern that
the impact of the conditions of training were not identical.
For example, it is uncertain how to equate the motivational
level of different species.

HOW SHOULD THE INDEPENDENT AND
DEPENDENT VARIABLES BE MEASURED?

Objective recording of data requires that the behavior activate
a transducer with an output that can be stored as a number. A
mechanical switch may be used to record a rat’s pressing of a
lever or a pigeon’s pecking at a lighted disk; a photocell circuit
may be used to record the location of an animal; and other
transducers may be used to record pressures or velocities.
Objective recording reduces the possibility that the investiga-
tor’s expectations can affect the measured behavior. The
behavior is usually easy to record, and because it is originally
in numbers, it is easy to analyze. The major concern about ob-
jective recording is that it does not capture the richness of the
behavior that can be observed, although it is usually possible
to develop an objective way to measure well-defined behavior.

As an alternative to such objective recording of data, an
investigator may use subjective recording of behavior that is
observed directly or observed on videotape. One of the ad-
vantages of videotaped recordings is that the same behavior
can be scored by multiple observers, which permits correla-
tions of the scores to be used as a measure of reliability. The
major concerns about subjective recording are that the analy-
sis of the data is time-consuming, that some of the measures
may not be highly reliable, and that the measurements may
reflect, in part, the expectations of the individuals who are
scoring the behavior.

Typically, an objective measure of behavior provides in-
formation about three questions: What happened? Where did
it happen? and When did it happen? The type of response
may be identified by which transducer was activated (e.g., the
mechanical switch of the left lever response). The location of
the response may also be identified by which transducer was
activated (e.g., the photocell circuit at the food cup). The time
of the response may be measured by a clock that runs during
the session. The resolution of the clock that is used depends
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on the behavior being measured. For most behavioral pur-
poses there is no need to have resolution greater than 1 ms,
and it may be satisfactory to record data to the nearest 10 ms
or 100 ms. Thus, a single measure of behavior may consist of
a pair of numbers: one representing the behavior (the type of
response and its location) and the other representing the time
of the behavior. The procedure can also be represented by a
pair of numbers: one representing the stimulus (e.g., onset of
a light, termination of a light, and delivery of food) and the
other representing the time of the event. Thus, what happened
to the animal in a session and what the animal did can be rep-
resented in this time-event format as a list of times and the
events that occurred at each of these times.

The most detailed data that are recorded may be called the
raw data. It is now both feasible and desirable to save all of
the raw data. It is feasible because of the low cost of storage
of information in computer-readable form. Normally the data
are initially stored in computer memory and then transferred
to some mass storage device (such as magnetic disk or CD-
ROM). Storing the raw data is desirable because it makes
it possible to perform secondary data analyses that would
not be possible if only the summarized data were avail-
able. Prior to the general availability of personal computers,
the raw data consisted of what would now be considered
summary statistics. For example, the number of responses
of an animal during a session in the presence of a stimulus
and in the absence of a stimulus might be the most detailed
data that were recorded. Now it is feasible to record the time
of occurrence of each response, stimulus onset, and stimulus
termination. From these raw data it is possible to calculate the
number of responses of the animal during a session in the
presence of a stimulus and in the absence of a stimulus, and it
is also possible to calculate many other measures of behavior
such as the time from stimulus onset to the next response.
The task of the data analyst is to select and use appropriate
measures of performance based on the raw data.

Measures of learned behavior are based on time, number,
and magnitude. For example, a dependent variable might be
the latency to respond at the onset of a stimulus (a time
measure), the number of responses during the presence of a
stimulus (a number measure), or the extent of closure of the
nictitating membrane (a magnitude measure). Other mea-
sures involve a combination, such as response rate (a ratio of
number to time). Any of these measures can be expressed in
absolute or relative units.

Transformations

A transformation of a measure of learned behavior involves a
mathematical operation on the raw data. For example, an
investigator may record the times of occurrence of response,

calculate the difference between the times of successive
responses (interresponse times), calculate the reciprocal of
the interresponse times (response speeds), and use the re-
sponse speeds for further analysis. There are various reasons
for transforming a measure. In some cases the distribution of
the transformed data may be simpler than the distribution
of the raw data. For example, it may be more symmetrical, or
the ratio of the standard deviation to the mean (the coefficient
of variation) may be more constant in the transformed data
than in the raw data. In some cases a theory may make sim-
pler predictions about one dependent variable than about
another. Another reason for transforming a measure is to use
a dependent variable that is typically used by others in order
to permit direct comparison of new results with previous
ones. Probably the most important reason for transforming
data is to obtain a dependent variable that accounts for a
higher percentage of the variance in the data. For example, a
discrimination ratio, such as rate of response in the presence
of a stimulus relative to the absence of a stimulus, often
accounts for treatment effects better than an absolute mea-
sure, such as rate of response in the presence of a stimulus
(Church, 1969).

Two types of transformations have been found to be particu-
larly useful. One of them is the expression of a dependent vari-
able as a relative, rather than absolute, value. The other is a
nonlinear but order-preserving transformation. Examples are
the logarithm, reciprocal, square root, and others in a ladder
of transformations (Tukey, 1977). Some investigators are reluc-
tant to use any transformations because of concern about dis-
torting the raw data. This concern is misguided because there is
no particular reason to believe that the easiest variable to mea-
sure is the most fundamental for understanding the learning
process. Of course, it is important to specify precisely the trans-
formations that are used because the conclusions that apply to a
particular dependent variable may not apply to a transformation
of the dependent variable. For example, a significant interaction
based on one dependent variable (such as time) may not be pre-
sent on a transformation of that variable (such as speed).

Summary Measures

A measure of behavior is usually conceptualized as contain-
ing a true value plus random error. The random error is
assumed to have a mean of zero and a symmetrical (usually
normal) distribution with some standard deviation. If one ex-
amines the original measure of behavior, the true value can
be lost in the random variability. To reduce this random vari-
ability, a measure of central tendency is used. The typical
measure is the mean or the median, but variants of these mea-
sures of central tendency are sometimes used. The median
provides a way to reduce the effects of outliers. The measure
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of central tendency is normally calculated first within ani-
mals and then between animals. This provides equal weight
for each animal, rather than each response, and it provides
multiple independent measures for inferential analyses.

Two main problems have been identified with the use of
measures of central tendency. One problem is inherent in
the calculation of any summary statistic: There is some loss of
information. For example, averaging information across
several animals eliminates any individual differences in per-
formance. Thus, the analyst must decide which factors to ex-
amine and clearly specify which factors are being ignored.

Another problem is more subtle, and more serious: The
mean function may not represent the function of any of
the individuals (Bakan, 1954; Estes, 1956; Sidman, 1953).
The standard example is the following: Suppose that learning
is characterized by an abrupt acquisition of a response, but
the number of exposures to the situation required for acquisi-
tion is a random variable. If one calculates the mean of a large
number of such step functions, with some variability in the
number of exposures before the step, one obtains a gradually
rising function that is not characteristic of the shape of any
individual function. The gradually rising function is some-
times assumed to characterize the shape of the individual
functions (with random error reduced), but this is an error.
The error becomes serious when theories are designed to ac-
count for such behavior in individual animals; obviously, in
this case one would need theories that produce step functions
in individual animals.

This problem does not mean that one cannot average
performance across animals. One solution is to average with
respect to some criterion, such as the occasion on which
the animal reaches a criterion of learning. Such a backward
learning curve, in the step-function example given, would
have a low probability of responding prior to the criterion
and a high probability of responding after the criterion. Thus,
an average function with respect to a criterion may have
the same shape as the individual functions.

The same problem with averaging performance across
animals applies to averaging performance within an animal.
For example, in a fixed interval schedule of reinforcement
the first response after a particular time (such as 60 s) is
followed by food. Animals often respond at a low rate for
about two thirds of the interval and then switch to a fast
response rate (Schneider, 1969). If one calculates the mean of
a large number of such step functions, with some variability
in the number of exposures before the step, one obtains a
gradually rising function that is not characteristic of the shape
of any individual function. The gradually rising function,
often called a fixed-interval scallop, is sometimes assumed
to characterize the shape of the individual functions (with
random error reduced), but this is an error. The error becomes

serious when theories are designed to account for such
behavior on individual intervals; obviously, in this case one
would need theories that produce step functions on individual
intervals.

In addition to measures of central tendency, it is also
important to report measures of variability. This includes
both within-animal variability providing evidence regarding
the stability of the measure and between-animal variability
providing evidence regarding individual differences. If
means are used as a measure of central tendency, it is most
consistent to use standard deviations or median absolute de-
viations as a measure of variability; if medians are used as a
measure of central tendency, it is most consistent to use an
interquartile-range measure of variability. Error bars on fig-
ures provide a visualization of the amount of variability. They
may be either standard deviations or interquartile ranges to
represent the variability of the observations or the standard
errors to represent the variability of the estimate of the mean. 

WHAT PROCEDURES SHOULD BE USED?

A procedure should be chosen that is appropriate for the
problem. In some cases the judicious selection of a critical
procedure can be particularly revealing; in other cases a large
number of alternative procedures can be revealing. Ideally, a
theory would be able to make explicit predictions of perfor-
mance for any procedure within a well-specified domain.

Simple procedures may be defined in terms of the number
of stimuli required (0, 1, or more than 1) and the number of
response contingencies (0, 1, or more than 1). The number of
stimuli required is self-explanatory. A response contingency
refers to the relationship between a response and a reward. In
classical conditioning the reward is delivered independently
of a response; in instrumental conditioning the reward is
delivered contingent on a response; in choice experiments
there may be two or more response contingencies. The sim-
plest of all procedures is one in which there are no stimuli or
response contingencies. For such a procedure food is
delivered at fixed times, random times, or some other distrib-
ution. This procedure is known as context conditioning,
magazine training, and temporal conditioning. Many of the
other simple procedures also have multiple names and
separate histories. Other procedures may involve the proba-
bilistic presentation of events (as in partial reinforcement),
presentation of events in a repeating pattern, and concurrent
presentation of events.

Many procedures involve the variation of an interval of
time between two events, such as the interval between the
conditioned and unconditioned stimulus, between the stimu-
lus and the response (in the study of working memory), and
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between the response and the reward (in the study of delay of
reward). Other procedures involve manipulations of the stim-
ulus conditions (in the study of stimulus control of behavior).
These procedures often use one of the psychophysical meth-
ods that were originally developed for the study of sensory
processes.

WHAT EXPERIMENTAL DESIGN
SHOULD BE USED?

The planning of an experimental design involves many
decisions. These include decisions about whether to use an
independent group design, a repeated measure design, or
some combination of the two. If all animals are treated
alike, it is possible to describe what was done and what was
observed, but there is no basis for identifying causal vari-
ables. For the identification of causation it is necessary to
use one or more control groups, so that comparisons can be
made between the effects of different treatment compar-
isons. A simple untreated control condition can be used to
identify that something about the treatment produced the
observed differences between an experimental and control
condition, but additional control groups are essential to
identify the aspects of the treatment that were necessary and
sufficient for the observed effects. The art of experimental
design is to choose the control conditions that provide infor-
mation about essential features in an efficient way.

Independent Group Designs

Many standard experimental designs are used in the study of
animal learning (see chapter by Wilcox in this volume). To
avoid carryover effects of previous treatments, many investi-
gators typically use independent group designs. There are
three ways to deal with irrelevant variables: They may be
held constant, counterbalanced, or randomized. For example,
if the important independent variable in a particular study is
the spacing of the trials, how should the investigator deal with
possible effects of the time during the day at which the testing
occurs? One possibility is to hold the time of day constant by
testing all of the animals in both conditions at the same time;
another is to counterbalance the time of day by testing half
the animals in each condition in a morning session and half
the animals in each condition in an afternoon session; and
another is to assign the animals to the morning and afternoon
sessions randomly. Typically, investigators hold constant as
many variables as possible, although it is recognized that this
may limit the generality of the conclusions to the specific
conditions used in the experiment. Variables that are likely to

have an effect on performance typically will be counterbal-
anced. All other variables will be randomized.

To randomize all other variables, conditions are randomly
assigned to animals, often with the restriction that an equal
number are in each of the conditions. A method of doing this
is to assign a random number to each animal and put half of
the animals with the lowest random numbers in one group
and those with the highest random numbers in the other
group. This provides a way of randomizing all other factors,
both those that can be readily measured and those that cannot.
Haphazard assignment of animals to groups should never be
done. It is unlikely that a person without access to a random-
ization device can assign animals to groups in a manner such
that each animal has an equal and independent chance of
being in a particular group.

Independent group designs for the study of animal learn-
ing often involve multiple phases. This is essential for making
the important distinction between learning and performance.
The conceptual distinction is that performance refers to the
observed behavior but that learning is a theoretical variable
referring to what the animal knows rather than what the ani-
mal does. For example, rats may be trained to run to the goal
box of a straight alley that contains food. If the animals run
more rapidly with a particular drug, the drug’s effect on per-
formance can be described, but its effect on learning cannot.
To make this distinction, a second phase may be added with-
out food in which half the rats in each training group receive
the drug and half do not (see Table 11.1).

If mean testing performance depends on the conditions of
testing, but not of training (i.e., a difference between the
columns in the mean running speed, a + c vs. b + d), the
drug has influenced performance but not learning. If, on
the other hand, the mean testing performance depends on the
conditions of training, but not of testing (i.e., a difference
between the rows in the mean running speed, a + b vs.
c + d), the drug has influenced learning. This design was
used by Spence (1956) to identify factors affecting learning.
Of course, other patterns of results can occur. For example,
the performance may depend on the similarity of the condi-
tions of testing to the conditions of training (i.e., a difference
between the positive and negative diagonals of the table in

TABLE 11.1 A Two-Phase Design to Identify Factors Affecting
Learning and Performance: Mean Running Speed During Testing
as a Function of Drug Conditions During Training and Testing

Testing

Training Drug No Drug

Drug a b
No drug c d
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the mean running speed, a + d vs. b + c). This is known as
state-dependent learning. In addition to distinguishing be-
tween learning and performance, transfer designs with multi-
ple phases have been important for the assessment of what
was learned in the first phase (Rescorla, 1988). 

Repeated Measures Designs

To reduce the effect of individual differences, many investi-
gators typically use repeated measures designs. In a repeated
measures design, each of the animals receives each of the
conditions. Because of potential carryover effects, different
animals receive the conditions in different orders. They may
be counterbalanced or randomized. Other potential influenc-
ing variables may also be counterbalanced or randomized. In
some cases a mixed design may be used, which is a combina-
tion of an independent groups design and a repeated mea-
sures design.

Single-Subject Designs

Some investigators use what is sometimes called single-
subject design (Sidman, 1960). This requires that all of the
treatments be given to a single animal. Typically, such re-
search is replicated on two or three other animals to deter-
mine the generality of the conclusions. The assumption is
that most animals produce similar results, so there is no need
for larger samples. But there is also a concern about combin-
ing the results of multiple animals because the performance
of each of the animals is different. This approach is particu-
larly advocated by the Journal of the Experimental Analysis
of Behavior. Although such experiments could be conducted
with random ordering of treatments, fixed criteria for each
phase, and other features of standard experimental designs,
the approach actively encourages the decisions of investiga-
tors based on the behavior of the animals. This approach is
difficult to distinguish from pilot studies that are often con-
ducted in new situations. In a pilot study an investigator may
use a small number of animals and a large number of treat-
ments; the purpose is to develop hypotheses, not to produce
convincing and interpretable data.

Problems Common to All Experimental Designs

There are some common problems for all experimental de-
signs. These include the rationale for determining the number
of animals per group, the number of trials in a phase, and the
ways in which errors are handled.

The number of animals in an experiment is usually based
on several considerations. In the independent group designs,

investigators almost always test an equal number of animals
in each condition, and in each combination of conditions.
Although analyses can be conducted of data with unequal
numbers of animals in each cell, or even missing cells, they
require some additional assumptions; in rare cases an investi-
gator may choose to use a larger number of animals in a con-
dition likely to produce more variable data. If only a single
animal is used in each combination of conditions, there can
be no separation between interaction and random error. If two
or more animals are used in each combination of conditions,
a measure of variability within cells can be calculated.

Ideally, investigators would determine the number of ani-
mals to be tested in each condition based on an analysis of
power. To do this the investigator makes an estimate of the
within-group variability to be expected and an estimate of the
expected size of the effect. These estimates are typically
based on previous research. Alternatively, the investigator
may decide on the size of the effect that is worth identifying.
With this information and some assumptions about the form
of the error distribution, the investigator can rationally decide
on the number of animals per group. In fact, most investiga-
tors do not do a power analysis (or do not report doing so)
in deciding on the number of animals per group. Many un-
doubtedly use the number of animals typically used in simi-
lar experiments. If there are many such similar experiments,
this approach may be satisfactory because previous investi-
gators will have found by trial and error a number of animals
per condition that is sufficient to identify phenomena (i.e., a
low Type II error rate), but not many more than necessary
(i.e., a number of animals that produces an exceedingly small
p value).

The number of animals in repeated-measures designs is
based on similar considerations. In the single-subject designs,
however, the decisions are based almost entirely on conven-
tion. The term single subject refers to the fact that separate
analyses are done of each animal, not that the experiment con-
sists of only one animal. Because of concern that the behavior
of a single animal may not be representative of others, it is
typical to use three or five animals. Ideally, all of them will
show similar patterns of results. In cases in which the perfor-
mances of the animals differ, the investigator may comment
on the range of possible behaviors of different animals, and
because an odd number of animals are typically tested, the in-
vestigator may also comment on the typical pattern.

In experiments on animal learning, the investigator typi-
cally chooses a number of trials of training sufficient to
produce relatively complete learning. This is referred to as
asymptotic, steady-state, or stable behavior. This number
may be chosen before the beginning of the experiment based
on the number used in similar experiments, or it may be
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based on some formal criterion of stability. Either of these
bases is better than the informal ones involved in optional
stopping because the latter allow experimenter biases to
affect the outcomes. In some experiments the investigator
chooses a number of trials that produces incomplete learning.
For example, the blocking result is most clearly observed
with an intermediate number of presentations of paired rein-
forced stimuli. The numbers in previous similar experiments
are often used because they are assumed to be close to the
optimal.

The method section of an article on animal learning
describes the procedure that was used, but it seldom de-
scribes minor apparatus or human errors in the procedure that
are difficult to avoid. Of course, good laboratory practices
involve preventive maintenance and daily checking of the
apparatus, as well as modification of faulty equipment to
reduce errors. Good laboratory practice also involves the
recording of all known human errors that occur, such as a
dropped animal, a change in the time of testing or feeding,
and the recording of unusual events, such as construction
noise or injury or sickness of an animal. If these are rare, the
reported results will not be affected in any meaningful way
by reasonable alternative data analysis decisions. 

HOW SHOULD THE DATA BE ANALYZED?

The problems of data analysis in animal learning research
are similar to those in other psychological research. In some
cases investigators report the central tendency of a single
standard dependent variable, usually with a measure of the
variability of the variable, and then proceed to test the signif-
icance of the difference between conditions. Among the
dependent variables that may be used are absolute and rela-
tive measures of time, number, or magnitude, and trials to
criterion. These studies usually involve a large number of
carefully chosen control groups so that it is possible to iden-
tify the controlling variables for the observed effects.

Animal learning experiments involve changes in a depen-
dent variable as a function of time or trial. Thus, some inves-
tigators describe the learning curve, which is the functional
relationship between a behavioral dependent measure and
time or trial. Time-series analysis is particularly important for
such data (see chapter by Lanza, Flaherty, & Collins in this
volume).

Some investigators make extensive use of the techniques
of exploratory data analysis for the discovery of effects and
for the graphical presentation of phenomena (see chapter by
Kirk in this volume). The raw data from a session of learning
by an animal may include a large number of events that occur

at unique times. For example, a record may be kept of the
onset and termination of a light, a tone, a lever response, a
head entry into the food cup, a lick on the water bottle, and
others. The times can be recorded precisely in milliseconds
since the beginning of the session. These data provide a rich
basis for exploratory data analysis, and if these data are avail-
able in archives on the Web, they may be used by others for
secondary data analysis.

The major role of inferential data analysis in research on
animal learning is to provide a consistent standard for making
conclusions based on results. It also provides a succinct re-
port of the conclusions regarding significance, confidence in-
tervals, and magnitudes of results. Without the conventions
of inferential statistics, different investigators might reach
different conclusions from the same results. The key intuition
is that a result is significant if it is consistently observed.

HOW SHOULD THE RESULTS BE EXPLAINED?

There are several ways to explain animal behavior. They
include a description of the controlling variables, statements
of principles, and process models based on psychological,
biological, or mathematical variables. The results are facts
that have been observed; the explanations are alternative
ways to understand these results. A good explanation will
provide a succinct and accurate description of a wide range
of results.

Operational Definitions of Cognitive Factors

An unsatisfactory way to attempt to explain behavior is to
identify some particular behavior as an operational defini-
tion of a cognitive process and then use this as an explana-
tion. Various measures have been proposed for working
memory, attention, fear, and other psychological processes.
The psychological terms then can be used instead of the be-
havioral measures. This provides an alternative term for the
behavior that is short and memorable and which may or may
not serve to direct the investigator’s attention to relevant
psychological processes. The term, however, remains equiv-
alent to the particular behavior and is not an explanation of
the behavior.

Functional Relationships Between Input and
Output Variables

In animal learning experiments, the input variable is some
treatment condition, and the output variable is some measure
of behavior. Usually, both variables can be expressed on a
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quantitative scale so that it is possible to describe a functional
relationship between the input and the output. This type of
explanation is not clearly distinguished from a report of re-
sults. Typically, a functional explanation will be more general
(such that it applies to several variables), more analytical
(such that it will suggest causal variables), and more quanti-
tative (such that it will provide a simple mathematical
function).

Principles of Behavior

In an explanation of behavior, it is important to distinguish
between the procedure, the results, and the explanation.
This is made more difficult when the same word is used to
describe what is done (the procedure), what is observed
(the results), and the explanation of the results (the explana-
tion). Blocking and subjective shortening are examples of
terms that have been used for a procedure, a result, and an
explanation.

The explanation of behavior by principle is based on de-
ductive logic: If A then B, X is an example of A, then B. For
example, A = a general blocking procedure, B = a blocking
result, and X is a particular blocking procedure. The goal is to
identify principles of behavior of the form “If A then B” that
apply to many apparently different examples (X). The princi-
ples of classical conditioning are explanations of this type.

Process Models

A process model involves input, intervening, and output vari-
ables. As in the case of functional explanations, the input
variable is some treatment condition, and the output variable
is some measure of behavior. The new term is intervening
variable, and it may be psychological, biological, or mathe-
matical. In a process model, the relationship between an input
variable and at least one intervening variable must be speci-
fied, and the relationship between at least one intervening
variable and the output must also be specified. In addition,
there may be multiple intervening variables with relation-
ships that need to be specified.

Some process models involve psychological intervening
variables of perception, memory, attention, and decision.
Scalar timing theory provides an example of such a psy-
chological information-processing model. Other processes
models involve biological intervening variables related to
electrical and chemical activity in different parts of the brain.
These models involve consideration of electrophysiology,
neurochemistry, and anatomy. Finally, the intervening vari-
ables may be described in mathematical terms. They may be

stochastic models of learning based on probability theory
(Bush & Mosteller, 1955) or neural network learning models
based on linear algebra (Haykin, 1999). Of course, a process
model can be specified in psychological, biological, and
mathematical terms. This provides a way to relate the psy-
chology and biological bases of behavior and to specify them
in terms of mathematical functions.

THE USE OF COMPUTERS AT ALL STAGES
OF THE RESEARCH PROCESS

In the mid-twentieth century, computers were used in psy-
chological research primarily for data analysis. The few in-
vestigators of animal learning who used them transferred
their written records into a machine-readable form, such as
IBM cards with 10 rows and 80 columns of locations that
could be punched out. Other cards would be punched out
with the program, perhaps written in FORTRAN. Stacks of
such cards would be brought to a central computer center for
batch processing. The next day the investigator would be
given a report of the results that often indicated that a syntax
error had been made. This was superseded by time-shared
computers that permitted entries of data and programs from
remote entries from a Teletype machine, including paper tape
that could transmit data at a rate of about 10 bits per second.
The time-shared computers were convenient to access and
presented faster reports of errors that could be immediately
corrected, but they were still used almost exclusively for data
analysis.

A major change in the use of computers in psychological
research began in the mid-1960s, when a few investigators
began to use laboratory computers for multiple purposes. By
current standards, these computers were large, slow, unreli-
able, expensive, and limited. For example, the classic Link
computer had only 1,000 12-bit words of memory, and a
magnetic tape was its only permanent storage medium. The
revolutionary feature of these computers was that they could
be used for control of experiments and recording of results, as
well as for the analysis of data.

The modern personal computer is smaller, faster, more
reliable, and less expensive than previous ones. It is now
widely used by investigators in animal learning, and compe-
tence in the use of computers has become essential. Com-
puters are now used for nearly all stages of the research
process, including literature search, design of experiments,
implementation of the procedure, storage of results, analysis
of data, development of quantitative theories, comparison of
theory and data, preparation of manuscripts and graphs, and
dissemination of results (Church, 1993). As a result, many
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special-purpose devices that were used for each of these
stages have now become curiosities. These include such
items as books of tables and random numbers, india-ink
lettering sets, graph paper, calculators, counters, relays, and
typewriters. Others remain heavily used but are less essential,
such as file cabinets, telephones, and reference books.

Literature Search

As the primary literature in animal learning has grown, the
expectation that investigators of animal learning would be
scholars of this field has decreased. In fact, even the expecta-
tion that investigators in a specialized aspect of this field
(e.g., learned fear or choice) would be scholars in their more
specialized aspect has decreased. A thorough knowledge of
previous research, however, is a valuable asset. With only
printed versions of the Psychological Abstracts, the identi-
fication of relevant publications was a time-consuming
process. With the increasing availability of electronic access
to the published literature, better scholarship is feasible with-
out taking an enormous amount of time from other aspects of
the research process. This search of the literature is particu-
larly important in the planning stages of an experiment and in
the preparation of the discussion and introduction to the writ-
ten report.

Probably the most important journals specializing in stud-
ies of animal learning are (in alphabetical order) Animal
Learning and Behavior (Psychonomic Society), Behavioural
Processes (Elsevier), Journal of the Experimental Analysis of
Behavior (Society for the Experimental Analysis of Behav-
ior), Journal of Experimental Psychology: Animal Behavior
Processes (American Psychological Association), Learning
and Motivation (Academic Press), and Quarterly Journal
of Experimental Psychology B, Comparative and Physiolog-
ical Psychology (Experimental Psychology Society). Many
other journals, particularly in behavioral neuroscience, psy-
chopharmacology, and ethology, make substantial use of
behavioral methods for the study of animal learning.

The most complete source of information about articles in
animal learning is found in PsychINFO. This provides com-
plete information about the reference (author, title, source,
etc.) and an abstract. An outstanding feature of this database
is that it goes back to 1887. Search strategies may involve
getting the abstract for a particular reference, finding articles
published by a particular investigator during certain years, or
finding articles on a particular topic. Searches may be used to
find particular words in the title, author, journal, or abstract.
The Thesaurus of Psychological Index Terms (American
Psychological Association, 2001b) is helpful when searching
for key words. All of this can still be done with the printed
form of Psychological Abstracts, but it is generally much

easier to do with the electronic database. For searches in
biological areas of animal learning, MedLine (the electronic
form of Indicus Medicus) is an alternative source of informa-
tion. This information is also available from PubMed without
charge at http://www.PubMed.gov/.

One of the problems with typical search methods is that it
is much easier to search backward than forward. Thus, if one
has identified a particular article of value, one can identify
other articles of potential value in its list of references—but
how is it possible to know who subsequently referred to the
original article? One of the important features of Science
Citation Index is that one can enter a particular reference to
obtain a list of references that subsequently cited it. With this
feature one can determine what use, if any, was made of the
original article.

Another problem with typical search methods is that one
can obtain the abstract but not the content of the article.
Research libraries are purchasing more licenses for access to
the full-text version of articles controlled by commercial
publishers and scientific societies, but most people do not
have easy or inexpensive access to most of the published
literature in animal learning.

Research scholarship involves a clear understanding of
the accomplishments of others. Investigators who now have
electronic access to the references and abstracts of the pub-
lished literature, or, increasingly, even the complete text of
the articles, can easily develop a depth of understanding of
the literature that was previously possible only with exten-
sive effort. In the future, researchers may be able to retrieve
in electronic form data archives that include complex stimuli
used in an experiment, videos of performance of the animal,
interactive demonstrations of the procedure, and (of particu-
lar importance) the original raw data.

Design of Experiments

Randomization is an important feature of experimental de-
signs. In experiments in which different groups of animals re-
ceive different treatments, the animals should be assigned to
treatments at random. No firm conclusions can be made from
an experiment in which animals were assigned to treatments
haphazardly because it is impossible to rule out the possibil-
ity that the assignment was made in a way that biased the re-
sults. In experiments in which each animal receives all of the
treatments, the order of treatments for each animal should be
assigned at random. No firm conclusion can be made from an
experiment in which the order of treatments was selected
haphazardly because it is impossible to rule out the possibil-
ity that the order of the treatments (such as the characteristics
of the previous treatment) affected the performance on the
current treatment.
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Randomization is easy to implement. Before the extensive
use of computers, investigators often relied on physical
processes (e.g., flipping coins or pulling numbers out of a hat)
or random number tables that were constructed from physical
processes, such as the tables constructed by the Rand Corpo-
ration (1955), or the combination of many independent num-
bers from different databases. Now pseudorandom number
algorithms are used almost exclusively. These are iterative
equations that calculate a random real number between 0 and
1 based on the previous number. This number is represented
by a decimal with a fixed number of digits. Of course, the
number is based on a deterministic rather than a random
process. If the process is always begun with the same number
it will always produce the same sequence of numbers, and the
inevitable appearance of a second occurrence of a particular
finite set of digits means that the sequence of numbers will be
repeated forever. But by careful choice of the two constants
of the iterative equations of the pseudorandom number
algorithms, the random numbers generated by functions in
many statistical and mathematical software applications
produce sequences of numbers that pass most tests for being
random.

In a software application one simply specifies the need for
a random number (or many random numbers), and they are
supplied. A procedure for randomly assigning 10 animals to
two treatment conditions, each consisting of 5 animals, is as
follows: Generate 10 random numbers (associated with ani-
mals 1 through 10) and then assign the five animals with the
highest random numbers to the first treatment condition and
the others to the second treatment condition. This is easily
generalized for different numbers of animals or treatment
conditions. A procedure for randomly ordering five treat-
ments for a particular animal is to generate five random num-
bers (associated with the five treatment conditions), and
assign the five treatments in the order of the size of the ran-
dom number.

The goal of a random assignment of animals to groups is
to equalize the chance for each animal to be in each group
and to make the assignment of one animal to a group inde-
pendent of the assignment of any other animal. Not all as-
signment plans are successful in fulfilling this goal. Of
course, if an investigator does not adhere to the assignments
specified by the random process, but makes adjustments to
make the assignments “more random,” the process is not
random and no firm conclusions can be made from the results
of the experiment.

Implementation of Procedure

Computers are extensively used in the control of experi-
ments. For the presentation of visual stimuli to an animal,

the computer can activate a light, a slide projector, or an
external monitor; for the presentation of an auditory stimu-
lus, the computer can activate a hardware sound generator
or deliver auditory signals directly to a speaker. For the
delivery of food or water rewards, a specialized electro-
mechanical delivery device can be activated by the com-
puter interface. From the animal’s point of view, stimuli and
rewards are inputs.

In addition to the delivery of stimuli and reinforcers, the
implementation of a procedure often involves information re-
garding the responses of the animal. From the animal’s point
of view, responses are the output. Particular responses acti-
vate a switch or transducer, and this information can be sent
to the computer. Switches are often used for detecting lever
responses of rats, pecks on a lighted disk by a pigeon, and the
location of an animal on a floor that can be tilted, among
others. Photocell circuits are also extensively used for re-
sponse detection. In these circuits, the breaking of a beam of
light (often infrared) completes a circuit that is detected by
the computer. A single photocell circuit can be used to iden-
tify head entry into a food cup or other specific location; mul-
tiple photocell circuits can be used to identify the amount and
direction of activity of an animal. All of the input and output
devices should be checked prior to each session or at least on
a daily basis. The check can consist of a simple program that
permits the investigator to activate each of the input devices
and observe the programmed consequence on each of the
output devices.

To use a computer for control of an experiment, it is
necessary to have a computer, the input and output devices,
and the interface between the computer and the devices. A
standard personal computer, with an interface board, is
usually sufficient for most experiments. The interface usu-
ally consists of a specialized board (such as those made by
Computer Boards International) that may include digital
and analog input and output and an external timer. Software
can be written by the user in a general-purpose language
(such as C) or a general application program (such as
Matlab). Alternatively, a specific application program may
be used. For example, Med-PC provides a software pro-
gramming language that is well integrated with their hard-
ware input and output devices for operant conditioning
experiments.

A real-time programming environment should be evalu-
ated with respect to its simplicity, versatility, and perfor-
mance. Ideally, a program to implement a procedure would
be easy to write and easy for others to read. It should be pos-
sible to program any procedure and to modify system func-
tions as desired. Finally, the program should execute quickly
and never crash. Such performance features are critical for a
real-time program.
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Storage of Results

In many experiments, a complete record may consist of
the time of occurrence of specific responses. The format
of the record may be in terms of a list of paired numbers, one
for the time (usually in milliseconds) and the other for the
event (in terms of a numerical code or a word). The events
include both inputs, such on onset or termination of a partic-
ular stimulus, and outputs, such as the closing or opening of
a switch and the breaking of a particular photocell. Investiga-
tors often record only summary data (such as the number of
responses of one kind over some extended time period), but
these data do not make it possible for the investigator or
others to examine behavior of the animal in other ways.

To facilitate communication, the format should be one that
can be readily used by everyone, such as text instead of a pro-
prietary format that requires purchase of particular software.
In some cases, the use of open source software for data com-
pression may be justified, but space is not critical in most
applications. During the experiment, much of the data may
be stored in active memory. If the computer has insufficient
memory to hold all the information from an experimental
session, a double-buffer technique may be used to record the
data on a more permanent storage medium. With this method,
one buffer is still recording the data (in foreground) while the
other buffer is writing the data on the storage medium (in
background). At the end of an experimental session the data
should be copied, usually automatically, to a more permanent
medium. At present floppy disks, Zip drives, and CD-ROMs
are used extensively for data storage. In the future other
media will be used, and for archival purposes it is important
to maintain the data on a medium that can be readily
accessed.

Analysis of Data

Originally, computers were used primarily for the calculation
of standard inferential statistical tests. Modern statistical ap-
plication programs (such as SAS and SPSS) provide investi-
gators with a convenient way to conduct a large number of
such tests. The investigator, of course, is responsible for se-
lecting an appropriate test and for interpreting the output cor-
rectly. This is only one of several stages of analysis of data,
and it is seldom critical in the discovery of phenomena.

Exploratory data analysis is important for the early identi-
fication of problems, for the selection of measures that sepa-
rate systematic from random effects, and for the discovery of
relationships between variables. After each session, the in-
vestigator can rapidly examine major features of the data of
each animal with a program that permits examination of each

input and output employed. Substantial changes in the
behavior of a particular animal, or of many animals on a par-
ticular session, can alert the investigator to possible equip-
ment failures, procedural irregularities, or other factors that
could be interfering with the performance. Most of them
can be eliminated easily. At the end of the experiment, the
investigator should examine the performance on individual
trials before combining across trials, the performance on
individual sessions before combining across sessions, and the
performance of individual animals before combining across
animals. Summary measures across trials, sessions, and ani-
mals are necessary for succinct quantitative descriptions of
performance, but the exploratory data analysis on the original
data will guide the selection of summary measures that do
not distort the results of inspection of the individual data.
This examination of the original data can be greatly facili-
tated by computer-generated graphs that display measures
of the performance.

Many different programming languages and applications
can be effectively used for data analysis and permit ex-
ploratory data analysis. For smaller data sets, a spreadsheet
(such as Excel) may be satisfactory. For larger data sets, a
matrix-oriented program (such as MATLAB), a statistical
program (such as S+), or a general purpose language (such as
C) may be chosen. Most investigators will want to select a
single programming language or application for data analysis
and thoroughly learn how it can be effectively used for the
types of data being analyzed. The characteristics of a good
analysis program include speed of execution, readability of
programs, and adequacy of graphics.

The main purpose of inferential data analysis as a research
method in animal learning is to provide a common standard
for investigators to use in making conclusions about their ex-
perimental results. Without such a standard, different investi-
gators might reach different conclusions regarding the
presence or absence of an effect based on the same informa-
tion. Their conclusions would then reflect more about their
attitude toward their results than about the results themselves. 

Development of Theory

The development and evaluation of quantitative theories
of learning have been greatly facilitated by the use of
computers. Simulation of any well-specified quantitative
theory requires the following steps: (a) selection of a pro-
gramming language or an appropriate application program,
(b) specification of the quantitative model in the computer
program along with parameters to be estimated, (c) specifica-
tion of the procedure to be implemented in the computer
program, and (d) execution of the computer program that
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consists of modules for the theory and for the procedure. The
output of the simulation is normally compared to the records
of the behavior of the animals, and the parameters of the
model are adjusted to maximize some measure of goodness
of fit. Initially the analyst can adjust the parameters by trial
and error, but parameters should be estimated on the basis of
some automatic procedure. This may be an exhaustive search
of all combinations of parameter values within a certain
range and step size, or it may be done by a hill-climbing
search procedure.

Explicit solutions have been obtained for some quantita-
tive theories. These are equations that follow from the speci-
fications of the theory. They may require some assumptions
of distribution forms that are only approximately correct, and
they may be restricted to a particular type of procedure. They
do, however, make it possible to explore rapidly and pre-
cisely the effect of variations in the parameters on the ex-
pected behavior. Symbolic programming languages, such as
Mathematica and Maple, provide many useful facilities for
the development of explicit solutions.

Comparison of Theory and Data

The selection of a model should be based on its generaliz-
ability, as well as its fit to a particular data set. One simple
approach is to estimate the parameters on half the data and
apply the estimates to the other half of the data. Other
approaches have also been used to avoid the choice of a
model with many parameters that fit the random noise in a
particular set of data but do not reflect a systematic process.
A goal is to select a relatively inflexible model that provides
a good fit of the data (Zucchini, 2000).

Some quantitative models apply primarily to a particular
procedure, or even to a particular dependent variable. Ideally,
models should apply to a wide range of procedures and any
dependent variable based on the recorded behavior.

Preparation of Manuscripts

Computers are now routinely used for preparation of manu-
scripts, including tables and figures. This greatly facilitates
multiple revisions of a manuscript.

Dissemination of Results, Including Data Archives

Finally, computers are used for the dissemination of results.
Many full-text articles are available from scientific societies,
commercial publishers, open archives, and individual Web
sites. In some cases, the original data are available on the
Web. Although many of these resources are now restricted

because of fees, wider dissemination of articles and data with-
out cost to the user will undoubtedly occur in the near future.

A CASE STUDY

In any study of animal learning an investigator must deal
with each of these methodological problems. Here is how my
colleagues and I dealt with them in research titled “Applica-
tion of Scalar Timing Theory to Individual Trials” (Church,
Meck, & Gibbon, 1994).

What Was the Problem?

The first sentence of the abstract of the article described the
problem: “Our purpose was to infer the characteristics of the
internal clock, temporal memory, and decision processes
involved in temporal generalization behavior on the basis
of the analysis of individual trials.” We used a standard proce-
dure (the peak procedure), but instead of analyzing perfor-
mance based on data averaged across many trials, we chose to
analyze individual trials. We also used a standard theory
(scalar timing theory). The problem of this experiment was to
determine if we could identify the intervening variables of the
theory (internal clock, temporal memory, and decision
processes) based on individual trials rather than the averaged
performance.

What Apparatus Was Required?

We decided to use the 10 standard lever boxes that were
available and would be satisfactory for this problem. Other
experiments may require creativity in the selection or devel-
opment of the apparatus, but the lever boxes for this experi-
ment were selected primarily because they were convenient.

What Animals Should Be Used?

We decided to use rats because the apparatus and colony
room were adapted for rats, and rats would be satisfactory for
this problem. Other experiments may require creativity in the
selection of the species, but the rats for this experiment were
selected primarily because they were convenient.

How Should the Independent and Dependent Variables
Be Measured?

As an independent variable we decided to use three stimulus
durations (15, 30, and 60 s) to evaluate the scalar property,
and two durations of nonreinforced trials (eight times the
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stimulus duration, or 240 s) to determine whether the
absolute or relative duration of the nonreinforced trials
was relevant. According to the scalar property, measures of
behavior as a function of time since stimulus onset should
be similar if time is scaled in relative units (proportion
of the interval), but different if time is scaled in absolute
units (seconds). Two types of dependent measures were
described. One was the mean response rate as a function of
time since stimulus onset; the other involved the pattern
of responding on individual trials. An algorithm was de-
scribed that identified the time at which the animal began a
fast rate of response (start time) and the time at which it
stopped a fast rate of response (stop time). The independent
variable and the dependent variable based on mean rates of
responding were conventional ones; the dependent variables
based on individual trials were the ones that were being
evaluated.

What Procedure Should Be Used?

We decided to use the peak procedure because its character-
istics were well known for the mean response rate functions.
We decided to use 30 rats, with 10 rats randomly assigned to
each of the three conditions. No formal power analysis was
done to determine this number. Typically we have used six or
eight rats per group, and we decided to use a slightly larger
number of rats per group to have particularly reliable esti-
mates of the characteristics of individual trials. 

What Experimental Design Should Be Used?

An independent groups design was used to eliminate complex-
ities of carryover effects from one condition to another.

How Should the Data Be Analyzed?

The analysis was conducted on the last 10 sessions for which
data were available. The most important analyses were done
on the correlations of starts, stops, spreads, and middles of
the high response rate on individual trials. The treatment on
two of the sessions was correct, but the data were unavail-
able. No advance plans were made for the treatment of such
an error.

How Should the Results Be Explained?

Scalar timing theory was used to explain the data. This re-
quired that the implications of this theory for the correlations
between the starts, stops, spreads, and middles be derived and
compared to the observed correlation pattern. The conclusion

was that the individual trial analysis corroborated and ex-
tended the previous analyses based on averaged data. Most
of the methodological decisions were based on previous re-
search, and this made it possible to compare the results of this
experiment with the results of previous research. Some of the
methods were not standard, for example, the measures taken
on individual trials, the analyses of correlation patterns, and
the inferences of cognitive processes based on the correlation
patterns. The nonstandard methods led to some advance in
knowledge.
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The last decade has witnessed a significant explosion of
interest in brain research, owing in part to the appearance of
exciting new technologies and to funding initiatives made
possible by the Presidential designation of the 1990s as the
decade of the brain. Research examining the relationship
between brain function and complex behavior has exploded
and has led to new discoveries about topics of fundamental im-
portance to clinicians, cognitive scientists, and the lay public.
The decade of the brain saw the development of new method-
ological tools for investigating brain function in normal
individuals and clinical populations. For example, important
advances have been made in supplementing traditional behav-
ioral methods for analyzing normal and disordered informa-
tion processing with emergent techniques of functional
neuroimaging (e.g., positron-emission tomography, or PET;
single photon emission computed tomography, or SPECT;
functional magnetic resonance imaging, or fMRI; magnetoen-
cephalography, or MEG), electrophysiology, and reversible
lesions (e.g., transcranial magnetic stimulation, intracarotid
sodium amobarbital technique). The next decade promises

great progress in understanding normal and disordered neu-
ropsychological function by engaging in cross-platform
approaches that combine the strengths of these various tech-
niques within the same experimental investigation.

This chapter provides a broad overview of contemporary
experimental methods in neuropsychology. We first provide
a brief discussion of neuropsychological inference, focusing
on basic assumptions and on ways in which neuropsycho-
logical research can yield useful information about brain-
behavior relationships. We then provide a brief description
of major approaches to neuropsychological research, begin-
ning with the traditional information-processing approach
and its application to the evaluation of brain dysfunction
through group and single-case experiments. We then con-
sider newer techniques, including functional neuroimaging,
electrophysiology, magnetoencephalography, and reversible
lesion methods. In each section, we describe the conceptual
basis of the technique, outline its strengths and weaknesses,
and cite some examples of how it has been used in address-
ing today’s problems in neuropsychology.
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NEUROPSYCHOLOGICAL INFERENCE

Key Assumptions in Neuropsychological Research

One key assumption of neuropsychological research is that
complex abilities represent the combined and interacting ac-
tivity of several more elementary cognitive processes or
subsystems. This assumption holds that each complex abil-
ity has a cognitive architecture. This assumption leads di-
rectly to the prediction that damage to the brain will result in
performance impairments that reveal the underlying organi-
zation or functional architecture upon which complex abili-
ties are built. As one example, the complex act of recognizing
and naming faces can be thought of as being comprised of
several constituent visual, mnemonic, and linguistic pro-
cesses linked together in complex ways. On the behavioral
side, we can specify such components in a cognitive model
like the one proposed by Bruce and Young (1986), depicted
in Figure 12.1. The model contains components that are
dedicated to the visual analysis of emotional displays

(expression analysis), lipreading (facial speech analysis),
and face gender, age, and racial characteristics (structural
encoding). After visual analysis takes place, the resulting
perception is matched to stored representations of familiar
faces built up on the basis of prior experience (face recogni-
tion units). Access to the face recognition unit unlocks other
information about the person who owns the face, including
personality, occupation, and other characteristics (person
identity nodes). After this information is accessible, the
name of the person is accessed (name generation). Connec-
tions between these components of the system and other vi-
sual (directed visual processing) and cognitive components
illustrate interactions with other cognitive processes not spe-
cific to faces. Such a model not only decomposes face
recognition into its constituent components, but also leads to
predictions about how localized damage to such components
might result in specific performance deficits. One key goal
of neuropsychological research is to determine whether a
model like this has any basis in brain structure and function.
In other words, the question of how the cognitive compo-
nents of such a model map onto specific brain structures and
systems is of paramount importance in investigating brain-
behavior relationships.

A related assumption is that such correspondence does in
fact exist. The modularity assumption states that complex
functions are comprised of more elementary processors
(modules) that are dedicated to highly specific tasks and that
combine in complex ways to yield cognitive abilities. This
assumption is closely linked with the locality assumption,
which further states that such specialization of processing
is regionally localized within the brain rather than being
nonspecifically distributed throughout cortical and sub-
cortical systems. Fodor (1983) conceptualized modules as
domain-specific (i.e., performing a specific function in
response to a particular domain or type of input), innately
specified (i.e., not wholly dependent upon experience or
learning), informationally encapsulated (i.e., having a limited
set of inputs and outputs), and autonomous (i.e., operating on
the basis of an internal algorithm) processors. In our face
recognition example, the existence of localized brain regions
dedicated only to the processing of facial features or facial
identity (Perrett, Rolls, & Caan, 1982; Perrett, Hietanen,
Oram, & Benson, 1992) is consistent with a modular view
of face processing. It is important to recognize that the
modularity assumption encompasses thinking on both the
behavioral and the anatomical side of the brain-behavior in-
terface. One fundamental challenge to neuropsychological
researchers is to uncover the modular organization of com-
plex abilities and to better understand the nature of the
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Figure 12.1 Cognitive model of face recognition adapted from Bruce and
Young (1986).
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computation(s) that take place within the modules that make
up the cognitive or brain system. Key questions include
whether all complex functions have a modular organization
(and if they do, whether they so organized to the same ex-
tent), whether modules can be precisely localized in the
brain, and whether cognitive models of what occurs within
modules bears any direct relationship with the kinds of com-
putations performed by the physical brain.

Despite widespread adherence to the modularity assump-
tion, there is increasing recognition that certain abilities are
not represented in regionally localized brain structures, but
instead result from activity in widely distributed regions at
both the cortical and subcortical level. For example, a large
number of clinical, electrophysiological, and functional
imaging studies have revealed that memory is a distrib-
uted process dependent upon structures in the medial tem-
poral lobe, the diencephalon, the basal forebrain, and the
frontal lobe (Gabrieli, 1998; Schacter, Wagner, & Buckner,
2000). Additionally, advances in computational neuro-
science have led to increasing acceptance of distributed
processing as a useful way of modeling how the visual
system combines complex features to construct an object
(Fahle, 1994) or how memory storage is actually enacted
at a neural level (Horner, 1990). These data are not neces-
sarily contrary to a view that posits modular organization of
cognitive functions. The modularity assumption pertains
primarily to assumptions about cognitive and neural struc-
ture, and assumes little about underlying computational
processes.

A third assumption is that although there are substantial
individual differences in cognitive abilities, all humans
share a certain uniformity in underlying brain organization
(Coltheart, 2001). This can be referred to as the uniformity
assumption. Although this seems to be a reasonable assump-
tion, it might be seen as controversial in light of data sug-
gesting that early brain injury can affect cerebral organization
due to neuronal plasticity (Arendt, Bruckner, Bigl, &
Marcova, 1995; Nadel & Moscovitch, 1998; Poldrack, 2000)
and that brain injury can be met with substantial variability in
functional adaptation (Geffen, Encel, & Forrester, 1991;
Teuber, 1975). These data notwithstanding, this assumption
asserts that, all other things being equal, principles of brain
organization can be generalized across people. This is a con-
ceptually important assumption in generalizing the results of
any study to a broader population of patients.

A final assumption is that for the most part, brain injury
results in deficits or impairments, rather than in the intro-
duction of new behavior (Coltheart, 2001). This subtractiv-
ity assumption asserts that from the standpoint of cognitive

models, brain injury removes boxes or abolishes connec-
tions between components of the cognitive system, but does
not introduce new boxes or connections. Although brain in-
jury can result in the appearance of behaviors not seen in the
normal individual (e.g., intrusions in memory performance,
perseveration of a previously effective problem-solving
strategy), the subtractivity assumption asserts that these can
be understood as deficits or impairments of a normal cogni-
tive model. For example, intrusions can be seen as an impair-
ment in selective retrieval mechanisms (Kixmiller, Verfaellie,
Chase, & Cermak, 1995), and at least some varieties of per-
severation can be seen as impairments in normal inhibitory
processes (Sandson & Albert, 1987).

Associations and Dissociations in Performance

One important goal of neuropsychology is to understand the
manner in which complex cognitive processes are repre-
sented in the brain—to discover the so-called functional ar-
chitecture (Anderson, 1983) or behavioral geography (Lezak,
1995) of the brain. Although cognitive psychologists have
traditionally studied people with normal cognition as these
individuals perform certain mental tasks, neuropsychologists
have been more likely to study people with acquired or
developmental disorders of cognition (Coltheart, 2001). Sup-
pose a patient develops an inability to recognize objects
visually as a result of a bilateral posterior cerebral artery in-
farction. One important goal in the experimental evaluation
of the patient’s deficit is to design the evaluation in such a
way that the patient’s disorder can be understood from the
viewpoint of a theory about how the object recognition sys-
tem operates. Often, such an evaluation utilizes an explicit
cognitive model (like the one previously described for face
recognition) as a guide (Bruce & Young, 1986; Riddoch &
Humphreys, 1993). The model specifies the constituent cog-
nitive abilities that should be tested for purposes of localizing
and characterizing the patient’s deficit(s) in behavioral terms.
Several possible outcomes can emerge from this approach,
each of which has implications for understanding the nature
of the cognitive process and for localizing the patient’s
deficit.

A basic heuristic for understanding different possible out-
comes from neuropsychological research investigations is
depicted in Figure 12.2. Suppose, for example, that patients
are asked to perform a visual discrimination task in which
they are asked whether two depicted objects are the same or
different (Task A) and a semantic judgment task in which
they are asked to evaluate whether two simultaneously pre-
sented objects belong to the same class of objects (Task B).
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Figure 12.2 Possible outcomes in neuropsychological research with two patients (or groups) and
two tests.

If the patient is impaired on both tasks, these deficits are said
to be associated with one another. A similar situation arises
if two patients (or groups) show equal task effects, as de-
picted in the left panel of Figure 12.2. The implications of
this result for understanding the patient’s deficit are ambigu-
ous because it could mean that the two tasks both tap the
same underlying ability, or it could mean that both are de-
pendent on a third (unmeasured) ability earlier in the cogni-
tive processing chain. Thus, associations, although helpful,
may sometimes lead to results that are difficult to interpret
(Shallice, 1988).

If our patient (or group) fails Task A but performs well
on Task B, or if the patient is significantly more impaired on
Task A than on Task B, then a dissociation has occurred.
This may mean that the patient (or group) is impaired in
some cognitive process tapped by Task A but not by Task B,
which is potentially useful in our attempt to understand the
nature of the measured deficit. A similar situation arises
when one group shows task effects, whereas the other does
not, as depicted in the central panel of Figure 12.2. Such a
dissociation may occur for reasons that are less interesting
or informative, such as a difference between tasks in level of
difficulty. Thus, single dissociations are also limited in their
usefulness.

The strongest evidence for a specific relationship between
a brain lesion and behavioral dysfunction exists when a
double dissociation occurs (Teuber, 1955). Here, suppose we
test at least two different patients (or groups) on at least two
different tasks. In a double dissociation, Patient (or group) X
is impaired on Task A but performs normally on Task B,
whereas Patient (or group) Y shows the opposite pattern. In
this situation, we can logically conclude that the patients (or
groups) differed meaningfully on some cognitive variable
that was differentially tapped by the two tasks, and can rule
out task difficulty as an alternative explanation of results.
This line of reasoning is fundamental to neuropsychological
inference in both the clinic and the laboratory (Lezak, 1995),

because most neuropsychological research makes use of pat-
terns of association and dissociation in order to arrive at in-
ferences about the relationship between brain function and
behavioral function.

NEUROPSYCHOLOGICAL ANALYSIS OF BRAIN
IMPAIRMENT: THE LESION APPROACH

Key Features of the Lesion Approach

Over the last century, the study of brain-behavior relation-
ships has relied extensively on what has come to be known as
the lesion approach, in which models of cognitive function
are developed, verified, and modified through the study of pa-
tients with acquired or developmental brain lesions (Selnes,
2001). The lesion method aims at establishing a relation-
ship between “a circumscribed region of brain damage, a
lesion, and a pattern of alteration in some aspect of an exper-
imentally controlled cognitive or behavioral performance”
(Damasio & Damasio, 1997, p. 69). Because many patients
have localized damage to specific brain regions, it is possi-
ble, through dissociation logic, to make inferences about
brain function by treating the functional damage as an inde-
pendent variable in experimental investigation. An important
premise underlying lesion paradigms is that much can be
learned about normal function from the study of dysfunction
(Damasio & Damasio, 1997; McCloskey, 2001). As a result,
insight can be gained into cognitive architecture and, through
the analysis of performance associations and dissociations,
into the manner in which elementary functions interact to
yield complex neuropsychological abilities. This method of
ascribing functions to brain regions has yielded much of the
basic, fundamental knowledge that currently exists in neu-
ropsychology and cognitive neuroscience. Classic examples
of the use of the ablative paradigm in neuropsychology in-
clude Broca’s (1861) description of the patient Leborgne
(Tan), Wernicke’s (1874) monograph on aphasic syndromes,
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Harlow’s (1848, 1868) descriptions of Phineas Gage, who
suffered dramatic disturbances of personality and complex
behavior after traumatic frontal lobe injury, Scoville &
Milner’s (1957) description of the amnesic patient H.M., who
underwent bilateral resection of the hippocampus and overly-
ing temporal cortex for relief of intractable epilepsy, and
Geschwind and Kaplan’s (1962) description of left-sided
agraphia and apraxia following damage to the anterior four-
fifths of the corpus callosum.

A key feature of the lesion paradigm is its emphasis on
deficit measurement. In order to characterize or quantify be-
havioral deficits, the researcher establishes some appropriate
comparison standard against which to evaluate the patient’s
performance (cf. Lezak, 1995). Such standards may be de-
rived within subject (in which impaired abilities are com-
pared with the patient’s spared performances) or may involve
between-subject comparisons using appropriate control
groups or objective normative standards of performance de-
rived from psychometric research. Because many neuropsy-
chological abilities are at least somewhat dependent upon age
and education, it has become customary to use normative
standards that correct for these variables (Heaton, Grant, &
Matthews, 1991). Using appropriately selected control
groups and cognitive tasks designed to provide single or dou-
ble dissociations, strong forms of inference (Platt, 1966)
about brain-behavior relationships are possible.

The lesion approach encompasses experimentally induced
chemical or surgical lesions as well as so-called accidents of
nature in the form of naturally occurring disease processes
that result in damage to specific brain structures. In the case
of experimental ablation, some degree of control over the
extent of the lesion can be achieved, whereas in the case of
naturally occurring disease, the degree of control over lesion
location and extent is greatly reduced. The intrinsic variabil-
ity seen in naturally occurring lesions is in many respects a
nuisance that complicates inference within the lesion para-
digm. Nonetheless, the study of patients with naturally oc-
curring lesions can still lead to meaningful conclusions about
the underlying architecture of cognitive functions if steps are
taken to document lesion localization through neuroimaging
or postmortem analysis. Reporting affected structures using
standardized atlases or cytoarchitectonic maps has made it
possible for researchers to clearly and precisely communicate
lesion localization for purposes of comparing results across
patients (Damasio & Damasio, 2000).

Group Versus Single-Case Designs

In the lesion approach, data can be collected from a single
case of brain impairment or from a group of subjects with the

same disease or anatomical localization. Descriptive or ex-
perimental analysis of single cases is often the first step in
elucidating a cognitive deficit for purposes of describing its
characteristics and boundary conditions. Single-case analysis
is often necessary if the disorder under investigation is rare,
and single-case reports are particularly effective if they
demonstrate an exception to a universally held assumption.
For example, case reports of focal retrograde amnesia
have caused us to rethink and refine classic concepts of
anterograde and retrograde memory loss (Kapur, 1993).
Similarly, the widely held notion, that the visual recognition
of living things was somehow more vulnerable to impairment
in certain visual agnosic syndromes, has been contradicted
by single cases showing selective impairments in nonliving
objects such as medical implements (Crosson, Moberg,
Boone, Rothi, & Raymer, 1997) or artifacts (Moss & Tyler,
2000). Thus, single cases can provide important data that
constrain prevailing theory. However, they suffer from the
obvious shortcoming that it is always possible that the results
from a single case reflect something idiosyncratic about the
individual patient, and thus cannot be relied upon (by them-
selves) to yield conclusions that generalize across subjects.

Group studies rely on the classification of individual pa-
tients into groups such that everyone in a group is (theoreti-
cally) homogeneous with respect to some criterion variable.
Most often, groups are formed on the basis of the presence or
absence of a particular disease entity (e.g., Parkinson’s dis-
ease, single-event stroke, closed head injury) or damage to
particular brain structures or systems. Research using this
type of methodology can take one of two approaches. One is
primarily descriptive in nature, aiming to characterize, within
a broad assessment of neuropsychological abilities, those
impairments that are correlated with the grouping variable.
Indeed, group research is often useful in observing patterns
of symptom co-occurrence (so-called observational science)
and in refining the basis for group classification for later
study (Zurif, Swinney, & Fodor, 1991). Much of what we
know about neuropsychological correlates of neurological
diseases such as Alzheimer’s disease, epilepsy, and stroke
comes from a multitude of studies that have examined a
broad range of cognitive domains.

The other general approach to group research involves
structuring group classification around a particular theory or
hypothesis regarding the neural architecture of cognitive sys-
tems. For example, researchers interested in studying mem-
ory may select patients who, through diverse etiologies, have
lesions localized to a specific brain region (e.g., the medial
temporal lobe memory system; Squire & Zola Morgan,
1991). Alternatively, subjects may be grouped together be-
cause they share the same neuropsychological deficit (e.g., a
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problem in permanently storing new long-term memories).
One potential drawback to this approach is that because of
variability in the criteria used for group classification, it is
sometimes difficult to make comparisons across studies. For
this reason it has become customary in recent years to
provide more operational criteria that can be used to assign
patients to groups. For an example of how this has been
accomplished in research on amnesia, see Squire and
Shimamura (1986).

In recent years, controversy has existed about the relative
utility of group versus single-case studies in facilitating
progress in clinical neuropsychology. Some have argued that
both single-case and group studies are appropriate in neu-
ropsychological research, whereas others argue that only
single-case studies promote reliable inferences into cognitive
structure (McCloskey, 1993; Shallice, 1988). Those who con-
tend that only single-case studies are appropriate criticize
group research on a number of grounds. One criticism
is based on the use of syndromes, or collections of clinical
symptoms, as a basis for group classification. Cogni-
tive symptoms can co-occur after damage to the brain
because they (a) are each based on the same underlying cog-
nitive mechanism, or (b) depend on regionally adjacent brain
structures or systems. The argument against group research
is that if one studies a syndrome based on the situation
described previously in (b), one runs the risk of confusing
functional and structural associations. If such symptoms are
related simply through regional proximity, studying them
with cognitive methods may tell us little about underlying
functional architecture. This is an in-principle argument that
many neuropsychologists believe applies in general to all
syndromes used for group classification (Coltheart, 2001).
Proponents of this argument suggest that although the study
of syndromes is a useful first step in defining what cognitive
processes might be involved in the deficit, real progress is
made only through the analysis of individual cases. 

An additional problem with group research is that even
when patients are grouped in order to be homogeneous with
respect to the presence of a localized lesion, they may be
behaviorally heterogeneous with respect to the cognitive
process under study (Gazzaniga, Ivry, & Mangin, 1998). It is
widely known that individual data cannot be derived from an
exclusive study of average scores (Sidman, 1952). Thus,
even though we are capable of generating point estimates of
central tendency (e.g., means, medians, modes) from group
data, the individual data points or curves might be quite
heterogeneous with respect to these estimates. This hetero-
geneity might result, for example, from subtle individual
differences in brain organization or in the degree of func-
tional compensation. Thus, despite the fact that a group of

individuals may have received identical diagnoses, there can
be substantial behavioral variability among group members.
As a result, inferences made by averaging across individual
patients can be imprecise (Caramazza, 1986; Caramazza &
Badecker, 1989). Caramazza and Badecker (1989) argue fur-
ther that manifestations of lesions can differ across individu-
als, therefore rendering inferences about normal cognitive
function unreliable (see also Shallice, 1988). 

Some researchers therefore feel that the only way in which
to make conclusions regarding the structure of cognitive sys-
tems is to investigate single cases, and to make subsequent
comparisons across patients. This idea has led to the notion
of multiple single-case studies as an alternative to group re-
search. In this approach, each patient participates in the same
experiment, but techniques such as averaging across individ-
uals are not employed. We believe that a hybrid approach
strikes a reasonable compromise between group and single-
case advocates on this point. When predicting and analyzing
a directional group difference on some cognitive variable, it
is useful not only to report measures of central tendency
(means, medians, etc.), but also to report how many individ-
ual patients show the predicted effect. Arguments in favor
of group-based lesion studies advocate that in some in-
stances, group studies can be more effective at distinguishing
very discrete components of cognitive systems (Robertson,
Knight, Rafal, & Shimamura, 1993; Zurif et al., 1991). Al-
though these researchers do not dismiss the use of single-case
studies in drawing inferences about normal cognitive func-
tion, they believe that useful information can be obtained
from analysis of neuropsychological syndromes (Zurif et al.,
1991). One key problem in group research is the variability of
symptom presentations seen in most neuropsychological
syndromes. Thus, for example, not all patients with Broca’s
aphasia or Gerstmann’s syndrome present with precisely the
same symptoms. Thus, in searching for behavioral precision
in group studies, the need to establish necessary and suffi-
cient inclusionary and exclusionary criteria is obvious. This
issue is similar in kind to the historical controversies in clini-
cal psychiatry that led to the development of research diag-
nostic criteria for major mental disorders (Spitzer, Endicott,
& Robins, 1978). Operationally defined criteria sets have
been developed for certain neuropsychological syndromes,
such as age-associated memory impairment (Crook,
Larrabee, & Youngjohn, 1990), mild traumatic brain injury
(Paniak, MacDonald, Toller Lobe, Durand, & Nagy, 1998),
and Alzheimer’s disease (McKhann et al., 1984) in order to
achieve homogeneity in group research. 

One important difference between group and single-case
approaches involves the use of replication as a tool for vali-
dating and strengthening scientific conclusions. In group
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research, replication is the cornerstone of clinical inference
because it helps to rule out error variance as the basis for the
finding, and it helps to strengthen the notion that the finding
reflects some stable characteristic of the cognitive architec-
ture under study rather than just a chance finding. Radical pro-
ponents of single-case methodology not only de-emphasize
the importance of replication, but also have directly argued
that it is impossible (Coltheart, 2001) because single-case
studies concern themselves with unique deficits. It is true that
certain meaningful neuropsychological findings cannot be
easily replicated, but this does not logically support a whole-
sale denial of the importance of replication. As before, a com-
promise position in which both single-case investigations and
group studies are used, each capitalizing on its strengths,
seems the most appropriate agenda for the next decade of neu-
ropsychological research. It seems clear that a combination of
both approaches is relevant to the establishment and support
of models depicting the complex relationships between the
brain and cognition. For example, it may be appropriate to use
results from multiple single-case studies to develop hypothe-
ses, and then to conduct group-based studies in attempt to
confirm or disconfirm theories.

Performance Measures

The lesion approach lends itself to an almost unlimited set of
dependent variables, including behavioral performance mea-
sures, psychophysiological and electrophysiological indices,
differences in functional brain activation, and differential
treatment response measures. Thus, the lesion approach is
distinguished by the presence of a contrast between a group
with a brain lesion or disorder and an appropriate control
group, not by the use of particular sets of performance
measures. This having been said, the majority of studies con-
ducted within the lesion paradigm have used behavioral per-
formance measures. Such measures derive from one of the
three great traditions relevant to clinical neuropsychology:
the psychometric tradition within clinical psychology
(Russell, 1986), the information-processing tradition within
cognitive psychology, and cognitive neuropsychology (Ellis
& Young, 1986; R. A. McCarthy & Warrington, 1990; Rapp,
2001), or the behavioral neurology tradition of syndrome
analysis within clinical medicine (Mendez, Van Gorp, &
Cummings, 1995). Aside from basic standards of reliability
and validity, there are no explicit standards or acid tests, so to
speak, that determine which measures are suitable for a par-
ticular experimental investigation. In some cases, measures
with large-scale normative bases are selected in order to pro-
vide stable measures of deficit. In other cases, researchers
might construct an in-house measure to evaluate a function

that is thought to be uniquely affected in a single case. In
some situations, measures with a high degree of specificity or
sensitivity to the disorder under investigation might be se-
lected, whereas in other situations, the investigator might
choose to use measures with a high degree of external or eco-
logical validity. 

Regardless of the measure(s) selected, the use of appro-
priate comparison groups or a control group is critical for
interpretation and later conclusions about results. In some
cases, it is appropriate to utilize a group comprised of normal,
healthy individuals who are matched on relevant demo-
graphic variables (e.g., age, education) to compare normal
with nonnormal performance. It is also often relevant to use
an additional disease comparison group (e.g., a group with
neurologic disease not affecting the cognitive component
under investigation). This can be particularly helpful when it
is important to rule out nonspecific contributions to the pa-
tient’s deficit, and when researchers are attempting to localize
the deficit within some component of a cognitive model.
Essentially, this process allows researchers to draw conclu-
sions regarding the differential effects of brain damage on a
particular cognitive function.

Strengths and Limitations of the Lesion Method

On the one hand, the basic logic of the lesion paradigm, that
an observed cognitive or neuropsychological deficit reflects
the contribution normally given to the cognitive function by
the damaged brain region (Feinberg & Farah, 2000; Selnes,
2001), is rather straightforward. One important complication,
however, is that the behavioral consequences of damage to a
particular brain structure reflect the combined outcome of
(a) a loss of function in the damaged area and (b) the adaptive
response of the undamaged neural substrate. Depending upon
the nature of the injury, the adaptive response may entail a
large-scale physiological effect (e.g., diaschisis) in which de-
pression of neuronal activity outside the lesion site can occur
(von Monakow, 1969). Alternatively, the adaptive response
may reflect disconnection of functional areas from one an-
other due to damage to interconnecting structures or white-
matter tracts (Geschwind, 1965). These effects may differ
widely in importance depending upon the nature, severity,
and regional localization of the injury, as well as upon the
complexity of interconnections to and from the affected
structure(s). It is thus important to have a clear anatomic
understanding of the potential effect of a lesion on the re-
maining brain before attempting to interpret its behavioral
implications.

In addition to the aforementioned complexities, the lesion
paradigm, at least in its application to naturally occurring
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lesions in human research, has inherent limitations. One of
the most important problems is that as accidents of nature,
most lesions do not obey structural or architectonic bound-
aries, and as such, they function as partially uncontrolled in-
dependent variables (Gazzaniga et al., 1998). This limitation
constrains the ability to make reliable deductions about nor-
mal function or about the contribution made by the damaged
structure or brain system. Processes that occur during and
after the lesion cannot be controlled either. From a functional
standpoint, individuals react differently to injury, in part due
to overall level of cognitive ability or cognitive reserve (Satz,
1993; Stern, Albert, Tang, & Tsai, 1999). Functional compen-
sation can occur and may change the observed pattern of
deficits, making time after injury a potentially important vari-
able to control. 

In recent years, the lesion approach has been enhanced
considerably with the advent of imaging technology
(Mazziotta & Gilman, 1992). The ability to more precisely
characterize the nature and extent of the lesion has enabled
more precise interpretations of performance dissociations
and has led to the discovery of many specific relationships
between behavioral dysfunction and damage to particular
brain structures (Damasio & Damasio, 2000; Tranel, 1992).
The development of atlases for lesion localization (Damasio
& Damasio, 2000) has enhanced the ability to compare re-
sults across studies. Researchers can proceed with confidence
knowing lesion location more precisely.

REVERSIBLE LESION METHODS

In recent years, methodologies designed to create temporar-
ily abnormal brain function have been employed in neu-
ropsychological research. We call these methods reversible
lesion paradigms. These methods have the explanatory
power of the lesion approach but are without some of the
major disadvantages of the lesion method that we highlighted
earlier. A particularly important feature of the reversible le-
sion approach is that it allows for repeated measurement of
the individual both in and out of the lesioned state. This
allows for a more specific attribution of the observed deficits
to the lesion per se, provided that other factors governing
performance are adequately controlled. In this section, we
describe two representative examples of this approach: repet-
itive transcranial magnetic stimulation (rTMS) and the
intracarotid amobarbital procedure (IAP) or WADA test.

Repetitive Transcranial Magnetic Stimulation (rTMS)

Transcranial magnetic stimulation (TMS) is a relatively new
and noninvasive technique that has been increasingly used

for activating cortical neurons in normal individuals. TMS
involves applying pulses of magnetic stimulation to the brain
and examining the effects of this stimulation on motor and
cognitive processing. In some respects, TMS is the opposite
of MEG, in which magnetic fields from the brain are mea-
sured as an individual carries out some cognitive or motor
task. As described below, TMS can either transiently disrupt
ongoing cognitive processing, thereby inducing a so-called
reversible lesion, or it can activate simple motor or visual
systems.

Although it is a relatively new technique, magnetic stimu-
lation has its historical roots in the late nineteenth century
(for review, see Barker, 1991). D’Arsonval (1896) was the
first to describe visual changes (phosphenes) and vertigo
when a subject’s head was placed inside a brass coil that re-
ceived an alternating current from a power supply. During the
early 1900s, a flurry of research articles appeared in promi-
nent journals, describing visual sensations that were caused
by stimulation of the retina due to changing magnetic fields.
However, it was not until the early 1980s, when investigators
at the University of Sheffield developed a prototype magnetic
stimulator, that TMS emerged as a viable research tool for
studying brain-behavior relationships (Polson, Barker, &
Freeston, 1982). Barker and the Sheffield group (1985) pub-
lished the first report of magnetic stimulation of the cortex in
normally functioning individuals and in clinical populations.
They found that magnetic stimulation over the frontal motor
cortex could elicit motor-evoked potentials from the hand,
and they also noted differences in the latency of motor EPs
between normal individuals and patients with multiple scle-
rosis (Barker et al., 1985; Barker, Freeston, Jalinous, &
Jarratt, 1987). 

Since the mid-1980s, a virtual explosion in the number of
publications on TMS has taken place worldwide, beginning
with one article in 1985 to almost 400 published research ar-
ticles in 2001. In part, this has been prompted by technologic
advances, including the development of a device for deliver-
ing rapid rate or repetitive trains of magnetic pulses (rTMS),
as well as demonstrations that TMS is generally safe, is not
painful, and may have clinical utility and promise as a tool
for empirical investigation of cognitive and motor ability. In
the following sections, the basic principles underlying TMS
are briefly described, followed by discussion of method-
ological considerations (stimulation parameters, dependent
variables) and applications of TMS to neuropsychological
studies.

Basic Principles of rTMS

The basic principle underlying transcranial magnetic stimu-
lation (TMS) draws from Faraday’s idea that electric current
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passing through a coil of wire produces a magnetic field. If
the magnetic field fluctuates in magnitude, a secondary elec-
tric current is produced in nearby media. The strength of the
induced electric current is directly related to the rate of
change (on-off-on) of the magnetic field. It is but a simple
step to consider the power of this approach when applied to
study brain-behavior relationships in humans. Theoretically,
one can stimulate underlying brain tissue in a relatively non-
invasive manner and thus use this technique with normal
individuals.

In human TMS studies, an insulated coil in the shape of a
circle or figure eight is placed over the head and held in place
by the investigator or by a mechanical fixation device. When
brief pulses of electric energy pass through the coil, a chang-
ing magnetic field is created that easily penetrates the scalp
and skull. In turn, the magnetic pulses create a secondary
electric current in underlying brain and neural tissue. It is this
secondary electric current, not the magnetic field, that causes
neural excitation by influencing membrane depolarization. In
most modern devices, the strength of the magnetic field dur-
ing TMS ranges from 1 to 3 Tesla, about the same strength as
found in most MRI scanners. Although magnetic stimulation
is not painful per se, there is a loud clicking noise that is as-
sociated with the changing magnetic field. Most subjects ex-
perience a nonpainful tapping sensation on the scalp that is
related to muscle contraction. 

Magnetic stimulation can be applied in single pulses or in
repetitive trains of multiple pulses (rTMS). Single-pulse TMS
is a relatively safe procedure that has been used extensively in
clinical neurophysiology to index central cortico-motor ex-
citability in studies designed to map regions of the motor cor-
tex. Each pulse lasts approximately 100 �s and is presented at
a rate of one pulse every 3 to 4 seconds. Generally speaking,
single-pulse TMS seems to exert an excitatory effect on be-
havior when an individual is not engaged in another ongoing
behavior. For example, observable twitches of the finger,
hand, or arm can easily be elicited when single-pulse TMS is
applied over the hand area of the motor cortex.

During rTMS, multiple trains of pulses can be applied at
very high rates (up to 60/s) over various periods of time.
Repetitive transcranial magnetic stimulation (rTMS) has
been used more typically in neuropsychological studies ex-
amining language, working memory, and other cognitive
processes. In very general terms, rTMS tends to disrupt or in-
terfere with ongoing cognitive behavior, and for this reason
it has been viewed as inducing a reversible (virtual) brain
lesion. Because rTMS poses some risk for eliciting seizures
in normal individuals, very strict safety guidelines have been
developed (Wasserman, 1998; Pascual-Leone et al., 1993).
These guidelines address various stimulation parameters that
can be safely used together during a particular experiment.

Of particular importance with respect to safety issues are the
intensity of magnetic stimulation, the number of stimuli per
second (frequency) and the duration of the stimulation. 

Several important questions arise with respect to TMS.
What is the spatial resolution of magnetic stimulation within
the brain? How deep does the induced electric current extend
into the brain tissue? Are its effects excitatory, inhibitory, or
both? Does activation spread to distant brain regions that are
anatomically connected with the target site? The answers to
these questions are certainly crucial for enabling one to draw
inferences about the relationships between anatomic speci-
ficity and neurocognitive function. Although they are not
fully resolved, some progress has been made in recent years
to answer these questions.

Regarding the size of the magnetic field induced by rTMS,
it is generally believed that the spatial extent of the magnetic
field induced by various TMS coils ranges from .5 to 2 cm
wide and from 2 to 3 cm deep (Bohning, He, George, &
Epstein, 2001; Rhuohonen et al., 1995). This level of resolu-
tion is generally much smaller than are naturally occurring
brain lesions that are seen in clinical patient studies. In gen-
eral, circular magnetic coils affect larger cortical areas,
whereas figure eight coils provide more focal stimulation at
the point just beneath the intersection of the coil loops.

Although the magnetic field per se may be relatively focal,
the electric current it induces may have far-reaching effects
both spatially, temporally, and neurochemically. In recent
years, multiplatform studies combining rTMS with positron-
emission tomography (PET), EEG (electroencephalogram),
or even fMRI have attempted to address this issue. In some
studies rTMS is applied to a targeted brain areas, while EEG
or regional PET activation is simultaneously measured (Paus
et al., 1997; Sieber et al., 1998). These studies have revealed
that the effects of TMS may extend beyond the immediate
area of magnetic perturbation to include regions connected to
the stimulated region. For example, Paus et al., (1997) re-
ported that TMS applied over the frontal eye fields elicited
increased regional cerebral blood flow in distant regions to
which the frontal eye fields are presumably connected (i.e.,
visual cortex of superior parietal and medical parietal-
occipital regions). Fox et al., (1997) stimulated primary
motor cortex with TMS and found increased CBF (cerebral
blood flow; using PET) over ipsilateral primary and sec-
ondary motor and somatosensory cortices and contralateral
SMA. Taken together, such findings suggest that rTMS over
a focal cortical area may not remain strictly focal, but rather
may spread in a neuroantomically distinct manner to areas to
which it is interconnected.

Equally important have been other multiplatform studies
suggesting that TMS may exert at least short-term effects on
brain neurotransmitter systems. Strafella, Paus, Barrett, and
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Dagher (2001) used a dopamine receptor ligand ([C]raclo-
pride) to detect changes in extracellular dopamine after
30 min of rTMS over the left dorsolateral frontal lobe or over
the left occipital lobe. The dopamine receptor ligand was in-
jected within 5 min of completion of the rTMS trial, and PET
imaging took place within 30 min. The study found de-
creased dopamine uptake in the ipsilateral caudate following
left frontal TMS, with no effects seen in the putamen, nucleus
accumbens, or contralateral caudate. 

Findings from such combined TMS and PET studies can
have important implications for the cognitive neuroscientist–
neuropsychologist during experimental design of TMS
studies. First, the effects of TMS may extend well beyond the
immediate hot spot that was focally stimulated, and this con-
sideration may play a role in the design of control tasks. The
flip side of this is that rTMS may be used as a powerful tool
for studying local cortical reactivity and functional connec-
tivity (Bailey, Karhu, & Ilmoniumi, 2001; Pascual-Leone,
Walsh, & Rothwell, 2000) Finally, although the effects of
TMS may be relatively short lasting in many conditions, the
temporal course and dissipation of shorter and longer lasting
effects (e.g., in treatment of depression) has not been care-
fully studied.

Methodological Issues

How does one go about designing a TMS study? What im-
portant methodological problems must be addressed? Some
issues depend on whether TMS or rTMS is being conducted
and how the stimulation parameters temporally relate to the
particular neurocognitive task under study (e.g., naming, a
working memory n-back task, or a motor sequencing task). In
rTMS studies, decisions must be made about various stimula-
tion parameters. These include (a) the frequency (in Hz)
of TMS stimuli, (b) the duration of the train of stimulation,
(c) the interval between trains, (d) the total number of trains,
(d) the intensity of the stimulation, and (e) the total number of
stimuli in a given session, or to a specific brain region. For ex-
ample, consider the study that involves 50 2-s trains of
40 stimuli delivered at a rate of 20 Hz with an intertrain inter-
val of 28 s. In this study, a subject would receive 2 s of rTMS
(40 stimuli) that is delivered every 30 s for 25 min, resulting
in 2,000 total stimuli. These various stimulation parameters
for rTMS are guided in part by safety considerations.

For both TMS and rTMS, intensity of magnetic stimulation
is individually determined. Typically, intensity of stimulation
is based on the individual’s motor-evoked threshold (e.g.,
intensity = 70% motor-evoked potentials; MEP, or 120%
MEP). This can be quantified by attaching surface EMG elec-
trodes over the abductor policis brevis muscles in the hand

and measuring motor-evoked potentials when magnetic stim-
ulation (1 Hz) is applied over the cortical motor hand area.
Thus, threshold can be defined as the lowest intensity for elic-
iting MEPs 50% of the time. Regardless of whether a motor
study or cognitive study is planned, the intensity of stimula-
tion is based on the motor-evoked threshold.

A concern common to both TMS and rTMS studies is se-
lection of the TMS stimulation site. This can be fairly straight-
forward in TMS studies of motor cortex in which stimulation
grids (i.e., 5 × 5 cm) can be marked on a swimsuit cap that is
worn by the participant. Finding the motor hot spot involves
stimulating the various grid points in a systematic manner in
order to find the site of peak responsivity. In contrast, identi-
fying the hot spot in cognitive studies can be more subjective
and unreliable, especially when specific cortical association
areas are targeted. In most studies, the site of coil placement
is determined in reference to the location of primary motor
cortex (M1) or the International 10-20 EEG system. In other
studies, behavioral performance during a pilot task has been
used to identify the area of stimulation. For example, if one
were interested in the effects of TMS on working memory,
one could adopt a trial-and-error method for determining the
hot spot by finding an area that resulted in the most errors
during a pilot run of the working memory task (Mull & Seyal,
2001). Clearly, this approach is highly subjective. A more
sophisticated approach might use brain-based coordinate sys-
tems that employ external fiducial markers, selecting a stim-
ulation region based on available functional imaging results.
In some systems, real-time monitoring of coil position and
the person’s head is possible (see Paus, 1999).

Equally important to the selection of the TMS stimulation
site is selection of a control stimulation site. Walsh and
Rushworth (1999) have identified three ways in which a con-
trol site can be chosen—dissociation, proximity, and time.
Following the classic dissociation approach (Teuber, 1955),
one selects two brain areas thought to have different neu-
ropsychological functions and applies TMS to these two re-
gions. In the proximity approach, one assumes that Area X is
important for Task A, but neighboring areas are not. Thus, se-
lection of the control site is dictated by proximity. This ap-
proach is particularly important when MRI structural scans
are not available to help with localization. Finally, control
sites can be selected based on the idea that TMS might have
different effects across different sites, depending on when in
the temporal sequence the TMS is applied.

Applications

TMS has been applied to several areas of interest to neuropsy-
chologists. In motor mapping studies, single-pulse TMS over
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the motor cortex have been shown to produce electromyo-
graphic responses in the contralateral hand, arm, and face mus-
cles. Presumably, these motor-evoked potentials (MEPs) reflect
activation of neuronal networks in the motor cortex that link
to spinal motor neurons (Pascual-Leone et al., 1994; Roth-
well et al., 1991). Various researchers have used single-pulse
TMS to map the size of cortical motor representations (Mills
& Nithi, 1992; Triggs et al., 1994; Wasserman, McShane,
Hallett, & Cohen, 1992). For example, Triggs, Subramanium,
and Rossi (1999) mapped contralateral motor representations of
the preferred and nonpreferred hand in right- and left-handed
subjects. Although there were no handedness differences in
the size or threshold of motor-evoked potentials (MEPs), the
number of scalp stimulation sites that elicited MEPs was larger
for the preferred hand. This was true for both dextrals and
sinistrals, suggesting that handedness is associated with an
asymmetry in the area of the cortical motor representations.

Recently, several researchers have reported that single-
pulse TMS over the motor cortex can readily induce ipsilat-
eral motor-evoked potentials (MEPs) from the hands and
face (Ziemann et al., 1999). In general, ipsilateral MEPs
require higher-intensity stimulation than do contralateral
MEPs, occur more readily if the target muscle is mildly con-
tracted, and are elicited more prominently from sites lateral
to the optimal position for producing MEPs in the contralat-
eral hand (Ziemann et al., 1999). An ipsilateral, multisynap-
tic pathway from the motor cortex to the hand (or face) has
been proposed as the route for ipsilateral MEPs from mus-
cles, classically viewed as being under exclusive control of
the contralateral cortex.

Following from these observations of ipsilateral pathways
are clinical studies that have used rTMS to examine recovery
of function following acquired brain lesions (Caramia
et al., 2000; Trompetto, Assini, Ducolieri, Marchese, &
Abbruzzese, 2000). Trompetto and colleagues (2000) studied
recovery following acute stroke by comparing motor re-
sponses that had been elicited by TMS when it was applied
over the frontal regions of the damaged and nondamaged
hemisphere. Three subgroups of patients were identified. The
largest subgroup were those with poor recovery of motor
function. Their responses (motor-evoked potentials) to TMS
were absent over both the damaged and undamaged hemi-
spheres. The two remaining subgroups had good motor re-
covery. In one, patients had larger MEPs with stimulation of
the damaged (ipsilateral) than nondamaged (contralateral)
hemisphere. Their good recovery possibly related to the un-
masking of ipsilateral motor pathways. In the third recovery
group, MEPs were larger in the affected than in nonaffected
limb and possibly related to the use of alternate circuits
within the damaged hemisphere. Such studies point to the

potential of TMS for providing information about clinical
prognosis and mechanisms that might underlie recovery
following stroke.

In other clinical studies, high-frequency stimulation of
motor cortex has been used to activate the motor system and
temporarily improve motor function in patients with Parkin-
son’s disease (Pascual-Leone et al., 1994). In contrast, low-
frequency motor cortex rTMS (presumably inhibitory in
nature) improves motor function in patients with focal dysto-
nia, a disorder characterized by hyperexcitability of cortical
motor circuits (Siebner et al., 1999).

Several studies have used rTMS to induce interference in
ongoing cortical activity or behavior. When applied over the
speech area, repetitive TMS (rTMS) has been associated with
speech arrest (C. M. Epstein et al., 1996; Pascual-Leone,
Gates, & Dhuna, 1991; Wasserman et al., 1998). When ap-
plied over the left posterior temporal region (left BA37),
rTMS has slowed visual object naming with no effects on
word reading, non–word-reading, or color naming (Stewart,
Meyer, Frith, & Rothwell, 2001). Within the memory do-
main, several studies have used rTMS as a probe for studying
working and longer term memory (for review, see Grafman
& Wasserman, 1999). When applied to the frontal or tempo-
ral regions, short- and longer-term recall deficits have been
reported by some investigators. Grafman and colleagues
(1994) gave a word list learning task to normally functioning
individuals and examined the effects of timing of rTMS and
the region of stimulation (e.g., frontal, temporal). It is inter-
esting to note that rTMS over the left temporal lobe was more
effective in reducing subsequent recall when stimulation was
immediately applied at word onset (i.e., during encoding?),
whereas the effects of frontal rTMS appeared at longer de-
lays. Such findings imply that timing parameters in rTMS
studies may help dissociate temporal and frontal lobe contri-
butions to learning and memory.

In several recent studies, rTMS has been investigated for
its efficacy as an intervention for neuropsychiatric disorders.
The efficacy of rTMS as a treatment modality for major de-
pressive disorder is currently being investigated across vari-
ous centers around the country (C. Epstein et al., 1998;
George et al., 1995; Pascual-Leone, Rubio, Pallardo, & Catala,
1996; Triggs, McCoy, 1999). Early studies administered rel-
atively nonfocal rTMS using large circular coils centered
over the scalp vertex and obtained promising but inconclu-
sive evidence of improved mood in patients with severe de-
pression (Hoflich, Kasper, Hufnagel, Ruhrmann, & Moller,
1993; Kolbinger et al., 1995). More recent studies have tar-
geted the left dorsolateral frontal lobe in various treatment
studies of depression. The basis for a potential therapeutic
effect of rTMS on depression is unknown. Several lines of
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evidence have implicated hypoactivity of the left prefrontal
cortex in the pathophysiology of depression. Even so, it is
clear that the prefrontal region is just one component of a dis-
tributed network that is important for regulating mood. Al-
though rTMS appears promising, carefully controlled and
blinded studies with appropriate “sham” conditions are few
and far between, and a variety of methodological issues re-
main to be addressed before claims about efficacy of rTMS
for treating depression can be established (see Wasserman &
Lisanby, 2001). 

The WADA Technique

The intracarotid amobarbital procedure (IAP) was first devel-
oped by Wada to lateralize language function in the evalua-
tion of patients with epilepsy, but it more recently has been
used to predict the degree of postoperative amnesia in
patients being considered for epilepsy surgery (Trenerry &
Loring, 1995). Although the precise procedure varies, the
typical IAP involves the injection of sufficient barbiturate
(e.g., sodium amytal, sodium brevital) into a catheter placed
in the internal carotid artery to produce a contralateral hemi-
plegia. Memory and language testing is typically conducted
before, during, and after the period of drug action. The pro-
cedure generally results in a temporary impairment in hemi-
spheric functions subserved by the middle cerebral artery.
During injection of the language-dominant hemisphere, the
patient becomes globally aphasic. Both hemispheres are
studied sequentially in the same procedure. In addition to
predicting hemisphere dominance for language, behavioral
performance during the WADA procedure has been shown
to predict seizure outcome and verbal memory decline after
unilateral temporal lobectomy (Loring et al., 1994; Trenerry
& Loring, 1995), and is useful for determining whether the
nonaffected hemisphere can support memory function in iso-
lation. WADA test results correlate well with hippocampal
volume asymmetries in unilateral onset cases (Loring et al.,
1993).

One significant drawback of the WADA procedure is that
it is highly invasive. Because of this, it is used exclusively in
patients undergoing diagnostic evaluation for brain surgery
in which determination of language lateralization or memory
support is important for predicting outcome. In recent years,
there has been substantial interest in determining whether
less invasive functional imaging procedures can be used to
provide the same information as the IAP. Several studies
using fMRI (Binder et al., 1996; Desmond et al., 1995;
Lehericy et al., 2000), transcranial Doppler ultrasound
(Knecht et al., 1998; Rihs, Sturzenegger, Gutbrod, Schroth,
& Mattle, 1999), magnetic source imaging (Breier, Simos,

Zouridakis, Wheless, et al., 1999; Simos, Papamolaon, 2000),
and repetitive transcranial magnetic stimulation (C. M. Ep-
stein et al., 2000) to comparatively evaluate language func-
tion have been published in the last 5 years. Most studies have
shown excellent correlation between language lateralization
indices derived from WADA and functional imaging proto-
cols, but perfect agreement has not emerged. For example, C.
M. Epstein and colleagues (2000) found more right-sided in-
terruption with vocal speech in surgical epilepsy candidates
using transcranial magnetic stimulation than the interruption
that would have been predicted by the WADA results. Post-
surgical language performance correlated best with WADA
results. Thus, these less invasive functional imaging tech-
niques hold promise as alternatives to WADA testing, but the
precise relationship between WADA and these other proce-
dures remains to be understood. It should be kept in mind
that the WADA technique is a gross inactivation technique,
whereas most functional imaging approaches utilize cogni-
tive activation paradigms to provide lateralizing or localizing
information (Loring, 1997).

HUMAN LATERALITY PARADIGMS

Dichotic Listening

The dichotic listening task involves the simultaneous presen-
tation of two auditory stimuli, one to each ear (Springer, 1986).
The technique has been widely used in neuropsychological re-
search to evaluate hemispheric asymmetries for auditory pro-
cessing of speech in normal and clinical populations.

In the cognitive psychology literature, the procedure has
its roots in early research on attention. Cherry (1953) used di-
chotic listening to investigate how listeners could extract and
attend to one message in the context of many (the so-called
cocktail party effect). Cherry presented messages in the same
voice to both ears at once, and found that listeners had signif-
icant difficulty in separating the two messages. On the basis
of these findings, he argued that attention used physical char-
acteristics of the acoustic message to extract the message. In
further experiments, Cherry used the technique of shadow-
ing, in which one of the two messages had to be repeated
back as it was presented. When shadowing instructions were
added to the basic dichotic listening task, very little informa-
tion could be extracted from the nonattended ear. For exam-
ple, listeners asked to shadow the message in their right ear
seldom noticed when the left-ear message was presented in a
foreign language or when the speech presented there was gar-
bled or reversed. Later recall tests revealed that there was
very little memory for unattended words, even in situations
in which the words were presented multiple times (Moray,
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1959). These and other findings contributed to the empirical
basis for the classic bottleneck theory of attention that pre-
sumes an early mechanism whereby unattended information
is filtered from further processing and thus does not enter
conscious awareness or memory (Broadbent, 1958). Al-
though we now know this theory to be oversimplified, (i.e.,
there is substantial evidence that unattended information can
be processed rather extensively; McGlinchey Berroth et al.,
1993) the dichotic listening paradigm played a seminal role
in the development of this influential model of selective
attention.

In neuropsychological research, the dichotic listening par-
adigm primarily has been used extensively to study lateral-
ization of cognitive processes in the brain, and more recently
as a technique to study disordered brain organization in a
wide variety of clinical neurological and psychopathological
syndromes. In her seminal work with the technique, Kimura
(1961a, 1961b) presented three pairs of spoken digits to each
ear and asked subjects with unilateral right or left temporal
lobectomies to recall as many of the six digits as possible.
Two important findings emerged. First, patients with lefttem-
poral lobe damage identified fewer digits than did patients
with right temporal lobe excisions. Second, regardless of le-
sion side, stimuli presented to the right ear were more accu-
rately recalled. This right ear advantage (REA) has since
been discovered to be related to hemispheric asymmetry for
speech perception and production (Springer, 1986), verified
by both behavioral and functional imaging techniques
(Hugdahl et al., 1999) and with results of language lateraliza-
tion studies using the WADA (intracarotid amobarbital) tech-
nique (Kimura, 1961b).

Subsequent studies have found a left-ear advantage for
certain nonverbal stimuli, including emotional prosody
(Bryden, Free, Gagne, & Groff, 1991; Erhan, Borod, Tenke,
& Bruder, 1998), musical chords (H. W. Gordon, 1970), tonal
sequences (Spellacy, 1970), and environmental sounds
(Curry, 1967). It is generally more difficult to obtain a left-ear
advantage, owing possibly to variations among both stimuli
and subject abilities (Springer, 1986).

A recent trend has been to combine the behavioral task of
dichotic listening with functional imaging or electrophysio-
logical investigation to understand more precisely the neural
basis of dichotic listening effects (Jancke, Buchanan, Lutz, &
Shah, 2001). These studies have found the expected REA for
linguistic stimuli and LEA for emotional stimuli, and have
found lateralized material-specific differences in planum
temporale and Heschl’s gyrus that are in accordance with the
behavioral ear asymmetries (Jancke et al., 2001).

The reliability and validity of the dichotic listening tech-
nique has been the topic of several investigations. This has

been of some concern because about 70–80% of right-handed
normal subjects show an REA for speech stimuli, whereas
a much higher percentage (>90%) of such subjects show
left-hemisphere language lateralization on WADA testing
(Springer, 1986). Because the dichotic listening technique
evaluates speech perception (rather than production), this
may suggest that different components of language might be
differentially lateralized in the brain. Also, subjects might de-
velop strategies for dealing with dichotic listening or shad-
owing tasks that might alter the degree of lateralization.
There are some encouraging data on the validity of dichotic
listening for language lateralization, however (Geffen &
Caudrey, 1981). In this study, 27 of 28 subjects with left-
hemisphere speech showed an REA to speech stimuli,
whereas four of seven subjects with right-hemisphere speech
showed an LEA. Correct language lateralization was en-
hanced by the use of a discriminant function taking handed-
ness, hit rates, and reaction time into account, suggesting that
a simple correct recognition score may not be sufficient in
characterizing dichotic listening performance (Geffen &
Caudrey, 1981; Springer, 1986). Test-retest reliability of the
dichotic listening test has also been of some concern, as sev-
eral studies have reported reliabilities in the .70–.80 range,
dependent on the number of trials (Blumstein, Goodglass, &
Tartier, 1975; Shankweiler & Studdert-Kennedy, 1975).

To the extent that performance on dichotic listening re-
flects the lateralization of relevant cognitive processes in the
brain, the task is useful for assessing abnormalities in brain
organization in neurological and psychiatric disorders. In
recent investigations, dichotic listening has been used to
examine disordered cerebral lateralization in schizophrenia
(Bruder et al., 1995; Green, Hugdahl, & Mitchell, 1994),
mood disorder (Bruder, Wexler, Stewart, Price, & Quitkin,
1999; Pine et al., 2000), developmental dyslexia (Cohen,
Hynd, & Hugdahl, 1992; Hugdahl et al., 1998), attention-
deficit disorder (Manassis, Tannock, & Barbosa, 2000;
Manassis, Tannock, & Masellis, 1996), and other clinical
syndromes. The power of dichotic listening paradigms to dis-
cern differences in brain organization in clinical groups is
limited by aforementioned limits to the reliability and valid-
ity of the technique itself.

Tachistoscopic Visual Presentation

One complicating factor in dichotic listening studies is that
each ear sends both contralateral and ipsilateral connections
to the cortical receiving areas responsible for sound percep-
tion. Because of this, performance on dichotic listening para-
digms likely reflects either the dominance of contralateral
over ipsilateral connections, or some form of dynamic
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suppression of ipsilateral connections by contralateral ones.
In either event, the behavioral outcome is complex and often
difficult to interpret. The anatomic arrangement of the visual
system, in contrast, is simpler because each visual half-field
(VHF) projects to the contralateral cortical visual area in the
occipital lobe. Thus, stimuli exclusively presented to the left
visual field (LVF; the left hemiretinal field of each eye) is first
received in the right occipital lobe, whereas stimuli projected
to the right visual field (RVF) are first processed in the left
occipital lobe. If stimulus presentation is arranged so that a
single visual field is stimulated, the researcher can at least
know which hemisphere receives direct sensory input from
the environment. This is the basis of the tachistoscopic visual
half-field technique (McKeever, 1986). Tachistoscopic tech-
niques have been prominent in experimental neuropsycho-
logical research since the 1940s, but they have not been com-
monly used in clinical research.

Application of tachistoscopic techniques to questions of
hemispheric lateralization and specialization received impe-
tus from studies of split-brain patients who underwent surgi-
cal disconnection of the hemispheres for relief of intractable
epilepsy (Sperry, 1968), and the technique was subsequently
applied to study a broad range of questions relevant to the
concept of cerebral asymmetry. Many such studies reported
visual half-field asymmetries for verbal (for which the right
VHF excels) and nonverbal information (for which the left
VHF excels; McKeever, 1986).

Two main explanations for these asymmetries have been
offered. The first explanation was that the directional charac-
teristics of language (e.g., whether it is read right-to-left or
left-to-right) should determine the cerebral dominance pat-
tern seen when linguistic stimuli were briefly presented to the
visual half-field (Mishkin & Forgays, 1952). Thus, initial ex-
periments (reviewed in McKeever, 1986) showed different
visual half-field asymmetries for English and Yiddish words.
This view was challenged in the 1960s by several studies
suggesting RVF asymmetries for letters, words, and other lin-
guistic stimuli, consistent with an alternative explanation—
namely, that VHF asymmetries reflected cerebral dominance
for language (Bryden, 1964; McKeever, 1986). In the years
subsequent to these initial developments, it has become clear
that cerebral specialization for language influences VHF
asymmetries and that directional scanning does not account
for the majority of findings.

Like the literature on dichotic listening, one relatively sta-
ble finding in the tachistoscopic recognition literature has
been that it has been difficult to devise tasks that yield LVF-
right-hemisphere superiority of comparable magnitude to
that seen in recognition of linguistic stimuli. For example,
studies showing clear RVF asymmetries for object naming

showed little if any visual field asymmetry for geometric
drawings (Bryden & Rainey, 1963). One significant problem
in this regard is finding stimuli that cannot be verbalized.
Some studies have shown that visual half-field asymmetries
could be reversed (from LVF to RVF) when subjects were re-
quired to use an arbitrary name to identify laterally presented
forms (Hannay, Dee, Burns, & Masek, 1981). However,
some tasks have shown significant LVF asymmetries, includ-
ing line orientation (Umilta et al., 1974), face recognition
(Rizzolatti, Umilta, & Berlucchi, 1971), and emotionally
evocative material (Suberi & McKeever, 1977).

Tachistoscopic paradigms are somewhat crude measures
of hemispheric specialization or lateralization because it
cannot be assumed that the presented stimulus is processed
exclusively by the hemisphere to which the stimulus is
primarily projected. In fact, it is assumed that all stimuli are
processed by both hemispheres to some degree, and that lat-
eralized performance is a function of specialized or privi-
leged processing in the hemisphere to which presentation is
directly targeted. However, because of precise timing and
control over stimulus presentation, tachistoscopic investiga-
tions are capable of answering (at least coarsely) questions
about the time course of cognitive operations. For example,
systematic variation of the input and output requirements of
tachistoscopic recognition tasks can yield important informa-
tion about the time needed to transfer information across the
hemispheres. Suppose that a train of word and nonword stim-
uli are presented to either the RVHF or the LVHF, and the
subject is asked to respond with either the right or left hand.
In the RVHF-right-hand (uncrossed) combination using word
stimuli, the left hemisphere both receives the input, presum-
ably processes the word, and programs the motor response. In
the RVHF-left-hand (crossed) combination, the left hemi-
sphere receives the input, performs appropriate processing,
and then must send the processing result to the right hemi-
sphere for motor output. Reaction time differences between
these two conditions can be used to provide an estimate of in-
terhemispheric transfer time (Bayshore, 1981). Similarly, by
manipulating other aspects of the task, the temporal parame-
ters of input, processing, and output stages of processing can
be estimated.

The use of the classical tachistoscopic VHF technique for
determining hemispheric specialization or lateralization has
waned in recent years. However, variations of the technique
have found their way into contemporary cognitive science in-
vestigations of several topics of current interest. Prominent
examples include investigations of the interface between at-
tention and memory (Bavelier, Prasada, & Segui, 1994; Fagot
& Pashler, 1995; Park & Kanwisher, 1994), cognitive pro-
cessing without awareness (Henke, Landis, & Markowitsch,
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1994; Kunimoto, Miller, & Pashler, 2001; Monahan, Murphy,
& Zajonc, 2000), and the relationship between emotion and
cognition (Kunst-Wilson & Zajonc, 1980; Murphy, Monahan,
& Zajonc, 1995; Zajonc, 1980).

Dual-Task Paradigms

One key assumption in the application of information pro-
cessing models to neuropsychological questions is that the
brain is a limited-capacity processor. Cognitive operations
consume such information-processing resources and, if suffi-
cient numbers of operations are needed simultaneously, per-
formance may suffer. The idea that limitations or conflicts in
cognitive resource allocation might have observable effects
on behavior is the basis of dual-task paradigms (Hiscock,
1986). The strategy of having subjects perform multiple
simultaneous tasks has a long tradition in the selective atten-
tion literature, and has been used in neuropsychology to eval-
uate cerebral dominance for language and other processes.

The basic paradigm is quite simple: Subjects perform
some cognitive or motor task simultaneously with a manual
task using either the right or left hand. Interpretation of results
is based on the concept of functional cerebral distance. This
principle states that the degree to which the two tasks affect
each other varies inversely with the functional distance be-
tween the cerebral regions or systems in which the cognitive
processes are represented (Hiscock, 1986; Kinsbourne &
Hicks, 1978). Functional cerebral distance does not mean the
same thing as anatomical distance, although interference ef-
fects are generally greater when the cognitive and motor tasks
depend on resources from the same cerebral hemisphere.
Hiscock (1986) provides an excellent review of the concep-
tual and methodological issues surrounding dual-task para-
digms. His review of the available literature suggests that
verbal activity disrupts right-hand performance more than it
does left-hand performance, but that nonverbal activity pro-
duces more variable effects, sometimes disrupting left-hand
performance more than right, and sometimes affecting both
hands equally. One problem in this literature is the degree to
which factors other than the nature of verbal versus nonver-
bal processing (e.g., level of task difficulty) are appropriately
controlled.

Dual-task paradigms represent fundamentally indirect
ways of evaluating processing resources, and as such, are
subject to limitations based on a lack of knowledge of how
performance changes directly reflect differences in resource
allocation. For example, it cannot be assumed that perfor-
mance on one task will increase linearly while performance on
the other will decrease linearly as resources are allocated from
one to the other (Hiscock, 1986). Also, it cannot be assumed

that the total number of resources needed to perform two tasks
concurrently is the simple sum of resources needed to per-
form them separately (Kinsbourne, 1981; Navon & Gopher,
1979). Although these methodological problems are signifi-
cant, they do not invalidate the use of dual-task paradigms to
investigate laterality questions. Hiscock (1986) provides use-
ful recommendations for improving research design in dual-
task experiments, including the use of multiple levels of task
difficulty, multiple measures of task performance, or both as a
way of establishing reasonable parameters within which the
study of verbal and nonverbal processing can proceed.

ELECTROPHYSIOLOGICAL AND
PSYCHOPHYSIOLOGICAL APPROACHES

Electrophysiological and psychophysiological approaches
make use of the measurement of bioelectrical signals by the
placement of sensitive transducers on the body surface. In
cognitive neuroscience and neuropsychology research, the
term electrophysiology has typically referred to investiga-
tions that measure brain electrical activity (the EEG) from the
scalp (or, more rarely, from the brain itself), whereas psy-
chophysiology generally refers to investigations that measure
autonomic and somatomotor activity through devices placed
on the skin. In both domains, the goal is to define and mea-
sure psychologically relevant physiological variables and to
relate them in some way to behavioral performance. The
basic level of analysis inherent in these techniques is in un-
derstanding organism-environment transactions (Cacioppo,
Tassinary, & Berntson, 2000). Cacioppo and colleagues
regard this approach as a “top down approach within the neu-
rosciences that complements the bottom-up approach of psy-
chobiology” (p. 7). 

Electrophysiological and psychophysiological investiga-
tions have exploded over the past several decades, and in-
creasing attempts are being made to integrate the available
findings with results from neuroscientific and neuropsycho-
logical investigations. Numerous recent examples of the
application of electrophysiological approaches to the study
of clinical brain disorders (Honda, Suwazono, Nagamine,
Yonekura, & Shibasaki, 1996; Newton, Barrett, Callanan, &
Towell, 1989; O’Donnell et al., 1993; Polich & Squire, 1993)
are examples of this emerging integration.

Evoked-Potential Investigations

For several decades, measurement of brain electrical activity
has been an important component of the overall information-
processing approach to cognition (Donchin, 1979). What is
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seen in the raw EEG signal is generally believed to be the
result of summated postsynaptic potentials. To measure these
signals, electrodes are placed on the scalp in standard loca-
tions and are connected to amplifiers. In special instances,
electrodes can be implanted in the brain in the context of a di-
agnostic workup (Halgren et al., 1980). Modern computer
equipment can sample the resulting electrical potentials
many thousands of time per second and can digitize the ana-
log readout for later storage and analysis.

The raw EEG signal contains multiple sources of informa-
tion, some of which are systematic, low voltage changes in
potential that are thought to reflect neural events of psycho-
logical significance. These event-related potentials (ERPs)
can be separated from the background EEG by averaging
samples of the EEG that are time-locked to the occurrence of
a specific event in the experiment, such as the presentation of
a stimulus or the initiating or a response (Fabiani, Gratton, &
Coles, 2000; Kutas & Dale, 1997). By averaging many such
samples, random aspects of the EEG that are not time-locked
to the event will average out, leaving the ERP visible. The
topographical distribution of ERPs across the brain can yield
important information about potential localization of con-
stituent processes. In most experiments, the peaks in the ERP
are described in terms of their distribution, their polarity
(positive or negative), and their latency. For example, the
N400 refers to a negative-going peak that reaches its maxi-
mum about 400 ms after stimulus presentation, while the
P300 is a positive-going peak that tops out about 100 ms ear-
lier. Alternatively, peaks can be named in ordinal latency
(such that P3 is the third positive-going peak in the wave-
form), for their scalp distribution (e.g., frontal P300), or for
the psychological processes presumed to underlie them (e.g.,
novelty P3, mismatch negativity, etc.; Fabiani et al., 2000).

Some components of the ERP are based primarily on the
physical properties of stimuli that elicit them. Because these
components are dependent on the characteristics of an out-
side stimulus, they are referred to as exogenous potentials. In
contrast, ERP components that more directly reflect cognitive
processing or some form of interaction of the subject with the
environment are referred to as endogenous potentials. It is
primarily the latter type of potential that is of interest to neu-
ropsychologists.

ERP data are used in two main ways. First, the effects of
specific independent variables or subject characteristics can
be analyzed in terms of their separate and interacting effects
on specific ERP components. Second, the topographical pat-
tern of ERPs, in terms of latency and magnitude, can be ana-
lyzed, either separately or in combination with other imaging
methods, to model the source of the waveform.

The concept of an ERP component has come to refer to
segments of the ERP waveform that covary in response to

particular experimental manipulations (Fabiani et al., 2000).
Components can be defined as peaks occurring within a cer-
tain time window after a specific event. Several classes of
components exist, and only those relevant to neuropsycho-
logical research are mentioned here. Response-related com-
ponents include the lateralized readiness potential (LRP)
that occurs in advance of executing a motor response
(Kutas & Donchin, 1980) , the contingent negative variation
(CNV) that occurs in the period before a reaction time task
(Rohrbaugh & Gaillard, 1983), and the error-related negativ-
ity (ERN) that occurs when subjects make errors in reaction
time tasks (Falkenstein, Hohnsbein, Hoormann, & Blanke,
1990). Early negative responses in the ERP waveform have
been interpreted to reflect selective attention effects. Several
studies have indicated that attended stimuli are associated
with more negative ERP between 100–200 ms after stimulus
onset (Hilliard, Hink, Schwent, & Picton, 1973). At middle
latencies, the mismatch negativity (MMN) effect is seen,
which results from subtracting the waveform to frequent
stimuli from that generated by the presentation of rare stim-
uli. The MMN, which can occur as early as 50 ms after
stimulus onset with a peak of 100–200 ms, occurs to both at-
tended and unattended stimuli, and is thought to reflect the
operation of a preattentive mismatch or novelty detector
(Naatanen, 1995). Later components include the P300, a pos-
itive peak elicited by attended task-relevant “oddball” stimuli
(Donchin & Coles, 1988; Johnson, 1988), and the N400, a
negative component that occurs between 200–400 ms post-
stimulus that appears to reflect the detection of semantic
incongruity (Kutas & Hilliard, 1980; Van Petten & Kutas,
1987).

As might be anticipated, there has been significant interest
in applying ERP methodology to the study of cognitive dis-
orders to validate claims about impairments at particular
stages of information processing in these patients. For
example, several recent investigations have been able to dis-
tinguish between components of recollection using ERP
techniques (Allan, Wilding, & Rugg, 1998; Curran, 1999),
and others have shown that false recollection is associated
with more negativity in the ERP (Curran, Schacter, Johnson,
& Spinks, 2001; Endl, Walla, Lindinger, Deecke, & Lang,
1999). In a complementary approach, there has been interest
in applying ERP methods to the study of temporal lobe dys-
function owing in part to evidence that the P300 originates in
the temporal cortex or hippocampus (E. Gordon, Rennie, &
Collins, 1990). Surprisingly, some investigations have found
normal P300 amplitude and latency in patients with amnesia
associated with mesial temporal damage (Polich & Squire,
1993; Rugg, Pickles, Potter, & Roberts, 1991). As another
example, the N400 has been examined in normally function-
ing individuals and brain injured subjects to test hypotheses
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about semantic processing (Deacon, Hewitt, & Tamney,
1998; Grunwald et al., 1999; Tachibana et al., 1999).

Scalp recording of EEG, and the ERP data that can result
from it, has certain advantages in neuropsychological re-
search. The primary strength of the approach is its excellent
temporal resolution. With sampling rates as high as 10,000 Hz
and excellent analog-to-digital resolution common of con-
temporary computers, determination of latency and peak of
ERP components can be determined with millisecond preci-
sion. One drawback, however, is that because of the electrical
properties of the skull and scalp, spatial resolution is lower
than that which can be obtained with brain imaging methods.
This issue has received a significant amount attention in re-
cent years. Dense-array electrode montages are now avail-
able, together with statistical procedures that allow for better
spatial sampling and localization (Tucker, 1993). Also, com-
bining the excellent temporal resolution of ERP with source
localization methods or functional brain imaging approaches
is emerging as a way of combining the strengths of available
paradigms (Absher, Hart, Flowers, Dagenbach, & Wood,
2000; Heinze, Hinrichs, Scholz, Burchert, & Mangun, 1998;
Kruggel, Wiggins, Herrmann, & von Cramon, 2000; Pouthas,
Maquet, Garnero, Ferrandez, & Renault, 1999). With accu-
mulating data from electrophysiological and functional brain
imaging studies, localization of the source of neural activity
responsible for characteristic components is now becoming a
reality (Alho et al., 1998; Hopf et al., 2000; Tarkka, Stokic,
Basile, & Papanicolaou, 1995; Yamazaki et al., 2000). Inva-
sive measurement of electrographic activity, when possible,
provides an exciting new approach to the study of neural
representation that complements brain imaging methods
(Allison, Puce, Spencer, & McCarthy, 1999; Nobre, Allison,
& McCarthy, 1994) because it is not subject to limitations in
spatial resolution imposed by scalp recording.

Autonomic Psychophysiology

Research paradigms exploring autonomic and somatomotor
aspects of cognitive functioning have a long history within the
parent field of psychophysiology and have enjoyed similar ap-
plication to research questions in neuropsychology and cogni-
tive neuroscience (Cacioppo et al., 2000; Sarter, Berntson, &
Cacioppo, 1996). Psychophysiological evaluation of normal
and clinical populations has contributed substantially to our
understanding of a broad array of relevant phenomena, in-
cluding visual perception (Bauer, 1984; Tranel & Damasio,
1985), memory (Diamond, Mayes, & Meudell, 1996;
McGlinchey Berroth, Carrillo, Gabrieli, Brawn, & Disterhoft,
1997), emotion (Bradley & Lang, 2000; Davidson & Sutton,
1995; Tranel & Hyman, 1990), and decision making
(Bechara, Tranel, Damasio, & Damasio, 1996). Measurement

of organism-environment interactions can make use of a
broad array of response systems, including electrodermal re-
activity, pupillary responses, electromyographic changes, car-
diovascular changes, and effects on hormonal and endocrine
regulation.

Several issues confront the neuropsychological researcher
who is considering adopting a psychophysiological approach
to investigation. One important issue is whether the research
question demands an evaluation of time-locked (phasic)
changes in physiological reactivity or an investigation of
some generalized (tonic) level of activity in a physiological
channel. An example of the former approach would involve
questions about the degree to which remembered versus for-
gotten information was associated with time-locked physio-
logical reactivity at the time of encoding (Diamond et al.,
1996; Verfaellie, Bauer, & Bowers, 1991). An example of the
latter type of question would be an investigation of the effect
of acquired brain damage on nonspecific cardiac or hormonal
activity (e.g., Emsley, Roberts, Aalbers, Taljaard, & Kotze,
1994).

A second issue concerns the selection of specific response
systems or variables for study. Measurement selection may
be governed by a number of factors, including invasiveness,
ease of use (e.g., computational intensity), and sensitivity and
specificity to the psychological constructs under study. For
example, the measurement of electrodermal activity has been
popular in a wide range of experiments because it is easy and
inexpensive to collect and simple to quantify and because
electrodermal activity is sensitive to a wide range of manipu-
lations affecting psychological effort, arousal, surprise, and
significance detection (Dawson, Schell, & Filion, 2000).
However, within this advantage is a potential limitation: Un-
less the experimental task is appropriately controlled (for ex-
ample, controlling for task difficulty across levels of arousal),
it is sometimes difficult to precisely interpret the source of in-
creased electrodermal activity. For example, just because
some studies suggest that larger electrodermal responses
occur in situations in which novel, significant stimuli are de-
tected (Bernstein, Taylor, & Weinstein, 1975) does not mean
that electrodermal responding can be simply inferentially ap-
plied as a significance detector. An excellent review of infer-
ential concepts in psychophysiological research is given by
Cacioppo et al. (2000).

A third issue concerns the selection of an approach to in-
strumentation and data analysis. There are numerous ways to
collect psychophysiological data, and the fact is that many
neuropsychologists and cognitive neuroscientists might
want to apply these methods without the typical didactic or
empirical training that would characterize the mainstream
psychophysiological researcher. Consensus statements exist
regarding appropriate methods for instrumentation, recording,
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analysis and reporting of results for a number of response sys-
tems (Fowles et al., 1981; Jennings et al., 1981; Picton et al.,
2000; Shapiro et al., 1996), and researchers should consult
these statements when planning experiments.

A final issue has to do with the fact that changes in specific
autonomic or somatomotor response systems do not occur in
isolation, but instead occur as part of a complex set of re-
sponses. So, for example, manipulations that might increase
electrodermal responding might also be expected to have ef-
fects on blood pressure, heart rate, respiration rate, or other
psychophysiological parameters. Within individuals, these
various responses might correlate poorly with one another
(particularly at low overall levels of arousal) so that conclu-
sions about the individual’s cognitive or affective state might
be different depending upon which response system is as-
sessed. Complicating matters is that individuals tend to re-
spond in similar ways to different stimuli, a phenomenon
known as individual response stereotypy (Engel, 1960; Lacey
& Lacey, 1958). Such issues need to be taken into account
when evaluating responses of a given magnitude, particularly
in group designs.

FUNCTIONAL BRAIN IMAGING

Basis of Functional Brain Imaging

For our purposes, the term functional brain imaging refers to
any technique that provides information about neurochemical
or metabolic activity in the brain, particularly when the study
of such processes is applied to an understanding of cognitive
activity (Nadeau & Crosson, 1995). Such techniques include
direct imaging of metabolic processes by radioisotope tag-
ging of glucose uptake (e.g., [18F]fluorodeoxyglucose PET or
FDG PET), indirect imaging of metabolism via markers of
cerebral blood flow (e.g., [99mTc]-hexamethyl-propylene-
amine-oxime single photon emission computed tomography
or HMPAO SPECT; functional magnetic resonance imaging
or fMRI), and imaging of neurotransmitters (e.g., [18F]fluo-
rodopa PET; Nadeau & Crosson, 1995). In general, these
techniques image the effects of neuronal energy expenditure,
which tends to be greatest at the terminus of the axonal ar-
borization and in the dendritic tree. Thus, resulting images do
not reflect activity in the cell bodies per se, but at the projec-
tion site (Nadeau & Crosson, 1995). This is a rapidly expand-
ing field within neuroscience, with emerging applications to
the scientific study of basic cognitive processes and to clinical
research including diagnosis and outcomes assessment.

The ability to image the human brain has been a possibility
for many years, beginning with the advent of the X-ray
computed tomography (CT). From this basic technique,

which allowed researchers to obtain structural images of the
brain in order to determine areas of abnormalities based on
knowledge of anatomy (Papanicolau, 1998; Perani, 1999),
technology has advanced considerably. More sophisticated
techniques have enabled the acquisition of anatomical images
with clearer resolution, providing investigators with impor-
tant information when determining correlations or associa-
tions between neuropsychological and neurological deficits
and dysfunction in localized brain regions. In the past two
decades, advances in functional brain imaging have occurred
at such a rapid pace that this area can be said to be one of the
most rapidly developing in all of neuropsychology and cogni-
tive neuroscience. The opportunity to image in vivo activity
of the intact brain provides an exciting alternative to studying
neuropsychological function exclusively from the viewpoint
of a damaged or lesioned system. Some of the limitations of
the ablation approach (e.g., functional reorganization after
damage) are eliminated by the opportunity to study the
normal, working brain; as we shall see, however, functional
imaging methods have limitations of their own. In many
areas of inquiry, results from functional imaging studies have
served to augment, refine, and constrain the results of le-
sion and ablation studies, and thus have provided a further
basis for determining the relationship between structure and
function.

All functional imaging approaches depend on two basic
steps: recording (registration) and representation-construc-
tion (Papanicolau, 1998). In the simplest possible terms,
some type of physiological (e.g., electromagnetic) signal is
recorded from the imaged object (brain) by a sensitive device
(scanner), and the resulting signal pattern is represented in
terms of a model (atlas) of the object constructed from known
parameters. Neither recording nor representation is a perfect
reflection of reality, so that the results of such studies are, by
definition, approximations of what actually occurs in the
brain. Papanicolau (1998), in an incisive description of the
basis of functional imaging, suggests that what emerges from
this enterprise depends on (a) the relationship between the
object and the electromagnetic signal derived from it, (b) the
specific characteristics of the recording instrument, and (c)
the intentions and methods employed by the user of the de-
vice. An understanding of the contribution that functional
imaging has made (and can make) to neuropsychological
research requires at least a basic appreciation of these three
domains. Any large-scale functional imaging enterprise
depends upon the interdisciplinary cooperation of a number
of professionals, including physicists, radiologists, neurolo-
gists, neuropsychologists, cognitive scientists, mathemati-
cians, and statisticians, among others. Decisions about which
functional imaging approach to use or whether to use
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functional brain imaging at all are dependent upon many fac-
tors, including cost and availability of appropriate equip-
ment, spatial and temporal resolution, intrusiveness of the
scanning environment and repeatability of the scanning oper-
ation, and artifact susceptibility (Nadeau & Crosson, 1995).
Regardless of the specific choices that are made, neuropsy-
chologists are particularly well positioned to contribute such
functional imaging studies because of their expertise in cog-
nitive task design and behavioral measurement.

In a typical functional imaging study, metabolic aspects of
brain activity (e.g., glucose utilization) are measured indi-
rectly while the subject performs a cognitive task. The result-
ing pattern of activity is then registered and reconstructed
anatomically based either on the use of a stereotactic ap-
proach (Talairach & Tournoux, 1988) or by an individual
approach based on the establishment of skull-based markers
or fiducials (Mazziotta et al., 1982; Shukla, Honeyman,
Crosson, Williams, & Nadeau, 1992).

One key aspect of functional imaging studies is the manner
by which results are visually displayed and interpreted. For
those unaccustomed to viewing such images, it is critical to be
mindful of the distinction between images that represent some
direct or indirect readout of metabolism or CBF and images
that represent a statistical map of differences in activity be-
tween two conditions. In many instances, what is displayed in
an image does not bear a simple or direct relationship to actual
metabolic activity or CBF occurring at a specified location; in-
stead, what is displayed are probability values that describe,
on a voxel-by-voxel basis, the likelihood that differences in
activity between, say, a cognitive activation condition and a
control or resting state occurred by chance.An example of this
can be seen in Figure 12.3. This image was taken from a recent

study of memory function we recently completed using a
3 Tesla magnet (Loftis et al., 2000). Here, subjects alterna-
tively engaged in two tasks, one in which they were asked to
remember a series of complex pictures (memory condition),
and the other in which a single picture was simply repeated
over and over (repeat condition).After a number of initial data-
analytic steps, signal intensities recorded during these two
conditions were compared on a voxel-by-voxel basis using a
Bonferroni-corrected t test. The resulting image (Figure 12.3)
depicts chance probabilities that depicted voxels were more
active in the memory condition than in the repeat condition,
using a level of significance of p < .00001. Thus, the image is
a graphic presentation of probability values, not a direct read-
out of blood flow or signal intensity. This is important to keep
in mind, because such images are often compelling (or sexy, so
to speak) and can lead to inaccurate interpretations if the reader
does not clearly understand what he or she is viewing.

A number of functional imaging techniques now exist,
each of which has its own unique methods of registration and
reconstruction. In the following sections, we describe proce-
dural aspects of the major functional imaging paradigms, and
we describe their strengths and weaknesses. Regardless of
paradigm, the ability of the investigator to develop an effec-
tive and well-controlled cognitive task can be thought of as
the rate-limiting step of neuroimaging research.

Positron-Emission Tomography (PET)

Rationale

PET imaging depends upon the introduction of a positron-
emitting isotope created by bombardment of stable chemical
elements with protons (Papanicolau, 1998). Such isotopes

Figure 12.3 Results of voxel-by-voxel t test comparisons of a memory condition (remember
five pictures) and a repeat condition (remember one picture presented five times), from Loftis
et al. (2000).

schi_ch12.qxd  8/2/02  2:53 PM  Page 307



308 Neuropsychology

can be combined with other elements to create complex
molecules that can substitute for naturally occurring com-
pounds like water, glucose, or different neurotransmitters.
The resulting compounds are called tracers because their
tendency to shed their positive charge in the form of
positron emissions can be detected by appropriate imaging
devices and can thus reveal their relative position and con-
centration in different regions of the brain (Papanicolau,
1998). Typical compounds include oxygen-labeled (15O)
water, or 2-fluoro-2-deoxy-8-glucose (FDG). What is im-
aged in PET is the collision between an escaping positron
and an electron in the adjacent environment; when this in-
teraction occurs, both are annihilated and converted to a pair
of high-frequency photons that move at equal speed in
diametrically opposite directions. The emitted photons con-
stitute the electromagnetic signal imaged in PET, and the
surface distribution of such signals can be reconstructed to
build a model of regional activity.

PET using FDG makes use of a ligand that is taken up by
the glucose transport mechanism and that then remains
trapped until cleared by relatively slow-acting metabolic
processes. It produces high-quality images, but the slow rate
of FDG uptake requires the subject to engage in the task for a
long (30–40 min) time. Although this is a disadvantage, the
slow rate of absorption makes it possible for the subject to
engage in the cognitive task outside the scanner and to be
moved later to the scanning environment. In contrast,
15O-PET uses a radiotracer that is actively circulating within
the volume of cerebral blood and that diffuses freely into the
cerebral tissue, necessitating much briefer task and scanning
times (Nadeau & Crosson, 1995). With this technique, multi-
ple tasks are possible in the same experimental session.

Applications

PET is a leading methodology for the study and measurement
of physiological properties within the human brain (Perani,
1999), and is one of the earliest functional imaging tech-
niques to have been employed in studies of cognitive func-
tion (Raichle, 2001; Reiman, Lane, Petten, & Bandettini,
2000). The PET technique can be used to measure a variety of
different functions, including regional cerebral blood flow
(rCBF), glucose metabolism, oxygen consumption, and re-
gional neurotransmission (Paulesu, Bottini, & Frackowiak,
1997; Perani, 1999; Reiman et al., 2000). Within neuropsy-
chology, PET is most commonly utilized for studying blood
flow or glucose metabolism, because these are properties that
reflect regional neuronal activity. From the cellular level, it is
important to note that blood flow to a particular brain region
can increase or decrease in response to changes in cellular

activity (Buckner & Logan, 2001; Raichle, 2001). Studies
with rCBF usually focus on brain activation, in which sub-
jects engage in a particular cognitive task (Perani, 1999) that
is thought to call for activity in specific structures or systems.
Inferences from these paradigms are based on the idea that
when a cognitive function is performed, blood flow will in-
crease in the region responsible for that activity (Frith &
Friston, 1997; Papanicolau, 1998). The ability of the PET
scanner to detect radiation density is equal throughout the
brain, so that the obtained signal can be used in a way that al-
lows for comparisons of rCBF across different regions. A
PET scanner takes a series of scans during an experiment,
each lasting for approximately 30 s (Papanicolau, 1998). By
averaging across the scans, researchers can track patterns of
neuronal activity in response to behavioral performance.

Neuropsychological investigations of rCBF involving PET
have included studies of working memory (Baddeley, 1998;
Jonides et al., 1997; Smith, Jonides, & Koeppe, 1996), long-
term memory encoding and retrieval (Beauregard, Gold,
Evans, & Chertkow, 1998; Cabeza et al., 1997; Tulving, Habib,
Nyberg, Lepage, & McIntosh, 1999; Ungerleider, 1995), lan-
guage (Bookheimer et al., 1998; Cabeza & Nyberg, 2000;
Gabrieli, Poldrack, & Desmond, 1998; Warburton, Price,
Swinburn, & Wise, 1999), attention (Lane et al., 1998), and
mental imagery (Alivisatos & Petrides, 1997; Vingerhoets
et al., 2001). Recently, several group studies have evaluated
task-related disturbances in regional CBF in patient popula-
tions (Backman, Robins-Wahlin, Lundin, Ginovart, & Farde,
1997; Perani, 1999; Price & Friston, 2001; Zakzanis, 1998),
although use of these paradigms in patients can be difficult
depending on level of complexity of the particular task.

In a typical experiment, participants perform a control
task designed to produce a baseline level of activation against
which the experimental task is compared. Researchers then
average responses and activation sites across participants in
order to interpret and make conclusions regarding activated
regions (Raichle, 1997). Sophisticated analyses, the descrip-
tion of which is beyond the scope of this chapter, are utilized
in an effort to determine significant activation patterns while
controlling for interparticipant differences and variability, as
well as incorporating specific hypothesis testing (Perani,
1999).

Development of the appropriate control condition is criti-
cal to interpretation of the overall experiment, and great care
is needed to equate control and experimental conditions on as
many input, processing, and output variables as is possible
while varying the specific cognitive process under investiga-
tion. For example, an appropriate control task in a picture
naming experiment would attempt to equate as many stimulus
parameters as possible, would require the same or similar
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response modality, and would present the subject with a task
of equal difficulty that did not engage the specific naming
mechanism under investigation. Obviously, these require-
ments are often difficult to satisfy completely. Although
it might seem reasonable to compare the experimental task
with a simple rest condition in which the participant is asked
to do nothing, such an approach is not without its complex-
ities. Do nothing instructions might be variably interpreted
by different individuals, leading to poorly controlled activa-
tions in the control condition. For example, one participant
may think anxiously about her upcoming examination,
while another might be reliving last night’s date with much
excitement, and still another might take a short nap. If this
variability occurs, one cannot say that this so-called control
condition controls very much at all.

Still, resting state studies, in which subjects are scanned
without having to perform a task or function, have provided
neuropsychological researchers with important information
regarding structure and function. In particular, PET scans
conducted on patients with specific lesions (i.e., aphasic pa-
tients with lesions to Broca’s area, amnesic patients with me-
dial temporal lobe lesion) have allowed researchers to learn
more about regional blood flow in impaired brain regions
(Price & Friston, 2001). Many resting-state paradigms have
utilized PET to study the metabolic properties of select brain
regions. Because glucose metabolism is indirectly related to
blood flow and can interact with certain types of labeled trac-
ers, it is also possible to study metabolic properties of injured
brain tissue. An example is in the case of Alzheimer’s
disease, in which studies have found abnormal rates of glu-
cose metabolism in temporal-parietal brain regions (Perani,
1999).

Strengths and Limitations

Functional imaging using PET has inherent advantages and
disadvantages. Assuming a sufficient number of detectors in
the imaging system, PET imaging has relatively high spatial
resolution (about 4 mm), meaning that its ability to accu-
rately capture brain structures is superior to that of some
other imaging techniques (Papanicolau, 1998). With PET
CBF techniques such as 15O, it is relatively simple to obtain
absolute measures of CBF. However, temporal resolution,
(i.e., the ability to evaluate rapidly evolving cognitive
processes) is less than optimal for many experimental para-
digms (Buckner & Logan, 2001; Papanicolau, 1998). Like
many of the other functional imaging techniques that are dis-
cussed in this chapter, PET scanning is incapable of differen-
tiating the type of physiological activity that is occurring.
Essentially, it is impossible to know whether the activation

patterns represent excitatory or inhibitory neuronal transmis-
sion (Buckner & Logan, 2001). The net result, which is de-
picted in the final image, likely reflects a combination of both
excitatory and inhibitory effects. One expensive disadvan-
tage of 15O-PET is the need for an adjacent cyclotron due to
the short half-life of the radiotracer.

Single Photon Emission Computed
Tomography (SPECT)

Rationale

Single photon emission computed tomography (SPECT) is a
technique for studying radioactive tracers introduced into the
body, usually by intravenous injection or inhalation. With X-
ray CT scanning, the signal used is based on the release of
photons, transmitted from an X-ray source, that have passed
through the body. The signal detected is the decay of radioac-
tive nuclides inside the body, derived from injection or
inhalation of a tracer and distributed throughout the blood-
stream. Typical isotopes used in SPECT imaging include
xenon 133, technetium 99m-HMPAO, and receptor ligands
labeled with iodine 123 (Lassen & Holm, 1992).

HMPAO SPECT makes use of a ligand that binds to en-
dothelial cell membranes and is rapidly transported across
the membranes and altered so that it cannot back-diffuse into
the blood (Nadeau & Crosson, 1995). Because the ligand is
accumulated by endothelial membranes, it serves as an am-
plified measure of CBF with good signal-to-noise ratio. An
advantage of the technique is that because the ligand is
rapidly absorbed, short task times are possible. Another ad-
vantage is that because the ligand remains stably trapped for
several hours, a participant can be injected, can engage in a
cognitive task outside the scanner, and can then be later
moved to the scanner for imaging. HMPAO SPECT and FDG
PET are the only imaging techniques that allow the subject to
perform the cognitive task outside the potentially intrusive
scanner environment.

Applications

In recent years, SPECT imaging has been widely used in
the evaluation of metabolic correlates of seizure activity (Lee
et al., 1997; Mastin et al., 1996), and has also been useful in
evaluating disordered regional CBF in head injury (Goldenberg,
Oder, Spatt, & Podreka, 1992; Varney et al., 1995), dementia
(Costa, Ell, Burns, Philpot, & Levy, 1988; Parnetti et al., 1996),
and other neurological syndromes (Benson et al., 1996;
Chatterjee et al., 1997; Giroud, Lemesle, Madinier, Billiar, &
Dumas, 1997) and psychiatric disorders (Camargo, 2001;
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Kotrla & Weinberger, 1995; Toone, Okocha, Sivakumar, &
Syed, 2000). The psychiatric literature contains several excel-
lent examples of the use of SPECT for imaging of neurotrans-
mitter system activity rather than CBF (Bryant & Jackson,
1998; Heinz et al., 2000; Raedler et al., 1999).

Strengths and Limitations

One strength of SPECT is that it is relatively inexpensive and
relies on readily available technology. It has a moderately
high signal-to-noise ratio, but compared to other imaging
methods, SPECT has inferior spatial resolution (6–7 mm) be-
cause of a high degree of attenuation and scatter. One distinct
advantage is that the cognitive task used to generate the meta-
bolic image is conducted outside the scanner and is thus not
subject to potentially distracting stimuli in the scanner envi-
ronment or to the restrictions on movement or vocalization
imposed particularly by fMRI. Currently, SPECT is used less
commonly than are PET or fMRI in neuropsychological stud-
ies of associations between physiological properties and be-
havior. As with PET, it can be used during activation studies,
and as a resting indicator of cerebral blood flow. SPECT is
mainly used for measuring rCBF, and, as a result, its clinical
applications have most commonly been in providing evi-
dence of disturbed rCBF in various patient groups as a way of
validating behavioral hypotheses.

Functional Magnetic Resonance Imaging (fMRI)

Rationale

The basic principle behind fMRI is based on the fact that
changes in neuronal activity produce alterations in oxygen
content of local tissue (Papanicolau, 1998; Reiman et al.,
2000). Because this increase in blood flow is disproportionate
to change in oxygen consumption, the overall content of
deoxyhemoglobin is also altered (Raichle, 2000). Reduction
in hemoglobin triggers a vascular reaction resulting in an
oversupply of oxygenated blood to tissue some seconds later
(Papanicolau, 1998). Through effects on hydrogen atoms,
this overcompensation results in changes in the MR signal,
and this can be estimated and captured as an image. Changes
in localized magnetic field properties due to alterations in the
ratio of oxyhemoglobin and deoxyhemoglobin are thus de-
tected through fMRI. Although many techniques are used to
measure the hemodynamic response, the most commonly uti-
lized is the blood oxygen level dependent (BOLD) contrast
signal (Reiman et al., 2000; Turner, Howseman, Rees, &
Josephs, 1997). Other techniques, including use of blood
flow and blood volume, are also utilized (Reiman et al.,
2000).

Applications

Currently, fMRI is the leading technique for imaging local
blood flow in conjunction with performance on neuropsycho-
logical or cognitive tasks. In the recent literature, fMRI
investigations have played a critical role in lesion-deficit par-
adigms, taking localization of function to a new level. Like
PET scanning, fMRI paradigms have been used to investigate
a wide variety of cognitive functions (see Cabeza & Nyberg,
2000 for review), including short-term working memory
(Baddeley, 1998; Casey et al., 1995; D’Esposito et al., 1995;
D’Esposito, Postle, & Rypma, 2000), encoding and retrieval
into long-term memory (Gabrieli, 1998; McIntosh, 1998),
language generation and comprehension (de Zubicaray et al.,
1998; Demb et al., 1995), object recognition (Bartels
& Zeki, 2000; Courtney & Ungerleider, 1997; R. Epstein &
Kanwisher, 1998), attention (LaBar, Gitelman, Parrish, &
Mesulam, 1999; Mangun, Buonocore, Girelli, & Jha, 1998),
and emotional processing (Crosson et al., 1999; Maratos,
Dolan, Morris, Henson, & Rugg, 2001; Rama et al., 2001).
Functional MRI is also enjoying increasing use in studies of
brain-impaired patients (Monchi, Taylor, & Dagher, 2000;
Rees et al., 2000) and in studies of recovery of function after
brain injury (Poldrack, 2000).

Strengths and Limitations

Functional MRI has significant advantages, including the di-
rect mapping of blood-flow images onto anatomic images,
the fact that no radioactive tracer is involved, and the relative
speed with which images can be acquired. Compared to other
imaging methods, the signal-to-noise ratio in BOLD fMRI
is quite small, though this is becoming less of a limitation
with the development of sophisticated signal-averaging tech-
niques (Bandettini, Jesmanowicz, Wong, & Hyde, 1993;
G. McCarthy, Puce, Luby, Reiman, Lane, Van Petten, &
Bandettini, 2000). Another limitation is the intrusiveness of
the scanner environment and its possible effects on cognitive
processing. Although the spatial resolution associated with
fMRI is thought to be excellent and one of the highest among
functional neuroimaging techniques, temporal resolution,
which refers to the ability of the image to reflect adequate
sequences of activation, is a significant limitation. Neural
activity typically occurs 5–8 s before blood flow is actually
observed and recorded, meaning that brain activity (hemody-
namics) is longer than the preceding neuronal activity (Frith
& Friston, 1997). Essentially, this means that the peak of an
activation signal occurs approximately 5–10 s after presenta-
tion of an experimental stimulus (Bandettini, Rasmus, &
Donahue, 2000; Buckner & Logan, 2001; Perani, 1999). This
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results in what is often referred to as temporal blurring, indi-
cating that it is somewhat difficult to determine the exact se-
quence of events that happen in response to a probe (i.e., a
cognitive task). Investigators have developed techniques to
account for this phenomenon, which is referred to as the he-
modynamic response function (Miezin, Maccotta, Ollinger,
Petersen, & Buckner, 2000).

In addition to the problem of the delayed hemodynamic
response, one of the major limitations of fMRI is its high de-
gree of sensitivity to movement artifact. Even slight head
movements can produce artifact. There are also artifacts as-
sociated with changes in air flow (inside the scanner), as well
as with movement associated with cardiac and respiratory
processes. As a result, fMRI paradigms are restricted to ex-
periments that contain minimal movement—or in an ideal
situation, experiments that contain no movement at all. This
presents difficulty for studies designed to image higher-order,
complex cognitive properties. Because many experiments
have to be performed silently by the participant, investigators
can never be certain that participants are actually engaging in
the appropriate task. To deal with this, behavioral measures
are often taken off-line, so to speak, to ensure that the pre-
dicted behavioral effect is obtained. Also, because perfor-
mance measures are frequently not taken during actual
scanning, there is often no direct way of quantifying the rela-
tionship between successful performance and brain activa-
tion. It is possible, for example, that participants may become
more practiced or skilled at the task through the many exper-
imental repetitions that are offered during scanning. To deal
with this problem, many experiments contain a training phase
prior to the scanning session designed to stabilize task per-
formance prior to the imaging session.

Functional MRI can be used to study a variety of different
cognitive and neuropsychological functions. However, some
brain regions are more susceptible to artifact and other types of
noise than to others. Regions in close proximity to sinuses and
air-fluid interfaces, such as the anterior temporal lobes and
orbitofrontal cortex, are often difficult to image because of a
relatively high signal-to-noise ratio (Buckner & Logan, 2001).
The exact level of resolution depends on the particular
scanning equipment utilized, with more powerful scanners
(i.e., more powerful magnet) producing images with better
spatial and temporal resolution (Papanicolau, 1998), but
also producing increases in corresponding artifact.

Similar to PET, fMRI is also unable to provide information
concerning physiological properties of brain tissue (Buckner
& Logan, 2001). An image that captures brain activity is de-
picting activation of a particular region or structure. What is
unknown is what type (i.e., excitatory or inhibitory) of activa-
tion this is reflecting. This kind of information is vital to

delineating cognitive networks in particular for determining
the specific effect one region or structure has on another.

Behavioral Task Design in fMRI

In a typical fMRI paradigm, participants perform a be-
havioral task aimed at engaging the neuropsychological
processes in question. As with PET scanning, these are alter-
nated with periods of control tasks, which serve as a refer-
ence to which activation in the target tasks is compared
(Aguirre & D’Esposito, 1999; Frith & Friston, 1997; Worden
& Schneider, 1995). Several common experimental methods
for task administration have been developed. One method in-
volves a blocked paradigm, in which trials collectively de-
signed to tap a particular cognitive process are presented.
Blocks are alternated with control trials, designed to capture
identical properties as the experimental trials except for the
process of interest, and images are taken repeatedly during
both conditions (Aguirre & D’Esposito, 1999). Subtracting
images obtained in the control condition from the experimen-
tal trials or correlating brain activity with a theoretical curve
produces an activation map or image that reflects regional
differences in activity during experimental and control condi-
tions. Limitations of this type of design include the fact that
subjects may become able to anticipate trials because of the
successive, repetitive nature of the task, and therefore may
engage alternative processing strategies that confound what
would be expected with a more pure activation pattern. An
alternative approach, called event-related fMRI (ER-fMRI)
utilizes task design in which experimental and control trials
are presented alternately and at random to subjects so that the
hemodynamic response to individual items or events can be
measured (Aguirre & D’Esposito, 1999). The advantage of
ER-fMRI is that activation can be contrasted across trial
types, in addition to averaging across trials (as is done in
blocked paradigms). For example, ER-fMRI might be used to
study hemodynamic response to the encoding of items as a
function of whether they are later recalled on a delayed mem-
ory test. Studies directly contrasting ER-fMRI with tradi-
tional blocked experiments have revealed differing patterns
of activation, suggesting that at the very least, different
strategies were used (Bandettini et al., 2000).

Magnetoencephalography (MEG)

Rationale

Except for neurotransmission, all forms of signal activity in the
brain result in potentially measurable electrical currents. The
pattern of activation or neuronal signaling that accompanies
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psychological processes is contained in seemingly random
electrical activity, but gives rise to two forms of electromag-
netic energy that can be captured and recorded outside the
head. One of these types of energy, magnetic flux, can be mea-
sured through magnetoencephalography (Papanicolau, 1998).
Any current is associated with a magnetic field perpendicu-
lar to its direction. The magnetic field strength is propor-
tional to the source currents that generate it, and it dissipates
as a function of the square of the distance from the current
source. The magnetic flux lines that emanate from the head
correspond primarily to dendritic currents in synchronized
sets of cells; this is what is imaged during MEG.

The shape of the surface flux distribution can be measured
by detectors called magnetometers, which are loops of wire
placed parallel to the head surface in which current as mag-
netic flux lines thread through the loop. If sufficient numbers
of such detectors are placed at regular intervals over the en-
tire head surface, then the entire flux distribution created by a
brain activity source can be determined (Papanicolau, 1998).
Because the measured magnetic field strengths are so small,
the magnetometers that record them must offer practically
no resistance; in other words, they must be superconduc-
tive. Superconductivity is often achieved by cooling the
wires to extremely low temperatures (e.g., about 4° Kelvin).
The induced current in superconductive magnetometers is
weak and must be amplified. Special amplifiers called
SQUIDS (superconductive quantum interference devices)
are used for this purpose. A modern MEG apparatus may
contain nearly 150 magnetometers arranged so as to cover
the entire head surface for simultaneous recording of mag-
netic flux at all surface points simultaneously.

One of the primary goals of MEG imaging is source local-
ization (i.e., localizing the neural source that is generating par-
ticular characteristics of the observed distribution of magnetic
flux). A detailed description of how this is accomplished is

beyond the scope of this chapter, although knowledge of the
basic dipolar characteristics of the magnetic flux distribution
allow the dipole source to be localized from the pattern of cur-
rent induced in the magnetometer array.After such an estimate
is derived, it can be coregistered with structural MRI to pro-
vide localization in brain-anatomical terms. Coregistering re-
sults from MEG with structural brain images is known as mag-
netic source imaging (Ganslandt, Nimsky, & Fahlbusch, 2000;
Lewine & Orrison, 1995; Roberts, Poeppel, & Rowley, 1998).

Applications

MEG and magnetic source imaging have become increas-
ingly popular in recent years and have been applied to a
variety of problems in neuropsychology and in cognitive
neuroscience. For example, it has been applied to the lateral-
ization-localization of language functions in surgical plan-
ning (Breier, Simos, Zouridakis, Wheless et al., 1999;
Roberts, Ferrari, Perry, Rowley, & Berger, 2000), to localiza-
tion of memory processes in the temporal lobe (Castillo et al.,
2001), and elucidation of the processes underlying visual ob-
ject recognition (Halgren, Raij, Marinkovic, Jousmaki, &
Hari, 2000), normal and disordered reading (Breier, Simos,
Zouridakis, & Papanicolaou, 1999; Simos et al., 2000), and
attention (Assadollahi & Pulvermuller, 2001).

Choosing a Functional Imaging Strategy

The researcher who contemplates using functional brain imag-
ing as an investigative tool must consider a broad range of fac-
tors when choosing a particular strategy. Assuming unlimited
availability, as well as the extensive financial and personnel re-
sources that such techniques often require, the researcher is
faced with evaluating the relative strengths and weaknesses of
available methods. A summary of these strengths and weak-
nesses, adopted from the excellent review by Nadeau and
Crosson (1995), is presented in Table 12.1. The notion of

TABLE 12.1 Advantages and Limitations of Functional Imaging Techniques

O-PET HMPAO SPECT BOLD fMRI

Cost High Low Moderate
Availability Limited Widespread Potentially widespread
Spatial resolution Maximum < 4 mm FWHM, Maximum 6–7 mm Maximum < 1 mm

in practice 16 mm
Temporal resolution 1–2 min 3–4 min Seconds
Number of studies per session Maximum 8–10 Maximum 3–4 Unlimited
Signal-to-noise ratio Moderate Moderate Low
Measurement parameter Potential for actual CBF; in Relative counts Degree to which CBF is

practice, relative counts entrained by task
Intrusiveness of environment Moderate None High
Susceptibility to movement Low Low High
Technical support needed High Low High
State of development Advanced Limited Limited

Note. Adapted from Nadeau, S. E., & Crosson, B. (1998). A guide to the functional imaging of cognitive processes. Neuropsychiatry, Neuropsychology, and
Behavioral Neurology, 8, 143–162.
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conducting cross-platform research that utilizes multiple
imaging modalities or that combines an imaging approach
with lesion studies is becoming increasingly popular. System-
atic use of the cross-platform approach will be necessary for a
full understanding of the comparability of these different
methods.

Advances in functional brain imaging have continued to
augment lesion-deficit models and behavioral studies of nor-
mal human cognition. As our knowledge of complex neu-
ropsychological functions increases, so does the technology
capable of imaging them. The bridges between cognitive psy-
chology, neuropsychology, and neuroimaging will continue
to strengthen, and should yield exciting new discoveries in
the next decade.

SUMMARY AND CONCLUSIONS

The techniques and approaches described in this chapter re-
flect remarkable evolution over the past few decades. Each
approach has identifiable strengths and weaknesses, and
each seems particularly well-suited for studying a limited
range of questions. The particular strategy chosen for a re-
search investigation is partly driven by logistic factors and
partly by the suitability of the approach for the research do-
main. In the next decade, the limitations posed by individ-
ual approaches should be made less significant by the use of
cross-platform approaches that utilize multiple methodolo-
gies to address specific research questions. For example,
combining functional imaging and lesion-based approaches
within the same research program can allow the researcher
to draw broader conclusions. In the next decade, additional
attention will be paid to issues of external validity (general-
izability) of findings and to evaluation of the real-world
significance of results. Continued attempts to understand
how results from one method map onto others will be un-
dertaken. Ongoing interdisciplinary collaboration between
neuropsychologists, neuroscientists, cognitive scientists,
physicians, and other professionals will continue to yield
exciting new approaches to solving research problems in
neuropsychology.
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Psychologists from many different specialty areas are in-
volved with evaluation. Often, people are what psychologists
evaluate. Clinical psychologists evaluate people in terms
of whether they have some psychopathology or another.
Industrial-organizational psychologists frequently develop
systems for personnel evaluation. Educational psychologists
are commonly concerned with the evaluation of student per-
formance or with teacher performance, which is a specialized
kind of personnel evaluation. But entities other than people
can be evaluated. For example, consumer or human-factors
psychologists sometimes evaluate products.

Often, the entity that is evaluated is some sort or program
or policy. In fact, psychologists of many of the discipline’s
subareas are involved in the evaluation of policies and pro-
grams. Consider but a few of the myriad possible examples.
Many industrial-organizational psychologists have attempted
to evaluate training programs that are offered to an organiza-
tion’s employees (e.g., Eckert, 2000). Educational psycholo-
gists have evaluated a variety or educational policies and
programs. These range from preschool programs such as
Head Start (Zigler & Muenchow, 1992) to postsecondary
programs such as the Hope Scholarship program (Henry &
Rubenstein, 2002). Clinical and counseling psychologists
have evaluated a wide range of interventions, from general
psychotherapy (e.g., Smith & Glass, 1977) to specialized

forms of therapy for specific disorders (e.g., Borkovec &
Ruscio, 2001). Psychosocial interventions also include both
prevention and treatment (see, e.g., Christensen & Heavey,
1999, for reviews of both prevention and treatment in the area
of marital relations). Social psychologists have evaluated in-
terventions that are designed to improve a wide array of so-
cial problems. These include prejudice (Aronson, Blaney,
Stephan, Sikes, & Snapp, 1978), the transmission of sexually
transmitted diseases (e.g., Alstead et al., 1999), and binge
drinking among college students (e.g., Schroeder & Prentice,
1998).

Whatever their specialty area, when psychologists evalu-
ate a program or policy, the question of impact—of the inter-
vention’s effects—is often at center stage. Examples abound.
Does a particular type of training increase employee’s perfor-
mance? Does preschool increase children’s subsequent acad-
emic performance? Do certain types of cooperative learning
arrangements in schools reduce racial prejudice? Does a spe-
cific form of cognitive-behavioral therapy alleviate general-
ized anxiety disorder? It appears that causal questions usually
are central in evaluations of the kinds of interventions that are
of interest to psychologists. Given the importance of causal
questions, a major focus of this chapter is on key methods for
estimating the effects of policies and programs in the context
of evaluation.
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Causal questions are not, however, the only kind of con-
cern that arises in program and policy evaluation. For exam-
ple, funders sometimes want to know whether the authorized
services have been delivered to the target population. Some-
times, demands for accountability do not require the typically
intensive, difficult, and costly methods of causal analysis. In
some cases evaluation may be carried out in service of pro-
gram managers’ needs for ongoing feedback to help guide
program administration and improve program services and
operations, and causal methods may not be appropriate.
Given that evaluations should sometimes emphasize issues
other than causal questions, this chapter attends in part to
other kinds of methods that may be used for evaluation.

Whether an evaluation focuses on estimating a program’s
effects, the evaluator must consider a set of issues that rarely
arise for psychologists working in other areas. Chief among
these is that evaluators may need special skills to identify the
right evaluation questions. Unlike more basic research, eval-
uation questions do not necessarily derive from past theory
and research leavened with the researcher’s interests. Unlike
some areas of applied research, there often is not a single
client whose concerns can legitimately drive the study.
Rather, there are usually multiple groups, with at least par-
tially competing interests, who all have some legitimate
interest in the evaluation. In addition, questions are likely to
arise as to whether a causal analysis or some alternative will
have a better chance of aiding social or organizational im-
provement. Against this background, identifying the best
questions to drive an evaluation can require skillful analysis
of stakeholder needs, combined with a sort of policy analytic
perspective. Accordingly, this chapter deals also with this
ancillary topic, which goes beyond the scope of most
methodology treatises.

Finally, this chapter briefly considers possible future de-
velopments in the field of evaluations. Four general areas of
potential methodological developments are identified. Two
additional challenges for the field are discussed, along with a
possible common solution. (As an aside, although the re-
mainder of this chapter speaks to the evaluation of policies as
well as programs, for the sake of simplicity the terms pro-
gram evaluation or evaluation will generally be used.)

THE CONCEPT OF CAUSALITY IN 
PROGRAM EVALUATION

As just noted, causal questions abound in the evaluation of
programs and policies. Knowing what effects, if any, a pro-
gram has is critical for assessing the program’s merit and
worth. Whether an organization views an employee training

program positively depends, for example, on whether the
program improves the performance and retention of its
employees. Although this chapter focuses largely on methods
of causal analysis, it is important to recognize that these
methods are not always absolutely necessary in order to
judge the merit and worth of something. Indeed, when things
other than policies and programs are evaluated, causal analy-
ses may be far less common. In product evaluations, such as
Consumers Reports’ or PC Computing’s assessments of com-
puters, the methods of causal analysis are not generally used.
Instead, the evaluator assesses the computer with respect to
certain (presumably) valued attributes, such as processing
speed, multimedia quality, upgradability, and technical sup-
port. Admittedly, in some cases product evaluation does in
fact involve causal analysis (as when a car manufacturer
studies the effect of a new hood shape on air resistance),
often using relatively simple causal methods. On the other
hand, causal analyses are not so important when the charac-
teristics that people value can be assessed through simpler,
descriptive means. For computers, for example, processing
speed can be observed descriptively—by measuring how
quickly the computer performs on a standard set of software
applications—and with relatively little ambiguity. To take
another example, legroom in a car can readily be assessed
without causal means.

For social programs and policies, however, decades of
practice indicate that the things that people value, the attrib-
utes that make a program or policy worthwhile or not, are
predominantly causal. This is illustrated in the set of causal
questions given earlier, such as whether preschool causes an
increase in children’s academic success. And unlike observ-
ing a computer’s processing speed, attributing an effect to a
program is usually not a simple matter. It is not as easy as
simply seeing how a child performs academically after par-
ticipating in a preschool program. Myriad influences could
affect the child’s academic performance other than the pro-
gram. More generally, because there are many possible
causes of change in the kinds of outcomes that are of interest
in most program evaluations, causal attribution is challeng-
ing. Understanding these challenges, and the ways of dealing
with them, can be aided by some understanding of the con-
cept of causation.

However, the literature on causation is voluminous.
Philosophers, methodologists, and statisticians have given
considerable attention to what causation is and to how one
can reasonably draw a causal inference. Although practicing
evaluators need not follow every nuance of this literature,
some understanding of causation can enhance evaluation
practice. One potentially useful view suggests that causation
can best be understood through three partially overlapping

schi_ch13.qxd  9/6/02  12:35 PM  Page 324



The Concept of Causality in Program Evaluation 325

perspectives: a counterfactualist definition of cause and ef-
fect; an emphasis on underlying generative mechanisms; and
an explicit representation of the probabalistic nature of causal
relations (Mark, Henry, & Julnes, 2000). Subsequent sections
shall deal with how these three perspectives can inform eval-
uation practice.

The Counterfactualist Definition of Cause and Effect

Imagine that we are interested in the effect of a freshman
orientation program on the drinking behavior of a new col-
lege student named Bob (cf. Schroeder & Prentice, 1998). We
want to answer the question, Did participation in the fresh-
man orientation program cause Bob to drink less alcohol? A
number of philosophers (e.g., Mackie, 1974) and methodolo-
gists (e.g., Mohr, 1995; Reichardt & Mark, 1998; Rubin,
1974; Shadish, Cook, & Campbell, 2002) suggested that a
counterfactualist perspective is needed to answer this ques-
tion and, more generally, to define causation. We can of
course observe that Bob participated in the program and also
measure, at some subsequent point in time, how often and
how much he drinks. According to the counterfactualist per-
spective, to know whether the freshman orientation program
caused Bob to drink less we would also need to know
whether Bob would have consumed more alcohol than he in
fact did after participating in the program if Bob had not par-
ticipated in the program and everything else had been just the
same. More generally, we can define an effect, and by impli-
cation a cause, as follows: The effect of causal state A (e.g.,
participating in the program), as compared to causal state B
(e.g., not participating), is the difference between (a) the out-
come that arose at time 2 after A had been administered at
time 1 and (b) the outcome that would have arisen at time 2
if, instead, B had been administered at time 1 but (c) every-
thing else at time 1 had been the same. This comparison, be-
tween what subsequently happened under condition A and
what would have happened if condition B had taken place
with everything else initially the same, is called the ideal
comparison.

Because the ideal comparison, unfortunately, cannot be
achieved in practice, Reichardt and Mark (1998) called it the
ideal but unattainable comparison. It is impossible for every-
thing else to be the same if a program is administered in one
condition and not administered in the other (or if Program A
is administered in one condition and Program B in the other).
Something else must differ when the different treatments are
introduced. For example, we could compare (a) the drinking
behavior of Bob, who participated in a freshman orientation
program, with (b) the drinking behavior of Tom, another
college freshman who did not participate in a freshman

orientation program. However, not only would the treatments
differ in the two conditions, but the individuals receiving the
treatments would also differ. Any observed difference be-
tween Bob’s and Tom’s drinking behavior might be the result
of differences between the two individuals, rather than the
result of the freshman orientation program.

The ideal but rather impractical way to obtain the ideal but
unattainable comparison would be to travel back in time and
arrange things so that Bob participated in the freshman orien-
tation in one sequence, but not in another, comparison se-
quence. The difference in the outcomes would exactly equal
the effect of the freshman orientation, according to the coun-
terfactualist definition of the effect of a cause. Any difference
in an outcome variable at time 2 could be due only to the treat-
ment differences that were introduced at time 1, because
everything else would have been the same. Lacking the ability
to travel back in time, however, we cannot have everything
else be the same in real-life comparisons. Thus, incorrect
conclusions may be drawn about causal relations. Scientists
have developed a repertoire of methods that allow us to mini-
mize the likely errors. One important step in the evolution of
these techniques has been the identification of several cate-
gories of factors, other than the program of interest, that can
vary across the treatment conditions in real-life compar-
isons. These are commonly called threats to internal validity
(Campbell & Stanley, 1966), several of which are described
later in the context of specific research designs.

Another important step in the development of causal
methods has been the invention of randomized experiments
and various alternatives that, to varying degrees, allow us to
approximate the ideal but unattainable counterfactual com-
parison. The strongest of these methods for causal analysis
ask not about effects for a single case such as Bob, but about
“average effects” combining over some population or sub-
group of individuals (Little & Rubin, 2000; Rubin, 1974).
Fortunately, this focus on average effects generally matches
the emphasis of policy and program evaluation, in that one
cannot usually tailor policies and programs to each individual
but must instead offer interventions intended for broader
groups.

Underlying Generative Mechanisms, or Mediators

Although the counterfactualist conception of cause has sev-
eral advantages, including a useful and meaningful definition
of cause and effect, it also has important limits. One short-
coming of the standard counterfactualist position is that it does
not place sufficient emphasis on addressing why the effects
have occurred, that is, on the mechanisms through which a
cause influences an effect. Working from the counterfactualist
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perspective, one can, for example, frame the question of a
freshman orientation program’s effects on drinking behavior
simply by reference to the ideal comparison. In practice, one
could attempt to approximate the ideal but unattainable com-
parison by creating two comparable groups of freshman (e.g.,
by random assignment), having one group participate in the
orientation program while the other did not, and subsequently
comparing average drinking behavior for the two groups. The
counterfactualist perspective, in short, can easily lead re-
searchers to focus on the observable cause and effects of inter-
est, with no attention to the processes that connect them. This
process-free approach is often derided as “black-box evalua-
tion,” with the underlying mechanism residing within the
metaphoric box into which the evaluator has not peered. From
one perspective, it is unfair to criticize the counterfactual
approach in this way. After all, the counterfactual approach
provides a useful and widely accepted way of defining and
estimating the effect of some causal variable of interest. On
the other hand, to think of causal analysis only in terms of
estimating the observable effects of specified causal variables
is to wear a kind of blinders—blinders that can seriously limit
the conduct of program evaluation.

Indeed, psychologists doing program evaluation are likely
to be interested in underlying mechanisms, that is, the
processes by which the program causes a difference in the
outcome of interest. In the freshman orientation case, social
psychologists would probably ask whether the program had
its effects because it (a) changed participants’ subjective
norms about the frequency of drinking among other students,
(b) changed the impact of subjective norms on behavior
(Schroeder & Prentice, 1998), (c) changed their attitudes
about the desirability of drinking, or (d) changed their per-
ception of contextual variables that may enhance or inhibit
alcohol use (Triandis, 1994). A simple counterfactualist view
of causal effects allows investigators to ignore these or other
underlying mechanisms.

Admittedly, it can be useful to know only about molar
cause-effect relations, such as whether aspirin alleviates
headache pain, even without understanding the underlying
mechanisms (Cook & Campbell, 1979). Nevertheless, it will
typically be even more useful to understand the underlying
mechanisms (Cronbach, 1982; Mark, Henry, & Julnes, 1998).
If we understand the processes that underlie a cause-effect
relationship, we can sometimes create more effective or more
efficient treatments. We can sometimes better target the inter-
vention to the right cases. We are more likely to be able to fix
things if they break. Of great importance to evaluators, a focus
on underlying mechanisms can also increase one’s confidence
that the program made a difference, especially in those cases
where it is not possible to have a strong counterfactual

comparison, as we shall see later. In addition, psychologists
will generally be more attracted to evaluation projects that
focus on underlying mechanisms because it allows for theory
testing as well as for valuable applied work (Yeh, 2000).

Moreover, a view of causation that does not emphasize
underlying generative mechanisms simply seems deficient as
a representation of causal forces in the world: Cause and ef-
fect relations happen for reasons. If an orientation program
reduces drinking in college freshman, there is some psycho-
logical process that mediates the effect, such as changes in
perceived norms (Schroeder & Prentice, 1998). In short, the
counterfactualist view of causal effects needs to be supple-
mented, and this supplementation not only enriches our view
of causation but also helps guide evaluation design in such a
way as to enhance evaluation practice. Although cause and
effect can be defined counterfactually, a complete view of
causation requires attention to underlying generative mecha-
nisms as well. In addition, at least one more piece is needed
for a satisfactory conception of causality. 

INUS Conditions: The Contingent Nature of 
Causal Relations

Cook and Campbell (1979, chap. 1), in what remains one of
the most valuable reviews of concepts of causation for social
scientists, contended that causation is probabilistic. Mackie
(1965, 1974) provided an important conceptualization of the
probabilistic nature of causal relations. Mackie claimed that
what we call causes are actually INUS conditions. That is,
they are an insufficient but necessary part of a condition that
is itself unnecessary but sufficient to cause the result. A clas-
sic example is a cigarette that is identified as the cause of a
house fire. The cigarette by itself is insufficient in that other
conditions had to occur, such as the presence of combustible
material and the absence of a sprinkler system. But the ciga-
rette was a necessary component of the specific causal pack-
age that actually caused the fire. Nevertheless, the causal
package that included the dropped cigarette was unnecessary
in the sense that in principle several other causal packages
could have led to a fire (involving, say, an electrical short
circuit or a forest fire). But the cigarette and its associated
package of conditions were sufficient to cause the house fire;
nothing else was needed. The counterfactualist approach, by
emphasizing one “cause” as the manipulable focus of inter-
est, may lead people to miss the other conditions that must be
present for the cause to produce the effect.

The logic of INUS causes applied nicely to social pro-
grams and policies. For example, consider again the question
of whether a freshman orientation program is effective in
causing Bob, our college freshman, to drink less. Perhaps for
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Bob, the freshman orientation program is effective because
Bob and his environment include the other needed compo-
nents of the relevant causal package, which might include
(a) a student who is not already alcohol dependent, (b) a local
college culture in which binge drinking is not so epidemic as
to make lowered subjective norms implausible, and (c) the
presence of some alternative social and recreational activities
for students. Thus, the freshman orientation program might
be effective for Bob, but not be effective for another fresh-
man who is already an alcoholic, or it might not be effective
in a different environment where students find nothing else to
do on a weekend night. In addition, there may be other causal
packages, which do not include a freshman orientation
program, that also cause low levels of drinking among other
students.

By highlighting the contingencies on which program ef-
fectiveness depends, the INUS approach reminds us that a
program may be effective in some contexts with some
clients, but not be effective elsewhere. The INUS approach
thus suggests modesty in our aspirations for social programs.
It also suggests modesty in our aspirations for evaluation
research, in that we can usually hope to achieve only incom-
plete knowledge about the effectiveness of programs and
policies. But incomplete knowledge of a program’s effects is
generally much better than no knowledge, and may in fact be
of great help in guiding action. Of course, it is also desirable
to try to obtain the missing knowledge about the contingen-
cies on which program success depends, and this will often
require the use of data-intensive techniques for identifying
moderators of program impact (Julnes, 1995; Mark, 2001;
Mark, Hofmann, & Reichardt, 1992; Mark, Henry, et al.,
2000), which are discussed later in the context of principled
discovery.

In sum, a useful and meaningful perspective on causation
can be achieved by integrating (a) the counterfactualist defin-
ition of cause with (b) an emphasis on underlying generative
mechanisms and (c) Mackie’s model of the contingent and el-
liptical nature of causal relations. Having considered this
threefold conceptualization of causation, let’s see how it
plays out in the context of some specific methods for causal
analysis.

DESIGNS FOR CAUSAL ANALYSIS:
APPROXIMATING THE IDEAL
COUNTERFACTUAL

In this section, selected methods for causal analysis are re-
viewed. The methods reviewed are prominent in evaluation
practice. They are reviewed here largely in terms of how well

they approximate the ideal but unattainable counterfactual
comparison that one would need for completely confident
causal inference.

The Randomized Experiment

Randomized experiments are often referred to as the gold
standard against which other methods of assessing treatment
effects are compared. In a randomized experiment, individu-
als (or other units) are randomly assigned to treatment condi-
tions. Without random assignment, selection differences are
likely to arise, which means that the cases in a treatment
group and those in a comparison group differ on the average
initially. For example, the college freshmen who choose on
their own to attend a freshman orientation would probably
differ on average in several ways from those who choose not
to attend. Random assignment is beneficial to causal infer-
ence largely because it removes systematic bias due to initial
selection differences and, thus, creates a fair comparison
(Boruch, 1997). In other words, unlike most cases in which
participants self-select into treatment, the comparison is un-
biased if the treatment and comparison groups are created at
random.

Random assignment does not, however, guarantee that
there will be no initial selection differences. Even randomly
assigned treatment and control groups are still likely to differ
somewhat initially. That is, even if the true treatment effect is
zero, the mean difference between the two groups on an
outcome variable is unlikely to be exactly zero. Random as-
signment does, however, mean that the initial selection dif-
ferences between the groups are completely random. The
second great benefit of random assignment thus arises: The
classical statistical procedures of confidence intervals and
hypothesis tests can take into account whatever random se-
lection differences exist, providing well-grounded statements
about the warrant for confidence in one’s results (Boruch,
1997; Reichardt & Mark, 1998).

Viewed from the counterfactualist perspective, the re-
sponse of the people randomly assigned to the comparison
group serves to approximate the ideal but unattainable coun-
terfactual comparison. That is, the randomized comparison
group represents what would have happened to those in the
treatment group if the treatment had not been presented. Let
us assume that a randomized experiment is carried out well—
even though meeting this assumption in evaluation can be
challenging in practice (given such potential problems as
attrition, discussed later). If the randomized experiment is
carried out well, this comparison of the treatment group’s
outcomes with those of the randomized comparison group
should be a close approximation of the ideal comparison.
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Unlike nonequivalent-groups designs, where systematic ini-
tial selection differences are likely, random assignment
precludes systematic selection in the randomized experiment.
Moreover, as just noted, classical statistical procedures pro-
vide a way of summarizing and modeling the random selec-
tion differences that remain. Because it provides a close
approximation to the ideal comparison, a randomized experi-
ment, if carried out well, provides a strong warrant for infer-
ring a cause-effect relationship.

Note, however, that this holds for the global hypothesis that
the treatment causes a difference in the outcome. For the more
specific hypotheses about the underlying mechanism, the ran-
domized experiment is not intrinsically so strong. For exam-
ple, a randomized evaluation of the impact of a freshman
orientation session on drinking behavior can demonstrate a
causal relationship while leaving completely unaddressed
whether the underlying mechanism involves subjective norms,
attitudes, or something else. (Readers familiar with Cook &
Campbell’s 1979 validity scheme will hear echoes of the dis-
tinction between internal and construct validity). In addition,
the randomized experiment does not necessarily assist in de-
scribing those characteristics, other than the treatment, that
were required for the effect to occur, which would allow the
researcher to fill in the missing knowledge about the contin-
gencies that apply to the causal relationship. (Here, readers
familiar with the Cook & Campbell validity scheme will hear
an echo involving external validity).

The randomized experiment has been soundly criticized
by some evaluators on these grounds (e.g., Pawson & Tilley,
1997). In fact, randomized experiments do, as these critics
suggest, enable researchers to examine cause-effect relation-
ships without also examining underlying mechanisms. How-
ever, this blind spot is not an inevitable product of the use of
randomized experiments (Julnes, Mark, & Henry, 1998;
Mark et al., 1998). To the contrary, the randomized experi-
ment can, if appropriately designed, be a powerful tool for
studying underlying process as well as for estimating cause-
effect relationships. Indeed, the laboratory experiment has
been used widely in psychology precisely to study underly-
ing mechanisms, with investigators using different condi-
tions chosen carefully to differentiate between alternative
mechanisms. In most evaluation contexts, however, the
between-condition differences are so coarse and multifaceted
that between-group differences are generally not very reveal-
ing about underlying processes.

Nevertheless, even in evaluation contexts, patterns of dif-
ferential effects (e.g., across client subgroups) can support
one underlying mechanism and discount others (Mark,
1990). In addition, as discussed in the next section, mediation
can be examined in the context of a randomized experiment.

This will often involve the use of adjunct techniques such as
qualitative observation (Maxwell, 1996) or structural equa-
tions modeling to test for changes in a sequence of hypothe-
sized mediating variables that occur between the intervention
and outcome variables (Fiske, Kenny, & Taylor, 1982; Mark,
1990). For example, one might measure whether students’
subjective norms about alcohol use change after participating
in a freshman orientation program and whether that change
can account statistically for any change in drinking behavior
(cf. Schroeder & Prentice, 1998). When underlying mecha-
nisms are tested in these ways within a randomized experi-
ment, one can simultaneously have considerable confidence
in the resulting estimate of the magnitude of the treatment
effect, assuming that the randomized experiment is carried
out reasonably well.

The caveat that the randomized experiment is well carried
out is very important. A randomized experiment can fall short
in several ways. These include (a) flawed methods of random
assignment, whether unintentional or because of subversion
of the assignment process by program staff not committed to
randomization; (b) differential refusal or attrition across con-
ditions, so that initial randomization is not maintained among
the participants who remain in the experiment at the end; (c)
substantial amounts of missing data, which may bias results
if not random; (d) failure of the treatment and comparison
group to be implemented as planned; (e) an inadequate num-
ber of cases for sufficiently powerful statistical tests, perhaps
because of initial overestimates of client flow; (f) resistance
to randomization as a method for assignment to groups, for
practical or ethical reasons; (g) restriction of random assign-
ment to unusual circumstances that may hinder generaliza-
tion to settings of interest; and (h) awareness by control
group participants that they did not receive the treatment,
which may lead to between-group differences that are instead
attributed to the program. These problems, and the potential
solutions to them, are discussed in several sources, including
Boruch (1997), Boruch and Wothke (1985), Braucht and
Reichardt (1993), Conner (1977), Cook and Campbell
(1979), Lipsey and Cordray (2000), and Shadish et al. (2002).
Some of the most important of these problems are discussed
momentarily.

In short, the randomized experiment is in principle an out-
standing tool for causal analysis, particularly for estimating
the effects or a program or policy, though less so for estab-
lishing underlying mechanisms. Random assignment pro-
vides a close approximation of the ideal counterfactual, as
applied to the estimate of an average treatment effect. In fact,
random assignment appears to be common in some areas,
especially those that span evaluation and more traditional
psychological research. For instance, clinical trials of various
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forms of therapy commonly involve random assignment. On
the other hand, random assignment is admittedly not feasible
in every evaluation in which causal analysis is important.
Random assignment is not possible when a treatment is ap-
plied uniformly across some geographical area, for example.
This problem is increasingly present in so-called comprehen-
sive community initiatives (Fullbright-Anderson, Kubisch, &
Connell, 1998). And it appears that random assignment is es-
pecially likely to be difficult to arrange when the evaluator is
not also the developer of the intervention being tested. (This,
incidentally, may explain why random assignment to condi-
tions is common in therapy evaluations, where the evaluator
has often developed the therapy protocol as well, but is not as
common in many other practice areas). Nevertheless, there
are a number of circumstances in which random assignment
is feasible (Boruch, 1997; Cook & Campbell, 1979; Shadish
et al., 2002), perhaps more than many practicing evaluators
believe. At the same time, conducting randomized experi-
ments effectively is not simple but entails a number of man-
agement responsibilities and challenges, some of which can
be quite problematic in some cases (Boruch, 1997; Cook &
Campbell, 1979; Shadish et al., 2002).

Attrition

One of the most common problems facing randomized eval-
uations is attrition, that is, participants who drop out over the
life of the evaluation. Attrition can reduce one’s ability to
generalize to the kind of participants who tend to drop out of
an evaluation. Attrition reduces statistical power, and with at-
trition rates of 40–50% common in some kinds of programs
(Ribisl et al., 1996), the loss of power can be considerable.
Even more important, when attrition differs across condi-
tions, the estimate of a program’s effects becomes biased.
When attrition is treatment-related, one loses the equivalence
that random assignment is designed to provide. In other
words, nonequivalent groups are created through treatment-
related attrition.

How does one deal with the possibility of attrition? As
may be obvious, the preferred strategy is to work proactively
to try to minimize attrition. Ribisl et al. (1996) provided a
very useful review of procedures that can be used to try to
retain participants and to track them over time (also see
Boruch, 1997; Shadish et al., 2002). These include obtaining
contact and location information from participants and from
their friends or relatives who are likely to know their where-
abouts in the future and obtaining permission to search other
records and contact agencies that might know their location in
the future. In addition, it is important to make involvement in
the evaluation and its associated data collection as convenient

as possible (e.g., by offering child care during interviews for
working participants, by providing transportation, or by using
phone interviews). Incentives for participation may be of-
fered. Funds to support the tracking of participants should be
included in evaluation budgets, and lower-cost options should
be attempted before moving on to more costly tracking
efforts. To prevent condition-related attrition, it is especially
important to consider the features of the different conditions
that may influence the relative desirability of participation.
Sometimes, special incentives can be offered in the otherwise
less-attractive condition, as long as this does not obscure the
program effect of interest or create any ethical problems (for
additional suggestions on reducing attrition and tracking
clients over time, see Ribisl et al., 1996).

Despite the best use of preventive steps, some attrition
may occur. One after-the-fact approach to attrition is to ana-
lyze data as though all participants received the treatment to
which they were initially assigned. This approach is often
called intent-to-treat (ITT) analysis. The ITT approach will
typically provide a conservative estimate of the treatment
effect because some portion of those assigned to the treat-
ment did not in fact receive it. Obviously, the ITT analysis
also requires that outcome measures be available even if the
person dropped out of the assigned condition (or switched to
another condition). In general, if the ITT approach is used,
the results of this analysis should be reported in conjunction
with other analyses.

Another approach is to replace missing data. Considerable
work has been done in the last two decades on data imputa-
tion (e.g., Rubin, 1987; Schafer, 1997). As Graham and
Donaldson (1993) demonstrated, taking extra steps to obtain
outcome data from a sample of dropouts can greatly aid in the
imputation of missing data. In addition, other kinds of analy-
ses, summarized next, can be used in an attempt to adjust for
any nonequivalence that is created by attrition. Again, multi-
ple analyses, using alternative ways of dealing with missing
data, are suggested as a way to increase confidence that the
conclusions of an evaluation do not ride on some single (and
perhaps incorrect) set of assumptions that underlie a single
form of analysis (Shadish et al., 2002).

Statistical Adjustments

A variety of statistical techniques, including the analysis of
covariance (ANCOVA), latent variable structural equation
modeling, selection modeling, and propensity scores, can be
used to try to adjust for nonequivalencies introduced by attri-
tion in randomized experiments. However, these techniques
are more commonly discussed in terms of their use in quasi-
experiments, where the absence of random assignment often
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means that biases will exist even if there is no attrition.
We discuss these analyses further in the context of quasi-
experiments, to which we now turn. 

Quasi-experiments

The term quasi-experiment refers to approximations of
experiments, to studies that have several but not all of the
characteristics of full-scale controlled experiments. Most
important, quasi-experiments lack random assignment. When
causal questions predominate in an evaluation and random
assignment is infeasible, evaluators commonly resort to
quasi-experiments. Contemporary knowledge about quasi-
experiments derives primarily from the work of Campbell
(1957, 1969) and his associates (Campbell & Stanley, 1966;
Cook & Campbell, 1979; Shadish et al., 2002), which can be
consulted for additional detail.

There are several different quasi-experimental designs,
ranging in complexity, and also ranging in how well on aver-
age they approximate the ideal but unattainable counterfac-
tual comparison. One relatively simple quasi-experiment,
which often can be implemented but almost as often will be
inadequate, is the pretest-posttest one-group design. Imagine
as an example that a freshman orientation program were eval-
uated by measuring students’ self-reported drinking before
the program and again after it. In the simple pretest-posttest
design, the ideal counterfactual is meant to be approximated
with the pretest observation. The posttest observation, obvi-
ously, shows what really happened after the intervention. If
the pretest observation showed what would have happened at
the time of the posttest if the intervention had in fact not oc-
curred, then the treatment effect could validly be estimated as
the difference between the pretest and the posttest. The prob-
lem, of course, is that the pretest observation may well not
represent what would have happened at the posttest if the in-
tervention had not taken place. That is, the pretest may be a
very poor and biased approximation of the ideal but unattain-
able comparison. Several generic, alternative mechanisms
exist that can lead to changes over time in students’ drinking
behavior and, more generally, in the kind of outcomes mea-
sured by evaluators and others interested in human behavior.
These forces have come to be called internal validity threats.

History, for instance, is a threat to validity that occurs
when some specific event, other than the intended treatment,
also occurred between the pretest and posttest and when this
other event caused a change in the outcome of interest. Imag-
ine that at the time of the freshman orientation program, the
local police began a well-publicized campaign against under-
age drinking. This (or another historical event) might be re-
sponsible for a drop in student drinking that could mistakenly
be attributed to the orientation program.

Alternatively, students’ drinking behavior could change
simply because they are older at the time of the posttest than
at the pretest, rather than because of a treatment effect. This
threat to internal validity is called maturation and includes a
variety of processes that can occur over time within research
participants, such as growing older, hungrier, more fatigued,
wiser, and the like. For example, it may be a typical matura-
tional pattern for drinking to increase in the first months of
college. If so, maturation could obscure any real effect of the
orientation program in the pretest-posttest design.

The simple pretest-posttest design is subject to several
internal validity threats in addition to history and maturation.
These include threats known as instrumentation, regression
to the mean, testing, and attrition (see Cook & Campbell,
1979, and Shadish et al., 2002, for descriptions and exam-
ples). These various threats do not, however, automatically
apply whenever the design is used. For example, Eckert
(2000) has argued that these threats often will not be plausi-
ble in evaluations of training programs (at least in terms of
certain key outcome variables), and that such programs can
reasonably be evaluated with this relatively practicable and
low cost pretest-posttest one-group design. For instance,
Eckert argues that maturation will not plausibly account for
improvements in immediate posttests in most training evalu-
ations because knowledge and skills generally would not rise
markedly by maturation in a short time. In most instances of
policy and program evaluation, in contrast, the threats that
apply to the simple pretest-posttest one-group design will be
sufficiently plausible that potential users of evaluation would
be well served if a more complex design were implemented
instead. Eckert’s argument stands as a valuable reminder,
though, that, as Campbell and Stanley (1966) long ago told us
and Cronbach (1982) reminded us, designs should not be se-
lected mindlessly, but instead considered relative to the likely
plausibility of validity threats in context.

A more complex design that can sometimes be imple-
mented is the interrupted time-series (ITS) design. ITS de-
signs use time-series data, that is, repeated measurement of
an outcome variable at (approximately) equally spaced inter-
vals, such as days, months, quarters, or years, to estimate the
effect of a treatment. In a simple ITS design, a series of
pretest observations is collected, a treatment is introduced,
and the series of (posttest) observations continues. In
essence, the ideal counterfactual is estimated by projecting
the trend in the pretreatment observations forward in time.
The treatment effect is then derived from the differences, if
any, between the projected and the actual posttreatment
trend.

Unlike most other quasi-experimental designs, the ITS
designs allow an evaluator to observe the temporal pattern of
the effect. This can be important. For example, the value of a
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freshman orientation program might be judged differently if
its effects die out after three or six months, rather than persist
over a longer period. Even more important, the simple ITS
design, with its series of pretest and posttest observations,
can help to strengthen causal inference. As just noted, matu-
ration is often a plausible threat for the pretest-posttest de-
sign. If the pattern of maturation is relatively steady over
time, then the ITS design allows the evaluator to estimate the
pattern of maturation from the trend in the pretreatment ob-
servations. In the case of the freshman orientation program,
the pretest time-series observations could demonstrate the
maturational change that was already underway before the
program began. To the extent that the pretreatment trend al-
lows the researcher to model and project correctly the matu-
rational trend into the posttreatment time period, maturation
is removed as a threat to internal validity in the ITS design
(see Shadish et al., 2002, and Mark, Reichardt, & Sanna,
2000, for further discussion, including the question of possi-
ble nonlinear maturation). 

Although the simple ITS design helps rule out some threats
to valid causal inference, as just illustrated with the threat of
maturation, it does not rule out all internal validity threats. In
particular, the threat of history is equally as plausible in the
simple ITS time-series design as in a pretest-posttest design,
assuming that the interval between observations is the same.
The plausibility of history and other validity threats can be
reduced, however, by the use of more complex ITS designs.
For example, one might extend the simple ITS design by
adding a control group that is not exposed to the treatment. For
more detail on the threats that apply to the simple ITS design,
on the ITS with nonequivalent control group, on other complex
ITS designs, and on data analysis with time-series observa-
tions, see Shadish et al. (2002); Marcantonio and Cook (1994);
and Mark, Reichardt, et al. (2000). Although ITS designs can
be relatively strong for causal inference, they are infeasible for
many evaluations because of the need for repeated pretest and
posttest measurements. In some cases, however, measures of
interest will already exist in time-series form (e.g., when the
outcome variable of interest involves divorce rates, crime rates,
or organizational productivity). In still other instances, the
evaluator will be able to implement repeated measurement of
important outcome variables (e.g., Kazi, 1997). Even if time-
series data are available for only one of several outcome vari-
ables, the inclusion of an ITS design as part of an evaluation
can contribute considerably to overall validity. More generally,
evaluators should be attentive to the possible use of different
designs for different outcome variables, depending on data
availability. Evaluators should recognize, however, that time
series in existing archives are not likely to include measures
of underlying processes (Mark, Sanna, & Shotland, 1992).
In addition, existing time series need to be inspected carefully

for possible instrumentation problems (i.e., possible changes in
the definition or measurement of the time series variable that
may co-occur with the intervention and could obscure the true
treatment effect).

Both the simple pretest-posttest one-group and the simple
ITS designs use comparisons across time in place of the ideal
but unattainable comparison. That is, in those designs a com-
parison is made of the same individual or aggregate units at
different points in time (i.e., before the treatment and after).
Alternatively, in other designs researchers substitute for the
ideal comparison by comparing different (groups of) individ-
uals at the same time. When assignment to the different con-
ditions is not random, designs of this sort are known as
nonequivalent-groups designs. In these quasi-experiments,
(a) individuals self-select into the different groups (e.g., indi-
viduals may choose to participate in a freshman orientation
program or not), (b) individuals are assigned in some nonran-
dom fashion into the groups by others such as program ad-
ministrators (e.g., dormitory administrators may exercise
their discretion in assigning some students to a freshman
orientation program), (c) group assignment is determined by
one’s location (e.g., the freshman orientation program is im-
plemented in one dorm but not in another one), or (d) assign-
ment to the different treatment groups takes place in some
other nonrandom fashion.

The simplest between-group design is the posttest-only
nonequivalent-groups design. In this design, individuals (or
other aggregate units, such as schools or communities) fall
into the treatment group, which receives the program, or into
the control or comparison group, which does not receive the
program (or receives some alternative program). Following
the treatment, the members of both groups are measured on
one or more outcome variables of interest. The control or
comparison group serves as the substitute for the ideal but
unattainable comparison. 

The fundamental shortcoming of this design is the validity
threat known as selection. Selection arises when the differ-
ence between the treatment group and the control (or compar-
ison) group on an outcome measure results from preexisting
differences between the groups, rather than from the effect of
the program. That is, the groups may have initial differences
that cause subsequent differences on the outcome variable. In
general, in most evaluations the threat of initial selection
differences will create great uncertainty about the program’s
effect in the posttest only nonequivalent-groups design.
Absent any other information, it is typically quite plausible
that the groups would have differed even in the absence of a
treatment effect.

In many cases, nonequivalent groups are observed on a
pretest as well as a posttest, resulting in what is called
the pretest-posttest nonequivalent-groups design. With this
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design, the pretest is used to try to take account of initial se-
lection differences. One way to do this would be to estimate
the program’s effect—not by the difference between treat-
ment and control groups at the posttest, but by the difference
between the two groups in the amount of change, on the av-
erage, between pretest and posttest. This gain-score approach
is based on the assumption that if there actually were no treat-
ment effect, the treatment group would change over time the
same amount as the control group. If this assumption is cor-
rect, gain-score analysis works well. The problem, of course,
is that the assumption that in the absence of the program
the treatment group would have changed the same amount
as the control group did may be incorrect. Perhaps, for in-
stance, the treatment group starts out 10 points ahead at the
pretest, but would have been 15 points ahead at the posttest
even if there were no treatment effect. As the old saying goes,
sometimes the rich get richer. Many differences increase with
time. For example, the difference in running speed between
the fastest and slowest eighth-grader is much greater than the
difference between the fastest and slowest preschooler. Such
possibilities led Campbell and Stanley (1966) to describe the
“selection-by-maturation interaction” as a threat to the inter-
nal validity of the pretest-posttest nonequivalent-groups de-
sign. This threat refers to the possibility that one of the
groups would change at a different rate than the other group,
even if there actually were no treatment effect. In other
words, selection by maturation occurs when one group is ma-
turing at a different rate than the other, in the absence of a
treatment effect, and this pattern of differential maturation
could obscure the true treatment effect.

Several alternatives to gain-score analysis exist for the
pretest-posttest nonequivalent-groups design. One long-
standing alternative analytic procedure is ANCOVA (e.g.,
Reichardt, 1979). More recent approaches include structural
equation modeling (e.g., Bentler, 1992), selection modeling
(e.g., Rindskopf, 1986), and the calculation and use of
propensity scores (e.g., Rosenbaum, 1995; Rosenbaum &
Rubin, 1983). Each of these involves a different approach to-
ward controlling statistically for initial selection differences.
In essence, each also involves a different implicit way of
substituting for the ideal but unattainable counterfactual
comparison. Each approach will give unbiased estimates of
the treatment effect if the assumptions underlying it hold. The
problem in practice, however, is that it will generally not be
possible to be fully confident that the assumptions underlying
a specific analysis hold in a particular evaluation (Boruch,
1997; Reichardt, 1979). Consequently, multiple analyses are
often recommended for the pretest-posttest nonequivalent-
groups design, in order to demonstrate that one’s conclusions
about the merit of a program are robust across different

analytic assumptions (e.g., Reynolds & Temple, 1995;
Wortman, Reichardt, & St. Pierre, 1981). Related analysis
issues will be addressed later.

In addition to the possible selection-by-maturation prob-
lem, the pretest-posttest nonequivalent-groups design is sus-
ceptible to other threats that also are called interactions with
selection. Selection by history refers to the possibility that the
two groups are subjected to different historical forces, so that
history may cause a larger effect in one than in the other. For
instance, if we were evaluating the effect of a freshman ori-
entation program that is implemented at one college and used
a different college as a nonequivalent control group, selection
by history might operate if there was a death by alcohol poi-
soning that was highly publicized locally at one school at
about the same time as the freshman orientation was intro-
duced. These and other interactions with selection (Cook &
Campbell, 1979; Shadish et al., 2002) may be plausible in the
pretest-posttest nonequivalent design.

Some Conclusions About Quasi-experiments

In summarizing and expanding the preceding selective re-
view of quasi-experimental designs, several conclusions can
be highlighted. First is that modifications in research design
can render specific validity threats implausible. For example,
the addition of time series to a simple pretest-posttest design
can allow an evaluator to assess the plausibility of maturation
and to control for (linear) maturation. Second, evaluators
should be careful to assess the plausibility of validity threats
in context. As Eckert (2000) illustrated in the context of World
Bank training programs, just because a validity threat can
apply to a specific design in general does not mean that it is
operating in a particular evaluation using that design (or oper-
ating powerfully enough to obscure the true treatment effect).
Third, by considering the possible effect of plausible validity
threats, one can try to develop more elaborate designs that
will better approximate the ideal counterfactual. In the case of
the possible selection-by-history problem in the freshman ori-
entation evaluation, for example, a treatment effect hypothe-
sis would predict large treatment effects among freshman
but no effects for upperclassmen who did not experience the
program. In contrast, a history effect based on a publicized
alcohol-related death would presumably lead to the predic-
tion of comparable effects across all grade levels. Careful
consideration of validity threats can lead to the development
of quasi-experimental designs especially suited to how that
threat might operate in that particular evaluation. Fourth, at-
tention should be given not simply to the potential presence of
a validity threat, such as selection or history, but to the likely
magnitude of its effect. Past writings often seem to suggest a
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dichotomous, valid-or-invalid perspective. Thinking instead
of the likely size of the effect of a validity threat can lead to
more accurate conclusions about the effects of an intervention
(Reichardt, 2002).

Analysis Techniques for Nonequivalent-Groups Designs

Discussion of quasi-experimentation sometimes includes de-
tailed discussion of analysis procedures, such as ANCOVA,
selection modeling, and propensity scores (Shadish et al.,
2002). These (and other) techniques each have advocates
who argue for them as a way to control for selection biases in
nonequivalent-groups designs. ANCOVA controls statisti-
cally for initial differences, in essence matching individuals
across treatment groups based on their pretest (or other initial
scores) and essentially taking the average difference between
the matched groups on the posttest as the estimate of the
treatment effect. Measurement error in the pretest will intro-
duce bias in these estimates (Reichardt, 1979), so latent-
variable structural-equations models are sometimes used
instead. These models use multiple measures of the construct
thought to be responsible for any selection bias, and these
measures are essentially factor analyzed in an effort to obtain
an estimate of the latent variable that effectively is without
measurement error. Latent-variable structural-equations
models also nicely support the testing of mediational models.
However, the validity of the estimates that result from these
models depends on the accuracy and thoroughness of the
model, and evaluators will rarely know enough to specify
a model accurately. An alternative approach, known as selec-
tion modeling, typically requires the estimation of two equa-
tions. In essence, the first equation is designed to predict
group membership (e.g., treatment or control), using vari-
ables that are thought to be related to the factors that deter-
mine selection into groups. In the second equation, treatment
effects are estimated as usual, but with the addition of a new
variable, which is a score taken from the first equation repre-
senting the best prediction of group membership. In a related
approach, propensity score analyses, the predicted probabil-
ity of being in the treatment (rather than the control) group is
generated by a logistic regression. Cases are then usually
stratified into subgroups (commonly five subgroups) based
on their propensity scores, and the treatment effect computed
as a weighted average based on the treatment and control-
group means within each subgroup. Alternatively, the
propensity score can be treated as a covariate in ANCOVA.
Winship and Morgan (1999) provided a very useful review of
several of these techniques, and several other recent sources
are also valuable (e.g., Little & Rubin, 2000; Shadish et al.,
2002; West, Biesanz, & Pitts, 2000).

No consensus exists yet regarding the preferable approach
to statistical analysis for nonequivalent designs. Criticisms of
each approach remain and are based on the assumptions,
mostly untestable in practice, that are built into the methods.
Three recommendations seem especially sensible for the
analysis of the pretest-posttest nonequivalent-groups design.
First, where possible, it is desirable to conduct sensitivity
analyses, that is, analyses that assess how robust a given find-
ing is to different assumptions within a single form of analy-
sis (Rosenbaum, 1995). Second, confidence will be enhanced
if different forms of analysis are employed and if the results
converge reasonably well on some estimate of the treatment
effect (e.g., Reynolds & Temple, 1995). Third, rather than
relying exclusively on statistical adjustments, it is preferable
to develop a stronger research design that better approximates
the ideal but unattainable counterfactual comparison (Shadish
et al., 2002).

TESTING MEDIATION: PROBING UNDERLYING
GENERATIVE MECHANISMS

As noted in the previous discussion of randomized experi-
ments, having a relatively strong counterfactual comparison
does not necessarily result in findings that tell us anything
about underlying mechanisms. We could observe, for instance,
that a new freshman orientation program causes a reduction in
student drinking, relative to a standard orientation program,
and not gain any insights as to why the new program is more
effective. As noted in the earlier section on underlying genera-
tive mechanisms, several advantages can result from increased
knowledge about the processes that mediate a program’s
effects.

This is reflected in the attention that many methodologists
and statisticians have given to the study of mediation, that is,
to the causal chains that connect a cause and an effect. This
has been a major focus in work on causal modeling, structural
equation modeling, and similar methods (e.g., Baron &
Kenny, 1986; Jöreskog & Sörbom, 1993; Kenny, Kashy, &
Bolger, 1998). One approach to testing hypotheses about un-
derlying generative mechanisms is to apply such methods in
the context of a randomized experiment or quasi-experiment.
In addition to the outcome variables of interest, potential
mediators are measured, and relationships are assessed to test
specific mediational models. 

For example, an evaluation might test the impact of an ex-
perimental policy that reduces class size in selected grade
school classrooms. The relevant theory may suggest that
class size reductions improve student achievement because
teachers in smaller classes spend more time on instruction
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and less time on discipline. Measures of these potential medi-
ators can be taken, in addition to the outcome measures of
interest (e.g., achievement test scores). If the mediational
measures reveal that classroom processes change as ex-
pected, with a decline in time on discipline and an increase in
time on instruction in the treatment classrooms, and if this
change in the mediators can account statistically for (all or
some) of the subsequent change in the outcome variables,
then the mediational hypothesis would be supported. In addi-
tion, demonstrating an expected mediational path can also in-
crease confidence that the difference between the treatment
and control group is actually attributable to the treatment.
This is because the treatment effect hypothesis specifically
predicts the mediational pattern, but most validity threats,
such as selection or selection maturation, usually would not.

Mediational tests are strongly recommended by many
evaluators, including many of those who advocate theory-
driven evaluation (e.g., Donaldson, in press). In fact, some
evaluators and other researchers seem to equate the study of
underlying mechanisms with the use of mediational tests
through structural equation modeling (SEM) or other related
methods. This is unfortunate for at least two reasons. First,
these quantitative mediational methods, such as SEM, are not
without limits (e.g., Freedman, 1987; Kenny et al., 1998).
Second, there are alternative approaches that evaluators (and
others) should consider.

Tests of moderated relationships can also be important for
assessing underlying mechanisms. A moderated relationship
is another name for a statistical interaction whereby the effect
of a program varies as a function of some other variable. A
hypothesized mediational process will often imply differen-
tial treatment effects. For example, a freshman orientation
program may be expected to work by changing students’ sub-
jective norms about how much others at school drink. If so,
effects should be lower for those freshman who have strongly
held subjective norms (perhaps because of an older sibling)
before starting college, compared to other freshman who are
more uncertain in their subjective norms. If analyses are con-
ducted to show that the program is less effective for those
students who initially have strong subjective norms, we can
have somewhat stronger confidence that changes in subjec-
tive norms actually are the mechanism that underlies the
treatment effect.

In addition, in many instances in evaluation, evidence
about underlying generative mechanisms will come from
qualitative observation rather than from quantitative mea-
sures and statistical tests. Evaluators often employ qualitative
methods, sometimes alone but often in conjunction with
quantitative approaches such as randomized experiments and
quasi-experiments. In some cases the causal path implied by

a program theory may be traced with qualitative observations
and interviews, which can be used to assess whether the ex-
pected sequence of changes occurred. For example, rather
than survey freshman about their subjective norms, in some
instances one might have more open-ended interviews, with
narrative reporting of representative views.

PRINCIPLED DISCOVERY: BUILDING
KNOWLEDGE IN AN INUS WORLD

Evaluations often begin, implicitly at least, with a general
form of hypothesis to be tested. For example, an evaluation
might be motivated by the general hypothesis that a particu-
lar type of freshman orientation will cause a reduction in
drinking, relative to no orientation (or relative to some alter-
native form of freshman orientation). The initial hypotheses
may on occasion be somewhat more specific, indicating that
the program will work better in some circumstances than in
others (e.g., it may be expected that the freshman orientation
will be less effective for incoming students who already drink
heavily). In many (if not all) cases, however, the initial hy-
potheses will be woefully inadequate relative to the complex-
ities and contingencies of a world of INUS causes. For the
most part, our collective knowledge about social problems
and their solutions is rather limited. How can evaluators hope
to go beyond relatively simple initial hypotheses and try to
fill in some of the missing knowledge about the rest of the
causal package within which the program, as an INUS condi-
tion, has its effects? And how can they do this without being
misled by chance findings that arise only because one has
sifted through the data so much? Mark et al. (1998, 2000;
Mark, 2001) used the term principled discovery to describe
methods that can allow for discovery, via induction, of the
complexities of an INUS world, but that are principled in
the sense of subsequently being disciplined by other data.

The standard statistical models to which quantitatively
trained evaluators are exposed in their training emphasize the
testing of a priori hypotheses and understate the importance
of discovery. As Tukey (1986) put it, “Exploration has been
rather neglected; confirmation has been rather sanctified.
Neither action is justifiable” (p. 822). Rosenthal (1994) cast
the issue in stark terms: “Many of us have been taught that it
is technically improper and perhaps even immoral to analyze
and reanalyze our data in many ways (i.e., to snoop around in
the data). We were taught to test the prediction with one par-
ticular preplanned test . . . and definitely not look further at
our data. . . . [This] makes for bad science and for bad ethics”
(Rosenthal, 1994, p. 130). Failure to explore one’s data may
especially be bad science and bad ethics in the context of
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evaluation, where any data set may be costly and difficult to
obtain, and where failure to learn inductively may mean
foregoing a valuable opportunity to create better or cheaper
programs.

Principled discovery has two primary steps. First, the re-
searcher carries out some exploratory analyses that may (a)
demonstrate the contingent limits of a causal relationship
(i.e., may identify moderators of the effect), (b) suggest an
underlying mechanism, or (c) both. Second, the researcher
then (a) replicates the initial finding, or, probably more likely
in evaluation, (b) conducts a test of a theoretical implication
of the new finding, or (c) both. It is important to note that
these two steps of principled discovery can be carried out in
conjunction with the traditional procedures used to test an a
priori hypothesis. For example, one might test the effective-
ness of a freshman orientation program using a random ex-
periment or a quasi-experimental design, and also undertake
principled discovery with the same data set. 

The first step of principled discovery (i.e., the exploratory
analyses through which discovery occurs) can be carried out
in a wide variety of ways (Mark, 2001; Mark et al., 1998).
Indeed, the methods of discovery are as varied as are the
methods of systematic inquiry. A few examples should suf-
fice. First, standard statistical techniques such as regression
and ANCOVA can be used in an exploratory fashion (Tukey,
1977). In general, this would involve exploratory tests to try
to find interactions. That is, one would use ANCOVA or an-
other method to search for moderators of treatment effective-
ness, where the potential moderating variables may consist of
client characteristics, attributes of different sites where the
program is administered, and aspects of the service delivery.
The exploratory use of familiar techniques such as regression
and ANCOVA may be the easiest approach to the first phase
of principled discovery, but many other possibilities exist.

In a second technique for discovery, the exploratory data
analyses of Tukey (1977; see also Behrens, 1997) can be used
to discover possible moderators of program effects and,
therefore, to guide informed speculation about underlying
mechanisms. Even if not predicted in advance, the observa-
tion that larger effects cluster in one subgroup or in one
setting should set off additional investigation and the search
for the underlying mechanism that could account for the ob-
served pattern of effects. A third (and conceptually related)
method of discovery involves inspecting residuals from the
original a priori hypothesis (e.g., the treatment–control group
comparison). Based on the residuals, one may be able to
identify sites or cases that have larger or smaller outcomes
than would be expected from standard predictors. These ex-
treme cases can be contrasted to see whether the variation in
outcome appears to be associated with differences in types of

participants or in treatment implementation, relying perhaps
on qualitative data from interviews or observations. This
technique is analogous to the extreme case analysis em-
ployed by some qualitative researchers.

Fourth, in cases in which multilevel modeling is appropri-
ate (e.g., Bryk & Raudenbush, 1992), similar exploratory
analyses can be carried out to assess whether higher order
variables moderate the treatment effect. For example, in a
reading-intensive math program introduced to some but not
all classes within several schools, one might use school-level
variables to probe for possible moderators (e.g., Seltzer,
1994). Fifth, techniques for classification can be applied in an
exploratory fashion. For example, one might use background
data on clients in a cluster analysis to see if distinct groups of
program clients emerge. If different subtypes of clients are
found, one would then conduct additional analyses to see
whether the program has differential effects across the client
categories. If differential effects are observed, this may in
turn lead to new hypotheses about causal mechanisms. 

In these and numerous other ways, evaluators can attempt
to discover possible variations in treatment effectiveness (see
Mark, 2001, and Mark et al., 1998, for more specific methods
that can be used for discovery). Based on any observed vari-
ations in treatment effectiveness, the evaluator would also at-
tempt to identify possible underlying mechanisms that would
generate the discovered patterns of effects. This attempt to
identify mechanisms that could account for the discovery
might be carried out in conjunction with content area special-
ists and program staff and stakeholders, which may especially
be important if the evaluator has limited content expertise. Of
course, an evaluator could stop there. The evaluation report
could describe the tests carried out to test the original hypoth-
esis, and then describe the discovery-oriented tests and find-
ings, perhaps with caveats added that the latter work was
exploratory and that the findings should be treated as hy-
potheses that should subsequently be tested in future re-
search. This approach, which may be suitable in basic
research, is generally problematic in the context of evalua-
tion. Decisions about a program usually cannot be deferred
until after a second evaluation is finished. Indeed, resources
may not be available for another major evaluation. In short,
the conventional call for future research may be inadequate as
a response to discoveries in the context of evaluation. In part,
this is because it can be difficult to persuade the consumers of
evaluation reports to give the findings of exploratory research
the same degree of uncertainty that a researcher thinks is ap-
propriate. The people who will use the evaluation are likely to
generate explanatory accounts for any exploratory findings,
and these self-generated theories may influence their subse-
quent actions.
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One reason it is dangerous for evaluation consumers to act
on an unexpected discovery is that when a discovery occurs,
chance generally exists as a plausible alternative explanation
(perhaps along with other plausible alternative explanations).
The problem that multiple tests may lead to chance findings is
sometimes referred to as multiplicity. According to Diaconis
(1985), “Multiplicity is one of the most prominent difficulties
with data-analytic procedures. Roughly speaking, if enough
different statistics are computed, some of them will be sure to
show structure” (p. 9), that is, to seem to contain something
systematic. Or as Stigler (1987, p. 148) put it more metaphor-
ically, “Beware of testing too many hypotheses; the more you
torture the data, the more likely they are to confess, but con-
fession obtained under duress may not be admissible in the
court of scientific opinion.” In the court of evaluation use,
the potential problem is that a confession obtained under
duress may actually convince the jury but that it should not be
convincing without independent collaboration.

Thus, the second step of principled discovery is needed. In
essence, this step calls for subjecting any discovery to repli-
cation or some other tests. Replication of course is widely
recommended as the ideal way to “discipline” discoveries.
Replication can in fact be valuable and in certain respects is
the preferred way to ensure that a discovery is real and not due
to chance or other artifact. On the other hand, replication may
not be feasible in evaluation before decisions must be made.
Evaluations are often costly and time consuming. It may be
politically infeasible to delay action until after a replication
has been done. Likewise, in evaluation, costs will generally
preclude replication via cross-validation with a split sample
(in which discoveries are sought through exploratory analy-
ses in half the sample and then verified in the other half); there
are, however, some cases in which evaluation involves large
data sets, and cross-validation with a split sample is the ideal
disciplining in such instances.

Even if replication is possible in a particular case, ambi-
guities in causal inference can exist if both the replication and
the original evaluation include some unrecognized validity
threat that is responsible for the original “discovery.” For ex-
ample, if a selection artifact plagues both evaluations, the
replication of a finding may simply be spurious. It can also be
difficult, in planning a replication, to decide which aspects of
the program services, clientele, and so on should be held
constant and which should be allowed to vary. 

In the absence of replication, the second step of principled
discovery will usually require that other tests be carried out
within the same data set. In general, this will require some
theory development to undergird the choice of new tests.
Although replication enables what might be called black-box
disciplining, whereby a finding is confirmed without additional

conceptualization, in general other forms of disciplining re-
quire theory development. This strategy is illustrated well by
what Julnes (1995) calls the context-confirmatory approach. In
brief, under this approach an empirical discovery (e.g., the
discovery of differential effects across subgroups on a key
outcome) is used to infer an underlying mechanism. This
newly induced mechanism is then used to generate a distinct
prediction that should be true if the mechanism is operating.
This new prediction is then tested using different variables in
the same data set.

Julnes (1995) illustrated the context-confirmatory ap-
proach in an evaluation of a “resource mother” program, in
which staff provided support to new single mothers. In the a
priori, planned test that compared program clients’ outcomes
with those of a comparison group, Julnes found that the pro-
gram was effective on average. In the discovery phase of the
inquiry, exploration revealed that the effects were larger for
older than for younger mothers. Julnes then posited that
younger mothers’ needs were more tangible and task oriented,
and not necessarily met by the resource mothers, who often
were providing primarily emotional support. To further test
this new account, Julnes differentiated the support mothers on
the basis of the extent to which they provided tangible support
versus emotional support. Subsequent tests confirmed that, as
expected, the program was especially ineffective for younger
mothers when the support mothers emphasized emotional
support.

As another example, imagine an evaluation of a boot camp
program for criminal offenders. The overall evaluation de-
sign might involve comparing the effects of the boot camp
program relative to traditional sentences. If the initial pro-
gram theory is lacking, as it is likely to be, one should also
carry out more exploratory analyses in service of discovery.
Suppose that with these exploratory analyses it was discov-
ered that compared to the traditional criminal justice system,
the boot camp program reduces recidivism for offenders with
minor criminal records but not for offenders with more se-
vere records. From that finding, the evaluator might then gen-
erate an explanatory hypothesis, say, that the mechanism
underlying the program is “labeling.” That is, the boot camp
may help prevent minor offenders from being labeled, by
themselves and by others, as criminals. Based on the newly
hypothesized potential mechanism, the evaluator would then
develop another hypothesis, such as that controlling for
offense, the program will be more effective for younger than
for older offenders because the younger ones will be less
likely to have strong labels as criminals. 

At this point the disciplining of the original discovery and
the associated explanatory account would move to the fore-
ground. In the context of the disciplining step, it is important
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also to identify any alternative mechanisms—whether drawn
from the literature, program staff, clients, or direct observa-
tion—that could account for the observed pattern of effects.
For example, the original discovery might arise because of
motivation or increased work skills instead of labeling. The
evaluator’s task then would be to find and test predictions
that can differentiate among these alternative mechanisms.
For example, a simple labeling mechanism would presum-
ably imply that the difference between younger and older of-
fenders should be similar at all sites. On the other hand, if the
underlying mechanism involved the acquisition of work
skills, the age difference is likely to depend in predictable
ways on the specific activities that are carried out at each site
to teach work skills.

Some other strategies can be used for the disciplining step
of principled discovery. In some cases, the evaluator can add
additional measures midway through an evaluation to test the
explanatory account generated to explain a discovery. Evalua-
tion contracts often require interim reports. Some exploratory
work can be carried out for an interim report, and any discov-
eries made can guide the selection of new measures. In other
cases, a discovery might suggest a more specific test, with the
increased specificity of the second test providing greater con-
fidence that the original discovery was not the result of chance.
Imagine, for example, that initial exploratory tests reveal that
an intervention was more effective when clients and therapists
were matched on some background variable, such as parental
socioeconomic status (SES), represented simply as low SES
and high SES in the initial exploratory testing. This discovery
could be disciplined to some extent by carrying out a more
specific test of the matching hypothesis, with finer gradations
of SES, and with the prediction not only that outcomes will be
better when client and therapist match but also that outcomes
should decline the worse the match (see Abelson & Prentice,
1997, on contrast coding for such a test).

Principled discovery is valuable because it can help fill in
the missing information about the contingencies of an INUS
world while reducing the likelihood of being misled by
chance findings. Moreover, although the preceding discus-
sion may suggest a sharp dichotomy between principled dis-
covery and traditional a priori hypothesis testing, the two can
and often should be integrated in practice. As the Julnes
(1995) example suggests, tests of a priori hypotheses can be
conducted virtually consecutively with the exploratory step
of principled discovery. In addition, although the present dis-
cussion has focused on the use of principled discovery to
learn about the causal contingencies of an INUS world, prin-
cipled discovery can also be used to complement the causal
analysis methods that are used to assess the overall effects of
a program or policy. In particular, some evaluations include a

large number of outcome variables, and chance is a plausible
explanation when significant differences are obtained on a
limited set of outcome measures. The disciplining techniques
(of the second step of principled discovery) can help
increase—or decrease—confidence that the observed differ-
ences are meaningful.

Despite its potential benefits, important practical limits
will often apply to principled discovery. First, existing data
sets may not include the additional variables needed to con-
duct a strong test of a new explanatory account. If Julnes
(1995) did not have information on service providers, for ex-
ample, he could not have tested to see whether the treatment
was especially ineffective when younger clients received ser-
vices from resource mothers who emphasized emotional sup-
port. Second, statistical power to detect moderator effects
may be lacking (Cohen, 1988; McClelland & Judd, 1993).
Third, a single validity threat may be shared across the test
that provided the initial discovery and the test used to disci-
pline it. Fourth, the potentially complex nature of causality
can make the relevant patterns difficult to detect. Mackie’s
INUS notion raises our awareness that more than one mecha-
nism may be operating simultaneously. Different mecha-
nisms may be operating for different subgroups of clients, or
in different circumstances (a condition that Baron & Kenny,
1986, called moderated mediation). Although such complex-
ities do not render principled discovery invalid or useless,
they may make it more complex. Finally, some aspects of
principled discovery as a research strategy are not yet well
developed. For instance, it would be useful to have user-
friendly procedures for specifying the degree to which a new
test is independent of the original discovery. Despite these
limitations, principled discovery can be a valuable approach
for evaluation, aiding in identifying the rest of the causal
package required for a program to work effectively while
minimizing false leads that otherwise would arise due to
chance.

OTHER METHODS FOR EVALUATION

As previously noted, causal methods will often be the most
appropriate methods for evaluation because people need to
know what (if any) effects a program has in order to gauge its
value. Nevertheless, a wide range of other methods can also
be used in evaluation, and there are conditions under which
methods other than causal ones are most appropriate. Some-
times evaluators use methods for classification, such as when
Kuhn and Culhane (1998) used cluster analysis to identify
different types of homeless people. Sometimes evaluators
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may assist in needs assessments to advise in decisions about
whether some new program is needed (Scriven & Roth,
1978). Sometimes evaluators, especially those trained in eco-
nomics, carry out cost-benefit analyses that, as the name im-
plies, are designed to compare the cost of a program with the
estimated benefits.

An increasingly important kind of method for evaluators
has come to be known as performance measurement. Perfor-
mance measurement refers to a set of techniques used to mea-
sure and record characteristics of the inputs, services, clients,
and increasingly the postprogram status of clients on some
outcome variables. Performance measurement has been a
growth industry in recent years for evaluators and those
working in allied areas (Newcomer, 1997). In the public sec-
tor, this is because of the Government Performance and
Results Act (GPRA) of 1993, which effectively mandates
performance measurement in all United States. Performance
measurement has been booming in agencies outside of gov-
ernment. In the case of nonprofit agencies, this has been
stimulated largely by the requirements of the United Way
(Newcomer, 1997).

Although a variety of data sources may be used in perfor-
mance measurement systems, often the central task is the de-
velopment of administrative databases. These databases can
record a variety of program-related variables ranging from
inputs (e.g., budgetary receipts) to short- and long-term out-
come indicators (e.g., the health status of clients). Wholey (in
press) persuasively illustrated the potential value of using
performance measurement systems to inform what he and
others call results-oriented management. Wholey offered the
example of the U.S. Coast Guard, which used a new perfor-
mance measurement system to discover a surprisingly high
fatality rate among commercial towing crews. They then de-
veloped interventions targeted specifically at the towing in-
dustry. A dramatic decline in fatalities followed, offering a
compelling illustration of the potential for performance mea-
surement systems to guide organizational management.

Despite successes such as that of the Coast Guard, there
are a number of concerns about performance measurement
systems and, correspondingly, about the results-oriented
management movement (e.g., Mark, Henry, & Julnes, 2000,
chap. 7; Perrin, 1998). One significant concern is whether the
complex outcomes that are the target of many programs can
be represented adequately by the kinds of indicators that can
be repeatedly measured over time in a performance measure-
ment system. A case in point involves the current controversy
over the adequacy of standardized tests as measures of learn-
ing in primary and secondary schools. A related problem in-
volves the potential for the corruption of indicators and for
goal displacement. For example, in the context of high-stakes

educational testing, in which test results can determine
whether an individual student passes on to the next grade
level and whether a local school is taken over by the state,
concerns arise about whether teachers are “teaching to the
test” rather than more broadly educating their students. 

Another potential problem with performance measure-
ment systems is the inability in most cases to draw confident
causal inference that the program, rather than other causal
forces, is responsible for any observed improvement (or de-
cline) in performance over time. Even though clients’ post-
treatment standing on outcomes variables may be measured
in a performance measurement system, it will generally not
be possible to attribute those outcomes to the program. In a
sense, performance measurement systems, as commonly
used, incorporate at best a weak quasi-experimental design.
Of course, knowing that a client has achieved a specific
health status after treatment does not mean that the treatment
caused an improvement in health. Performance measurement
systems often provide no control group at all, or at best a quite
noncomparable comparison group, and relatively little atten-
tion has been given to methods for correcting for selection
bias in the context of performance measurement systems.

On the other hand, some recent work has been directed at
integrating standard tools for causal analysis, including
quasi-experimental design (Harkreader & Henry, 2000) and
mediational analysis (Scheirer, 2000), with the use of perfor-
mance measurement systems. Moreover, performance mea-
surement systems can be useful for program management,
even in the absence of strong causal inferences. For example,
managers can identify areas where service delivery is rela-
tively low and make adjustments accordingly. In addition, in
some contexts, unambiguous attribution of effects to a pro-
gram may not be required to decide whether things seem to
be going in the right direction. Causal analyses can contribute
greatly to an assessment of the merit or worth of a program,
but at some points in the policymaking and funding process,
all that people need to know is whether things are so broke
that they need to be fixed. Performance measurement systems
should generally suffice for judgments of this kind. In this
sense program evaluators need to be policy analytic, thinking
about what type of information is needed to contribute maxi-
mally to social betterment in light of the information needs of
the moment. (See Mark, Henry, & Julnes, 2000, for a plan-
ning framework that begins with an analysis of the policy
context, generates from that an evaluation purpose, and
moves from that—plus an assessment of the degree of
methodological rigor required in light of information
needs—to a selection of methods.) As part of this planning
process, the evaluator needs to consider alternative ways to
arrive at the questions that will guide an evaluation.
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WHERE SHOULD EVALUATION 
QUESTIONS COME FROM?

In most psychological research, the driving questions come
from theory, from past research, and from the investigator’s
interests. These are the primary sources of the independent
and dependent variables of most basic research, for example.
In some cases, evaluators can safely rely on the same sources
for the driving questions in an evaluation. For instance, imag-
ine a theory-driven but multicomponent program designed to
reduce conduct disorder. The evaluator who chooses to rely
on past research to identify outcome measures of conduct dis-
order and related outcomes would probably not be subject to
much criticism. But in many cases, the decisions about the
driving questions in an evaluation are not so simple. If you
are going to evaluate a preschool program, do the relevant
outcomes involve the children’s academic skills, their social
skills, their affective regulation, the parent’s employment,
their satisfaction, the magnitude of the achievement gap be-
tween children of high and low SES parents, longer term out-
comes such as the children’s retention in school, delinquency,
and employment, or something else altogether? Although it
may be possible to measure many outcomes in an evaluation,
resource constraints will usually preclude measuring all pos-
sible outcomes. So how are evaluators to try to identify the
driving questions in an evaluation?

Evaluators have tried out many different strategies for
doing this (for more detailed reviews of the alternative strate-
gies, see House, 1980, 1993; Mark, Henry, & Julnes, 2000;
Patton, 1997). Many early evaluators looked to explicit pro-
gram goals. On the face of it, this approach seems sensible. If
a program is supposed to do X, shouldn’t the evaluator try to
see if in fact it does X? In practice, however, this approach is
riddled with problems. Formal statements about program goals
may provide a very flawed guide. In some cases, advocates
may have oversold what a program might reasonably accom-
plish in order to acquire political support for the program.
Where support was initially strong, program documents may
“set the sights low” to increase the likelihood that the program
will be considered a success. Some of the program’s objectives
may be left out of formal policy statements to reduce contro-
versy. Others may be missing because goals change or emerge
over time. Formal statements probably do not include side
effects that can be critical to judging a program’s merit
and worth. Thus, for a variety of reasons, formal statements
do not provide a compelling map that can guide evaluation
questions—although evaluators should of course consult these
documents during the planning phase of an evaluation.

Instead of formal goals, some evaluation theorists have
suggested that evaluators should focus on needs as a guide to

specifying evaluation questions (e.g., Scriven, 1993; Scriven
& Roth, 1978). This approach may seem eminently sensible:
Why not develop evaluation questions to assess a program in
terms of the most important human needs that it is meant to
address? For example, why not identify the basic human
needs that preschool programs may address and then evaluate
the program in terms of how well it meets those needs. Again,
though, problems arise. First, it is not so easy to identify, or
even to define, human needs. For example, are programs for
gifted children really directed at any needs, or do they in-
volve enrichment well beyond basic needs? In addition, how
easy is it to determine what needs a program (e.g., a
preschool intervention) does or should address? Second, our
conception of needs, both in general and in terms of a given
program, may change over time. The history of day care and
preschool evaluations presents a striking example. Although
early evaluations focused on cognitive skills, it became clear
over time that policy makers and the public were also inter-
ested in social outcomes, such as staying on grade and avoid-
ing assignment to special education (Zigler & Muenchow,
1992). Third, it can be quite difficult to establish priorities
across different needs. Which is more important as a need
that universal preschool might meet—increases in traditional
academic skills, enhanced social development, decreases in
dropout rates, improvements in parents’ SES? In short,
although it may seem sensible to use needs as a guide to eval-
uation questions, and although it is reasonable for evaluators
to think about needs when identifying evaluation questions,
this approach faces important problems.

Another alternative that some evaluators have considered
is to use program theory as a guide to direct evaluation ques-
tions (e.g., Bickman, 1987; Chen, 1990). The idea is to con-
struct, based on local program ideas, general social science
theory, or both, a kind of theoretical model of program activ-
ities, processes, and outcomes. This program theory would
then be used to help guide the evaluation, such as in the
choice of outcome measures (e.g., Bickman, 1987; Chen,
1990). Despite the potential usefulness of program theory,
theory can also have some undesirable consequences (e.g.,
Greenwald, Pratkanis, Leippe, & Baumgardner, 1986). Using
theory to guide evaluation design is unlikely to be harmful if
one’s theory is fully correct. But theories are usually only
partially correct at best, and the theory-driven evaluation may
exclude important outcome measures that the (imperfect)
theory did not specify, ignore possible mediators other than
those specified in the theory, and fail to search for important
moderators of the program’s success. Strong adherence to a
program theory can even lead one to misinterpret results or
overgeneralize conclusions (Greenwald et al., 1986). In addi-
tion, just as formal goals may sometimes be set for public
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relations purposes, so too can the rationale that underlies a
program theory. For instance, manufacturing extension pro-
grams are based on a theory involving what economists call
market failure, meaning that the market does not provide cer-
tain services that small manufacturers supposedly need. But
it is unclear whether this is truly the theoretical justification
or just part of a rationale that is required to justify funding
(Feller, 1997). Another potentially serious problem comes
into better focus once one realizes that there are often fairly
different theories that can be applied to a given program.
These competing theories may even highlight different out-
comes. Whose program theory is to dominate the design of an
evaluation?

Indeed, many evaluators have suggested that evaluation
should look directly to stakeholder input, that is, to the opin-
ions of various interested parties, to find the guiding questions
for an evaluation (e.g., Bryk, 1983; Weiss, 1983). Views have
differed as to whether one stakeholder group or another
should be given a predominant voice. Some have suggested
that stakeholders should be involved because they are influen-
tial in decision making (see Patton, 1997, and Wholey, 1994),
or alternatively because of a desire to give standing to those
without voice in the formal policymaking processes (see
House, 1995). Although stakeholder involvement is both ap-
propriate and valuable, stakeholder approaches are limited.
First, they do not provide guidance about how to differentiate
mere stakeholder preferences from stronger needs or values—
or even tell evaluators whether this is important. Second, the
nature of stakeholder involvement is often unclear, in terms of
who should be considered a stakeholder and how they should
be involved. Third, stakeholder involvement usually omits the
public (Henry, 1996; Henry & Julnes, 1998; Mark, Henry, &
Julnes, 2000) despite the important role the public plays in
democratic systems—including their holding a stake in public
programs as the party that pays the bill.

By helping to clarify the views that stakeholders have
about programs and policies, stakeholder involvement is one
method to guide evaluation questions. But other methods,
which fall under the general rubric of what Mark et al. (2000)
called values inquiry, can also go somewhat further. Values
inquiry refers to attempts to identify the values positions rele-
vant to social programs and policies and to infuse them into
evaluations. But what are values? Values can be defined sim-
ply as normative beliefs, that is, deeply held beliefs about how
things should be. Values may be deeply held and tend to be rel-
atively enduring.At the same time, values must also be subject
to reason and must be changeable for democracies to work and
for social betterment to occur (Richardson, 1997). In the con-
text of evaluating social programs, the most relevant values

are beliefs about what society’s responsibilities are and how
government should act. For some people, for example, the
belief that government should provide for a decent standard of
living after retirement is a strongly held value. Also relevant
are the values that people would use to judge the success or
failure of a given program. For instance, would the parents of
young children see a preschool program as a failure if it did not
enhance academic outcomes but promoted social skills?

The concept of values can help in sorting out some of the
problems that occur when evaluators try to select evaluation
questions. Take the case of an evaluator trying to choose out-
come variables based on an analysis of needs. As previously
noted, needs can emerge over time and can exceed the mini-
mum required to avoid malfunction. Examined from the per-
spective of values, it can be argued that perceived needs
emerge as values change. Perceived needs can exceed mini-
mums, as in the case of special educational opportunities for
talented youth, because of shared values. Bringing values
into the picture also helps evaluators to sort out criteria when
there are too many to examine, and to make sense if a pro-
gram meets one perceived need but creates another. When
there are too many criteria to examine them all, the most im-
portant ones to examine, presumably, are those that are most
highly valued. When a program meets one need but creates
another, its judged worth depends in large part on the relative
importance of the values associated with each need.

Systematic values inquiry can help alleviate some of the
more serious problems that have previously been identified
with the use of stakeholder input as a guide to evaluation
decisions (Greene, 1988; Henry & Julnes, 1998; Mark &
Shotland, 1985). As noted earlier, one of the problems with
traditional stakeholder approaches is that the public is usually
neglected as a stakeholder, even though the public is in fact a
stakeholder for any publicly funded program, and even
though the public effectively sets the direction for many
changes in public policy over time. Methods for values in-
quiry exist that readily allow the public a role in providing
input. For example, sample surveys allow evaluators to as-
sess what kinds of outcomes the public would find most im-
portant. Focus groups and other group-process techniques
(Krueger, 1994) may allow more detailed consideration and
exploration of the values of a small sample of the public.

Another problem with stakeholder approaches in practice
is that the choices that are made, and even more so the ratio-
nale for making them, are often not reported. These become
part of the implicit evaluation process rather than part of the
explicit evaluation findings. With systematic values inquiry,
stakeholder input is construed as an early finding of the
evaluation. When stakeholder input is clearly reported as a
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finding, the consequence is a kind of transparency about how
the key decisions (e.g., the choice of outcome measures)
were made. Such transparency in turn is very useful for the
purpose of accountability.

Several different methods can be used for systematic val-
ues inquiry. As already noted, the views of the public can be
examined in sample surveys. For example, one can ask a ran-
dom sample of voters to rate or rank the importance of a set of
possible outcomes of preschool programs. Special population
surveys can be conducted to obtain the views of more special-
ized stakeholder groups (e.g., college administrators could be
surveyed to identify what they see as the most valued out-
comes of freshman orientation programs). In place of (or in
addition to) surveys, group interviews can be held. The rele-
vant group methods are sometimes discussed under the banner
of focus groups (Krueger, 1994). Such group interviews may
allow more in-depth and detailed assessment of values, in-
cluding perhaps more thoughtful consideration of tradeoffs
across different values. More intense group methods can also
be implemented in an attempt to simulate dialog and delibera-
tion across members of different stakeholder groups (House &
Howe, 1999), perhaps to try to achieve consensus among the
varying groups. In addition, critical review or the application
of some formal theory, such as Rawlsian or feminist analysis,
might be undertaken to try to identify submerged values is-
sues. For instance, a feminist analysis of a freshman orientation
program might indicate inadequate attention to issues of sexual
assault (for more details on these and other methods of system-
atic values inquiry, see Mark, Henry, & Julnes, 2000).

Of course, systematic values inquiry does not magically
tell us which questions should drive an evaluation. Just as the
original stakeholder-input approach is plagued with the ques-
tion of how to weight the views of different stakeholders, the
values inquiry approach faces the challenge of weighting
the reported values of different stakeholders. If disparate
value positions are found in a given evaluation, one response
is to engage in more values inquiry (Mark, Henry, & Julnes,
2000). For example, if survey results show discrepant values
across stakeholder groups, then subsequent group discus-
sions with representatives of each stakeholder group might
be undertaken to see if some degree of consensus could be
achieved in light of the specific empirical evidence about the
value positions of each stakeholder group.

Many of the other pragmatic problems that apply to stake-
holder input apply also to values inquiry. The identification
of who should participate in values inquiry, and the difficul-
ties of successfully recruiting them, are as challenging for
values inquiry as for older forms of stakeholder involvement.
One important difference, however, comes in the position,

intrinsic within the values inquiry approach, that the proce-
dures and findings of values inquiry should explicitly be re-
ported. When these aspects of the evaluation planning
process are reported, any potential bias affecting the subse-
quent selection of evaluation questions should be more ap-
parent. Moreover, the process underlying the selection of the
driving questions in an evaluation can be debated, and the re-
sult of this process can be challenged with the same level of
rigor as for other aspects of research. Without the trans-
parency advocated by values inquiry, the evaluator in a sense
can wrap him- or herself in the cloak of stakeholder partici-
pation, with no external accountability for how well stake-
holder inquiry was conducted or translated into evaluation
questions. By increasing the degree of rigor in the stake-
holder input processes and by providing transparent reporting
of stakeholder procedures and findings, the values inquiry ap-
proach holds some promise of improving the way that the dri-
ving questions for an evaluation are selected. 

In short, although it will still be important to think about
program goals, client needs, and program theory, several dif-
ferent methods for values inquiry can be used to help guide the
questions asked in an evaluation, including the question of
which outcome variables should be measured. The argument
for the use of systematic values inquiry is probably strongest
for evaluations of publicly funded programs. Of course, eval-
uation also takes place in the private sector, as in the fairly
widespread evaluation of training programs for employees.
An argument can be made that values inquiry still fits well, at
least for those private-sector firms that subscribe to contempo-
rary business philosophy. Recent schools of thought in busi-
ness management often include efforts to reduce hierarchical
structure in organizations, initiatives to empower frontline
employees as participants in decision making, reconceptual-
izations of consumers and the public as stakeholders, and ef-
forts to realize values other than the bottom line. Businesses
that take such an approach may be responsive to systematic
values inquiry. Indeed, some experience suggests that system-
atic inquiry into different stakeholder groups’ perspectives is
worthwhile even in the case of training evaluation in the pri-
vate sector (Michalski & Cousins, 2001). On the other hand, in
principle private-sector owners and managers can choose to
ignore some stakeholders with impunity. In at least some in-
stances, evaluators may work more efficiently by focusing on
Patton’s (1997) notion of intended use by intended users,
rather than on systematic values inquiry involving a range of
stakeholders. Indeed, in some private-sector contexts the
process of identifying key evaluation questions may actually
simplify to the use of formal program goals or judged needs as
a guide to evaluation.
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FUTURE DIRECTIONS

The area of program and policy development has, to some
extent, been a fertile area for those trying to advance statisti-
cal analysis (e.g., Rubin, 1974) and research design (e.g.,
Shadish et al., 2002). The potential exists for significant
future developments. Among the areas where future develop-
ments are needed are the following four.

First, the theory and techniques of values inquiry is a fer-
tile ground for additional work. Values inquiry is a relatively
recent offshoot of stakeholder approaches. Additional experi-
ence is needed both to refine the specific methods of values
inquiry and to gain experience about how well the general
values inquiry approach works in practice.

Second, conceptual and methodological developments are
needed to help us specify what constitutes a given program or
type of program (Lipsey, 2001). Typically, we define pro-
grams in terms of either (a) a common funding stream (e.g.,
all local sites funded through Head Start are called “Head
Start”) or (b) claims that program staff are following some
named program (e.g., regardless of the funding source, drug
prevention offerings in schools are called DARE, for Drug
Abuse Resistance Training, if police officers are involved).
But how much deviation should be allowed, and on which
dimensions of service delivery, among the activities of local
sites while still justifying use of the same program name? For
example, should a local school’s drug prevention activities be
called DARE if someone other than a police officer serves as
the program staff? How far can a police officer vary from the
DARE curriculum and still have it constitute an instance
of DARE? In essence, the fundamental question is, How do
we decide that two specific cases are instances of the same
category? A related question is, In a world of hierarchically
embedded categories, how do we decide which level of cate-
gorization is more important? For example, should we be
concerned about whether a local school’s activity is an in-
stance of DARE or of the more inclusive category, “resistance
skills training approaches to drug use prevention”? Further
work on how to define the program could have beneficial
effects outside of evaluation because similar questions about
how to define constructs abound in the social and behavioral
sciences.

Third, there is need for the development of better methods
for rigorous estimates of the effects of everyday programs
(Lipsey, 2001). As Lipsey noted, it appears that, at least in
some policy areas, most of the rigorous causal evaluations are
directed at demonstration projects—interventions specially
set up in order to test their effects—rather than at everyday,
ongoing programs. Demonstration programs can facilitate the
use of random assignment, for example, in a way that is rarely

the case for everyday, ongoing programs. In part, improving
methods to evaluate everyday, ongoing programs will proba-
bly involve continued enhancement and refinement of meth-
ods for controlling for selection bias. In part, this may involve
additional work on the pragmatic problems that can limit the
implementation of rigorous methods, including randomized
experiments. Other, more creative approaches may also need
to be developed.

Fourth, evaluation practice may be enhanced in the future
by the development of better methods for combining evidence
from different kinds of methods. Although this chapter has fo-
cused on the conduct of individual evaluations, the cumulation
of evidence from multiple evaluations is critical in order to
draw the best possible inferences to guide actions. Meta-
analyses of evaluations have become relatively commonplace
since Smith and Glass’s (1977) seminal work (Lipsey &
Wilson, 1993). Meta-analytic techniques, however, are lim-
ited in terms of their ability to combine vastly different kinds
of evidence that may be obtained either within or across eval-
uations. These may be quantitative estimates of a program’s
effects, on the one hand, and qualitative evidence, on the other.
Some work has been carried out on cumulating diverse kinds
of evidence (e.g., Droitcour, Silberman, & Chelimsky, 1993),
but further advances would be welcome.

In addition to these four areas of prospective methodolog-
ical developments, the practice of evaluation will likely face
some challenges in the near future. Two potential challenges
stand out. Although these are distinguishable concerns, they
may have a common solution.

The first challenge involves recent disagreements about
the proper role of stakeholders in the conduct of evaluation.
There is a visible trend in one recent stream of evaluation the-
ory that involves a focus on a high level of direct stakeholder
participation in the evaluation. This work has occurred under
such labels as empowerment, participatory, inclusive, and
transformative evaluation (e.g., Fetterman, 2000; Mertens,
1999). Although distinct in some ways, these approaches all
give a central emphasis to stakeholder participation in evalu-
ation. Indeed, authors writing under these banners sometimes
seem to claim that an evaluation is intrinsically flawed if it is
not driven by stakeholders, often by some specific stake-
holder group favored by that approach, such as program
clients or the disadvantaged. These approaches take stake-
holder involvement both as necessary and as an intrinsic
good, and many of them seem to suggest that stakeholder
involvement should be at a high level throughout the evalua-
tion. Indeed, some recent authors seem to be suggesting that
stakeholder dialogue comprises evaluation, while others sug-
gest that the professional evaluator’s role is that of a consul-
tant to help stakeholders directly carry out all stages of an
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evaluation. In contrast, other streams of contemporary evalu-
ation theory and practice view stakeholder participation as
beneficial, but as instrumental to other evaluation activities
and to evaluation use rather than as an intrinsic and necessary
good. In addition, while the empowerment and transforma-
tive literature emphasizes stakeholder process, the rest of the
field emphasizes evaluation findings.

A second potential challenge involves the role of evalua-
tion relative to several related endeavors in service of organi-
zational learning. Several evaluators have suggested that
evaluation needs to merge with routine organizational learn-
ing and quality improvement methods (Fetterman, 2001;
Torres & Preskill, 2001). The long-term challenge raised by
this perspective involves whether the practice of evaluation
will exist separately, or will instead be subsumed by tools of
industrial engineering or quality improvement. As even ad-
vocates of integration of evaluation and organizational learn-
ing recognize (e.g., Torres & Preskill, 2001), it may be
important that evaluation as a practice area is not simply sub-
sumed within these other endeavors. Continuous quality im-
provement and organizational learning approaches may
emphasize ongoing adjustments in organizational practices in
order to try to achieve incremental improvements. Although
this kind of work certainly has its place, the field of evalua-
tion, as generally practiced by psychologists, also holds in
high regard the kind of causal methods that can be used to as-
sess the overall merit and worth of programs and policies.
The experience of DARE is illuminating. In the last two
decades DARE has come to be widely used as a drug abuse
prevention program in schools. A series of evaluations,
mostly using quasi-experimental designs, have demonstrated
that DARE was not effective and in some circumstances may
actually backfire. Attention to underlying mechanisms helped
to explain the null and occasional negative effects: By em-
phasizing the prevalence of drug use, DARE inadvertently
made drug use seem to be normative, as something that peo-
ple generally do and accept. Based on the results of these
cause-probing evaluations, major funding has been provided
to carry out a complete reformulation of the DARE program.
If the evaluation of DARE had focused on organizational
learning and continuous quality improvement, the risk is that
the evaluation results would have amounted to, as the expres-
sion goes, rearranging deck chairs on the Titanic.

In essence, these two challenges—sorting out the proper
role of stakeholder participation and defining the role of other
forms of evaluation relative to organizational learning and
quality improvement—point to the same long-term need. It is
a need to develop usable frameworks to try to help evalua-
tors, funders, and stakeholders make reasoned judgments
about what kind of evaluation activities are appropriate at a

given time in a specific context. Sometimes the methods of
causal analysis are appropriate, but certainly not in all cases.
In fact, given the complexity, cost, and challenges of rigorous
causal methods, it is important not to assume that they should
be at the center of all evaluations. Sometimes performance
measurement systems are appropriate. Sometimes stake-
holder dialogue may be exactly what is needed. Sometimes
continuous quality improvement and organizational learning
techniques should be at the fore. Sometimes one or another
combination of these approaches is called for. Although a
case could be made that the field of evaluation should en-
dorse a diversity of approaches and “let a thousand flowers
bloom,” this would provide precious little direction to those
who must commission evaluations (and to those who must
conduct them). Thus, theories and conceptual frameworks
that aid in making choices among the many available evalua-
tion options will prove increasingly important in the future
(see Mark, Henry, & Julnes, 2000, for a tentative and partial
framework of this sort).

SUMMARY AND CONCLUSIONS

Evaluation in general aims to provide information about poli-
cies and programs with the hope that the information can be
used to help make things better. For the kinds of policy and
programs psychologists evaluate, the question of effects—of
the difference the policy or program makes on valued out-
comes—is often central. Accordingly, in this chapter consid-
erable attention has been given to the methods for causal
analysis that can be used in evaluation. These methods can be
used to approximate the ideal counterfactual in order to esti-
mate a program’s effects, to study mediation in order to try to
understand the underlying mechanisms through which the
program may have its effects, and to probe the moderators of
program effectiveness in order to fill in the gaps in our
knowledge of an INUS world. When a program’s effects are
estimated (e.g., with a randomized experiment or the best
available quasi-experiment), interested parties can better
judge the program’s value and decide whether to continue its
funding.

But the knowledge of causal methods does not suffice for
evaluation practice. Unlike basic research, where research
questions reasonably derive from theory and researcher inter-
est, and unlike much applied research, where a sponsor’s
interests may reasonably guide the research question, the se-
lection of the driving questions in an evaluation can be rela-
tively challenging. Especially for publicly funded policies
and programs, there are likely to be competing stakeholders,
including the public, who may have differing values and
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perspectives. Values inquiry, with its emphasis on systematic
methods for assessing stakeholder views and on explicit
reporting to enhance transparency and accountability, is a
promising approach for guiding the choice of evaluation
questions. Values inquiry is also one of several promising
areas where methodological and theoretical developments are
desirable and may be expected in the foreseeable future.

The policies and programs that psychologists and others
evaluate are intended to make a positive difference in peo-
ple’s lives. They may be designed, for example, to reduce
prejudice (Aronson et al., 1978), to improve the educational
attainment of children (Zigler & Muenchow, 1992), and to
improve individuals’ psychological well-being (Smith &
Glass, 1977). But the good intentions of program designers
do not automatically translate into effective programs. Thus
there is a need for evaluation. High-quality evaluation can
contribute in many ways. Ineffective programs can be identi-
fied and alternatives developed (as in the case of DARE).
Effective programs, on the other hand, can be identified and
support for them increased. Underlying mechanisms can be
demonstrated, opening up the possibilities of more effective
and more efficient interventions. The contextual complexi-
ties, that is, the moderators of effectiveness in an INUS
world, can be identified, thereby raising the prospect of better
targeting interventions to those cases where they are most
likely to be effective. In all these and other ways, the ultimate
goal of evaluation is to improve the capacity of policies and
programs to achieve their intended ends to improve people’s
lives. If evaluation can achieve this goal, even in some
degree, it is no small accomplishment.
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In this chapter, we provide a basic introduction to the mea-
surement of mood. After decades of neglect, mood emerged
as a seminal concept within psychology during the 1980s,
and its prominence has continued unabated ever since. In-
deed, a PsycINFO database survey during the 5-year period
from 1996 to 2000 generated 5,563 references with the key-
word mood. Our survey of this rapidly expanding literature is
organized into three broad sections. First, because good in-
struments obviously should assess the basic constructs in a
domain, we examine current thinking and research regarding
the underlying structure of mood. Second, we briefly de-
scribe and evaluate many of the most important measures in
this area. Finally, we discuss several general issues related to
the reliability and construct validity of mood measures.

Before turning to these other matters, however, we first
need to define the domain itself. What exactly is a mood, and
how does it differ from the related concept of emotion?
Moods can be defined as transient episodes of feeling or af-
fect (Watson, 2000a). As such, moods differ from emotions in
several important ways (see Larsen, 2000; Watson, 2000a,
2000b); we will restrict ourselves here to three key differ-
ences that have important implications for measurement.
First, mood research focuses primarily—indeed, almost
exclusively—on subjective, phenomenological experience.
In contrast, emotions classically have been viewed as multi-
modal psychophysiological systems, with at least four differ-
entiable components: (a) the subjective (e.g., feelings of fear
and apprehension), (b) the physiological (e.g., activation of
the sympathetic nervous system), (c) the expressive (e.g., the

facial expression of fear), and (d) the behavioral (e.g., flight
away from danger; Watson, 2000a; Watson & Clark, 1992).
Thus, in sharp contrast to emotion research, mood measure-
ment essentially involves the assessment of subjective feel-
ings, without any systematic consideration of these other
components.

Second, emotions tend to be extremely brief, lasting per-
haps only a few seconds (Izard, 1991; Larsen, 2000). One
occasionally observes prolonged emotional states, but these
extended reactions tend to be dysfunctional manifestations of
psychopathology (see Clark & Watson, 1994; Watson,
2000a). In contrast, moods typically are much longer in dura-
tion. For example, whereas the full emotion of anger might
last for only a few seconds, an annoyed or irritable mood may
persist for several hours, or even for a few days. Because
of their longer duration, moods are more easily linked to
long-term individual differences in temperament and person-
ality. Indeed, some prominent measures in this area—such as
the Multiple Affect Adjective Checklist–Revised (MAACL-
R; Zuckerman & Lubin, 1985) and the Positive and Negative
Affect Schedule–Expanded Form (PANAS-X; Watson &
Clark, 1994)—contain alternative versions that permit one to
assess either (a) short-term fluctuations in current mood or
(b) long-term individual differences in trait affect. Accord-
ingly, we consider both state and trait affect in our review.

Third, the concept of mood subsumes all subjective feel-
ing states, not simply those experiences that accompany clas-
sical, prototypical emotions such as fear and anger. This has
caused some confusion in the literature; writers periodically
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have criticized mood measures for including nonemotion
terms (e.g., sleepy, calm, alert) as items (e.g., Lazarus, 1991;
Clore, Ortony, & Foss, 1987). This criticism is based on the
assumption that mood research should be restricted to clear
referents of emotion, which simply is not the case. Because
mood researchers seek to understand all aspects of affective
experience, it is necessary to go beyond the narrow confines
of prototypical emotions and assess a much broader array of
feelings (see Watson, 2000a). Accordingly, this does not rep-
resent a valid criticism of mood measures.

THE STRUCTURE OF AFFECTIVE EXPERIENCE

Discrete Affect Models

What are the basic constructs that need to be assessed in this
domain? Early mood research tended to emphasize the impor-
tance of discrete, specific types of affect, such as fear-anxiety,
sadness-depression, anger-hostility, and happiness-joy. This
approach was supported by an extensive array of evidence;
most notably, structural analyses of mood terms repeatedly
identified well-defined content factors corresponding to these
specific affective states. Moreover, a common core of discrete
affects—including fear, sadness, and anger—emerged consis-
tently across factor analyses reflecting different pools of items
and diverse samples of respondents (e.g., McNair, Lorr, &
Droppleman, 1971; Nowlis, 1965; Watson & Clark, 1994;
Zuckerman & Lubin, 1985).

Nevertheless, advocates of this approach eventually en-
countered a very serious problem, namely, that measures of
different specific affects are strongly interrelated and tend to
show questionable discriminant validity. Correlations among
affects of the same valence tend to be particularly strong.
For instance, people who experience significant levels of one
type of negative affect (e.g., anger) also tend to report ele-
vated levels of other negative moods (e.g., fear, sadness,
guilt); similarly, individuals who report one type of positive
mood (e.g., joy) report many others (e.g., energy, enthusiasm,
interest) as well. In fact, multitrait-multimethod analyses
consistently demonstrate much stronger evidence for non-
specificity (i.e., significant positive correlations among
measures of different, similarly valenced affects) than for
specificity (i.e., unique relations between indicators of the
same target affect) in mood data (see Bagozzi, 1993; Beren-
baum, Fujita, & Pfennig, 1995; Diener, Smith, & Fujita,
1995; Watson & Clark, 1992). We should add that cross-
valence correlations (e.g., between fear and enthusiasm) tend
to be much weaker, but often are not negligible, an issue we
shall return to later.

Dimensional Models

This enormous nonspecificity establishes that mood can be
characterized by a much smaller number of general dimen-
sions. Accordingly, researchers increasingly have turned to
dimensional models over the past two decades. Although ear-
lier approaches often posited three major dimensions (e.g.,
Engen, Levy, & Schlosberg, 1958), affect researchers gradu-
ally converged on a two-factor structure. In 1980, Russell
made a major contribution to this literature by proposing that
these two dimensions define a circumplex, that is, a model in
which mood descriptors can be systematically arranged
around the perimeter of a circle. As it is usually presented,
this circumplex actually defines four bipolar dimensions that
are spaced 45° apart: Pleasantness (pleasure versus misery),
Excitement (excitement vs. depression), Activation (arousal
vs. sleepiness), and Distress (distress vs. contentment; see
Russell, 1980, Figure 1). We must emphasize, however, that
Russell always has viewed Pleasantness and Activation as the
basic dimensions of affect (see Feldman Barrett & Russell,
1998; Russell & Carroll, 1999).

Although Russell (1980) reported some evidence suggest-
ing that this circumplex could be applied to self-rated mood,
most of his evidence actually was based on other types of
affect data (e.g., analyses of facial expressions, judged simi-
larities among mood terms). Watson and Tellegen (1985),
however, subsequently reanalyzed data from several studies
and established that the same basic two-dimensional structure
also consistently emerged in self-report data. Furthermore, on
the basis of these reanalyzed data, they presented a circular
structure that was designed to resemble Russell’s circumplex
as closely as possible. This structure is displayed in Fig-
ure 14.1. Paralleling Russell’s model, Watson and Tellegen’s
circular scheme portrays four bipolar dimensions that are
neatly spaced 45° apart: Pleasantness (happy vs. sad), Posi-
tive Affect (excited vs. sluggish), Engagement (aroused vs.
still), and Negative Affect (distressed vs. relaxed). In contrast
to Russell, however, Watson and Tellegen emphasized the im-
portance of the Positive Affect and Negative Affect dimen-
sions that are represented by the solid lines in Figure 14.1.

Although it has encountered some significant problems of
its own (which we discuss shortly; see also Watson, Wiese,
Vaidya, & Tellegen, 1999), this affect circumplex continues
to exert a dominant influence on affect assessment at the gen-
eral, higher order level (see Feldman Barrett & Russell, 1998;
Larsen & Diener, 1992; Russell & Carroll, 1999; Tellegen,
Watson, & Clark, 1999; Watson et al., 1999). We must
emphasize again that although the defined space is itself two-
dimensional, the circumplex traditionally is displayed as con-
sisting of four bipolar constructs, which essentially represent
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Figure 14.1 The two-dimensional structure of affect. Source: From
Watson and A. Tellegen (1985, p. 221). Copyright 1985 by the American
Psychological Association.
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rival two-factor schemes: one based on Pleasantness and
Engagement (to use the terminology shown in Figure 14.1),
and the other defined by Negative Affect and Positive Affect.
We shall review measures of all four constructs later.

A Hierarchical Synthesis

Watson and Tellegen (1985) further clarified the underlying
structure of the domain by pointing out that these two basic ap-
proaches—that is, general dimensions and discrete affects—
are not incompatible or mutually exclusive; rather, they reflect
different levels of a single, integrated hierarchical scheme (see
also Berenbaum et al., 1995; Diener et al., 1995; Watson &
Clark, 1992, 1994, 1997). Specifically, they proposed that the
higher order dimensions of Negative Affect and Positive
Affect each can be decomposed into several correlated—yet
ultimately distinct—affective states; the general dimension of
Negative Affect, for instance, can be subdivided into specific
negative affects such as fear, hostility, and sadness. In this hi-
erarchical scheme, the lower level reflects the specific content
of the mood descriptors (i.e., the distinctive qualities of the
individual discrete affects), whereas the higher order level
reflects their valence (i.e., whether they reflect negative or
positive states).

Subsequent studies have reported evidence that strongly
supports this hierarchical scheme. Watson and Clark (1992),
for example, reported four studies demonstrating the hierar-
chical arrangement of the negative affects. In their Study 1,

measures of sadness-depression correlated more highly with
one another than with indicators of fear-anxiety or anger-
hostility. Similarly, Studies 2 and 3 demonstrated that a given
Time-1 measure (e.g., Time-1 guilt) correlated more strongly
with its Time-2 counterpart (e.g., Time-2 guilt) than with
Time-2 measures of other negative affects (e.g., Time-2
sadness). Finally, Study 4 established that self-rated traits
(e.g., self-rated sadness) correlated more highly with their
peer-rated counterparts (e.g., peer-rated sadness) than with
parallel ratings of other target affects (e.g., peer-rated hostil-
ity). Berenbaum et al. (1995) later replicated these findings in
another series of four studies.

Consequently, both levels of this hierarchical structure
must be assessed in any comprehensive assessment of mood.
We therefore consider measures of both specific, discrete af-
fects and general dimensions in our review. Finally, it is worth
noting that Tellegen et al. (1999) recently proposed an ex-
panded three-level hierarchical scheme that incorporates im-
portant features from all of the approaches we have discussed.
A general bipolar dimension of Pleasantness versus Unpleas-
antness (a key construct in Russell’s model) comprises the
highest level of this structure; this dimension reflects the
fact that positive and negative affective states tend to be neg-
atively correlated (albeit somewhat weakly) with one another.
The intermediate level of the model consists of the Positive
and Negative Affect dimensions that were highlighted by
Watson and Tellegen (1985); this level represents the strong
within-valence correlations that were discussed earlier.
Finally, the lowest level of the hierarchy consists of discrete
affects such as fear, anger, and sadness; this level captures the
distinctive qualities of these specific types of affect.

REVIEW OF EXISTING MEASURES

Measures of the Higher Order Dimensions

Measures of Pleasantness and Activation

We begin our review by considering measures of Pleasantness
(also known as Valence or Evaluation) and Engagement
(also called Activation or Arousal). This represents a rather
puzzling area within the affect assessment literature. As we
already have discussed, Pleasantness and Engagement are im-
portant constructs that have played an influential role in mood
research for several decades. Moreover, measures of these di-
mensions have been included in numerous studies (e.g.,
Green, Goldman, & Salovey, 1993; Russell & Carroll, 1999;
Watson, 1988; Watson et al., 1999). Almost invariably, how-
ever, researchers have relied on ad hoc measures whose psy-
chometric properties have not been thoroughly established.
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Because of this, no scales have emerged as standard, widely
used measures of these constructs.

For instance, in their recent examination of affect scales,
Larsen and Fredrickson (1999) reviewed only one measure
of these dimensions, the Affect Grid (Russell, Weiss, &
Mendelsohn, 1989). The Affect Grid consists of a single item,
which is presented to respondents as a 9 × 9 matrix. Partici-
pants are instructed to place a check within the cell of this
matrix that best reflects their current feelings of pleasantness
and activation. One key advantage of this approach is that the
Affect Grid can be administered repeatedly over a relatively
short interval without taxing the patience of respondents.
This makes it ideal for intensive, massed assessments of
mood (see Russell et al., 1989). At the same time, however,
the Affect Grid suffers from two problems that lessen its
value in many assessment contexts. First, because it consists
of only a single item, its internal consistency reliability can-
not be determined. Second, because the assessment is com-
pletely undisguised (i.e., the targeted constructs of Pleasant-
ness and Engagement are explicitly presented to
respondents), its validity may be significantly compromised
in situations in which responses are likely to be substantially
influenced by expectancy effects, demand characteristics, or
social desirability concerns.

Feldman Barrett and Russell (1998; see also Yik, Russell,
& Feldman Barrett, 1999) recently introduced a promising
assessment instrument, the Current Mood Questionnaire
(CMQ), which includes measures of Pleasantness and
Engagement. The CMQ was designed to assess the affect
circumplex in a comprehensive manner, and it contains scales
assessing all of the octants displayed in Figure 14.1. One un-
usual feature of the full CMQ is that each octant can be mea-
sured using three different rating methods: (a) simple mood
adjectives that are rated on a 5-point Likert scale; (b) more
elaborate statements that are assessed using a 5-point agree-
disagree format; and (c) a similar set of statements that are
rated using a 4-point “describes me” format. Feldman
Barrett, Russell, and their colleagues also have included a
fourth measure of Pleasantness and Engagement in many of
their analyses, using six-item semantic differential scales that
originally were developed by Russell and Mehrabian (1974).
Although the use of multiple methods can be cumbersome
and time consuming, it allows one to compute corrected
correlations that control for both random and systematic (i.e.,
method variance) sources of error; we shall consider this
important issue in detail later.

The CMQ scales assessing the Pleasantness, Unpleasant-
ness, Engagement, and Disengagement octants tend to be
quite short, consisting of only two to four items within each
method. Despite their brevity, however, the Pleasantness and

Unpleasantness scales typically show excellent reliabilities.
In their Studies 2 and 3, Feldman Barrett and Russell (1998)
obtained internal-consistency reliabilities (coefficient alphas)
ranging from .79 to .91 (Mdn = .88) for their Pleasantness
scales, and from .83 to .90 (Mdn = .88) for the Unpleasant-
ness scales (Feldman Barrett, personal communication,
November 13, 2000). Moreover, the reliabilities were even
better when the items from both octants were combined into
single bipolar measures of Pleasantness versus Unpleasant-
ness, ranging from .88 to .94 (Mdn = .91).

The CMQ measures of Engagement versus Disengagement
proved to be less satisfactory, however (Feldman Barrett,
personal communication, November 13, 2000). Coefficient
alphas for the Engagement scales ranged from .63 to .83, with
a median value of only .73; similarly, the reliabilities for the
Disengagement measures ranged from .50 to .78, with a me-
dian value of .71. Moreover, combining the items from both
octants into a single bipolar measure of Engagement versus
Disengagement did not improve things much: The reliabilities
still ranged from .67 to .86, with a median value of .77. We
have collected CMQ data (using only the describes-me
response format) in a sample of 676 University of Iowa under-
graduates, and the results are even more discouraging. Coeffi-
cient alphas for the Engagement and Disengagement scales
were .59 and .58, respectively; combining the items into a
single bipolar dimension still yielded an alpha of only .66.

The CMQ Engagement and Disengagement scales appear
to work well when they are used as originally intended, that
is, as components in a multimethod approach that is designed
to control for various types of measurement error (Feldman
Barrett & Russell, 1998; Yik et al., 1999). They are less
satisfactory, however, when used separately as stand-alone
measures of these constructs. Thus, we cannot advocate
their broad use as general measures of Engagement versus
Disengagement.

We should emphasize that this problem is by no means
unique to the CMQ, but rather reflects a more general issue in
mood measurement. Although it is relatively easy to create
reliable indicators of Pleasantness versus Unpleasantness, it
has proven much more difficult to create good measures of
Engagement versus Disengagement (see Watson et al., 1999).
The assessment difficulties in this area reflect two basic prob-
lems. First, compared to the other three dimensions shown in
Figure 14.1, the available supply of good marker terms is rel-
atively limited for this dimension. In this regard, Watson
et al. (1999) measured all of the octants in the affect circum-
plex in three different samples; they analyzed these data
using CIRCUM (Browne, 1992), a structural modeling tech-
nique for testing circumplexity (see also Fabrigar, Visser, &
Browne, 1997). Rather than defining a neat circumplex,
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however, the data actually revealed the presence of two broad
superclusters (see Watson et al., 1999, Figure 2). The first
(spanning from High Negative Affect to Disengagement)
occupied only 100° of the circle (rather than the 135° de-
picted in Figure 14.1), whereas the second (ranging from
Low Negative Affect to Engagement) occupied only 105°.
These superclusters were separated by two large gaps at
the opposite ends of the space (76° between Engage-
ment and High Negative Affect, 79° between Disengagement
and Low Negative Affect); these gaps reflected the fact that
no variables fell close to the hypothesized Engagement-
Disengagement axis.

Put differently, none of the analyzed variables was affec-
tively neutral; rather, all of them could be characterized as
positively or negatively valenced. In light of this situation,
mood researchers typically have been forced to use valenced
terms in their measures of Engagement versus Disengage-
ment. The CMQ, for instance, includes a number of posi-
tively valenced items (e.g., alert, filled with energy, full of
energy) and negatively valenced items (e.g., stirred up, keyed
up) in its Engagement scales. Although this practice is prob-
lematic, researchers ultimately have little choice. As the
Watson et al. (1999) results demonstrate, it has proven very
difficult to identify affectively neutral terms that are clear,
unambiguous markers of this dimension.

The second problem concerns the relatively weak bipolar-
ity of this dimension. The accumulating data consistently
demonstrate strong negative correlations between measures
of Pleasantness and Unpleasantness. For instance, Watson
and Tellegen (1999) summarized the results of several studies
that reported latent correlations (controlling for measurement
error) between measures of Pleasantness and Unpleasant-
ness; these correlations ranged from −.84 to −.93, with a

median value of −.91 (see Watson & Tellegen, 1999, Table
1). In contrast, the correlations between measures of Engage-
ment and Disengagement tend to be much lower. Because of
this, there is little to be gained (in terms of augmenting relia-
bility) by combining the two ends of the dimension into a sin-
gle bipolar scale.

To document this important point, Table 14.1 presents
data from four samples in which respondents completed mea-
sures of all of the octants in the affect circumplex. The first
three samples were described previously by Watson et al.
(1999). Sample 1 consists of 486 undergraduates at Southern
Methodist University (SMU) who rated their current, mo-
mentary mood using a 5-point scale (1 = very slightly or not
at all, 5 = extremely); Sample 2 was composed of 317 SMU
students who completed a general, trait version of the same
questionnaire. Participants in both samples rated themselves
on the 38 affect terms shown in Figure 14.1. The descriptors
defining each octant then were summed to yield an overall
measure of that octant; however, two terms (placid and qui-
escent) had to be dropped because many respondents were
unfamiliar with them and left them blank. Sample 3 consisted
of 421 University of Iowa undergraduates who rated their
current, momentary mood on the same 5-point scale. Using
the terms presented in Russell (1980) and Feldman Barrett
and Russell (1998) as a guide, Watson et al. (1999) created
three- or four-item scales to assess each octant (the terms
included in each scale are reported in Watson et al., 1999,
p. 822). Finally, Sample 4 consisted of the 676 University of
Iowa students who rated themselves on the CMQ using the
describes-me format. Six of the octant scales were assessed
in their original form; however, the CMQ markers of High
Positive Affect and High Negative Affect were modified to
maximize their similarity to the corresponding scales in the

TABLE 14.1 Correlations Among Octant Markers of the Affect Circumplex

Correlation Sample 1 Sample 2 Sample 3 Sample 4 Mean r

Pleasantness-Engagement markers
Pleasantness vs. Unpleasantness −.47* −.37* −.36* −.65* −.50
Engagement vs. Disengagement −.20* .02 −.30* −.35* −.24
Pleasantness vs. Engagement .33* .30* .46* .31* .35
Pleasantness vs. Disengagement −.07 −.09 −.17* −.17* −.13
Unpleasantness vs. Engagement −.06 .17* −.15* −.14* −.07
Unpleasantness vs. Disengagement .15* .31* .21* .25* .23

Positive-Negative Affect markers
High PA vs. Low PA −.31* −.13 −.35* −.60* −.41
High NA vs. Low NA −.41* −.34* −.16* −.52* −.39
High PA vs. High NA .15* .01 .20* −.20* .01
High PA vs. Low NA .04 .15* .31* .52* .30
Low PA vs. High NA .23* .52* .09 .36* .30
Low PA vs. Low NA .08 −.14 −.28* −.38* −.21

Note. N = 486 (Sample 1), 317 (Sample 2), 421 (Sample 3), 676 (Sample 4). PA = Positive Affect. NA = Negative Affect.
*p < .01, two-tailed.
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Positive and Negative Affect Schedule (PANAS; Watson,
Clark, & Tellegen, 1988).

Correlations among the Pleasantness and Engagement
scales are presented in the top half of Table 14.1. The table
shows the individual correlations from each sample, as well as
weighted mean coefficients calculated across all of them
(these were computed after subjecting the individual sample
correlations to an r to z transformation). Consistent with the
evidence reviewed earlier, these data demonstrate moder-
ate to strong bipolarity between markers of Pleasantness and
Unpleasantness, with an overall mean correlation of −.50.
Corrected for measurement error, these coefficients again
would reflect a very strong inverse relation between the two
hypothesized poles of this dimension. In sharp contrast, how-
ever, the correlations between hypothesized markers of
Engagement and Disengagement ranged from .02 to −.35,
with a mean coefficient of only −.24. These correlations
reflect a rather weak level of bipolarity, and indicate that
the two hypothesized poles of this dimension do not neatly de-
fine the opposite ends of a single construct. On the basis of
these data, we strongly recommend that mood researchers
carefully examine the correlations between their Engagement
and Disengagement scales before combining them into a sin-
gle bipolar measure.

It also is noteworthy that the Engagement scales tended
to correlate more strongly with markers of Pleasantness (mean
r = .35) than with indicators of Disengagement (mean r =
−.24); conversely, the Disengagement measures correlated as
highly with Unpleasantness (mean r = .23) as with Engage-
ment. These results again demonstrate that it is exceedingly
difficult to find mood terms that truly are affectively neutral.
In these four samples, the purported markers of Engagement
clearly tended to be positively valenced, whereas the Disen-
gagement items tended to be negatively valenced.

In summary, Pleasantness and Engagement represent key
constructs within the affect literature. It is rather surprising,
therefore, that so little attention has been given to their as-
sessment, such that no scales have emerged as standard, de-
finitive measures of these constructs. Our brief survey of this
literature indicates that it is relatively easy to develop reliable
measures of Pleasantness and Unpleasantness; the CMQ, for
instance, contains three reasonably reliable measures of each
construct. Furthermore, in light of the strongly bipolar nature
of this dimension, markers of Pleasantness and Unpleasant-
ness can be safely combined into a single index to create an
even more reliable measure of the construct. In sharp con-
trast, the assessment of the Engagement dimension has
proven to be much more problematic. As we have seen, the
available supply of good marker terms is relatively limited
for this dimension. Furthermore, the two hypothesized ends

of the dimension tend to be weakly interrelated, making it
problematic to combine them into a single bipolar scale. This
is a significant assessment problem that merits far greater
attention from affect researchers in the future.

Measures of Positive and Negative Affect

The situation is quite different when one examines the litera-
ture related to the Positive and Negative Affect dimensions
depicted in Figure 14.1. Multiple measures of these con-
structs have been created, and several of these scales—
including those of Bradburn (1969), Stone (1987), and
Diener and Emmons (1984)—were frequently used in the
past (for a comparative analysis of these instruments, see
Watson, 1988). Gradually, however, the PANAS (Watson et
al., 1988) emerged as the standard measure of these con-
structs. The original PANAS (which later was subsumed into
the more comprehensive PANAS-X) contains 10-item scales
assessing each dimension. The terms comprising the PANAS
Positive Affect scale are active, alert, attentive, determined,
enthusiastic, excited, inspired, interested, proud, and strong;
the items included in the Negative Affect scale are afraid,
ashamed, distressed, guilty, hostile, irritable, jittery, nervous,
scared, and upset. These terms can be used with several dif-
ferent time instructions (e.g., how one feels right now, how
one has felt over the past week, how one feels in general). In
each case, respondents rate the extent to which they have ex-
perienced each term on a 5-point scale (1 = very slightly or
not at all, 5 = extremely). Since their introduction in 1988,
the PANAS scales have been used in hundreds of studies; in
fact, an inspection of the Institute for Scientific Information
citation database indicates that the original 1988 article now
has been cited more than 1,450 times.

The widespread popularity of the PANAS rests, in part, on
the rich body of psychometric data that have established the
reliability and validity of the scales. With regard to reliability,
Watson et al. (1988) reported that the PANAS scales showed
excellent internal consistency in six large data sets, with sam-
ple sizes ranging from 586 to 1,002. Specifically, the coeffi-
cient alphas for the Negative Affect scale ranged from .84 to
.87, whereas those for the Positive Affect scale ranged from
.86 to .90. Watson and Clark (1994) later reported a more ex-
tensive analysis of this issue, examining data from 19 sam-
ples (representing eight different time instructions) with a
combined N of 17,549. Across these samples, the coefficient
alphas ranged from .83 to .90 for Negative Affect, and from
.84 to .91 for Positive Affect (see Watson & Clark, 1994,
Table 4).

With regard to validity, Watson et al. (1988) established
that the PANAS scales were excellent measures of the
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underlying Positive and Negative Affect dimensions. Watson
et al. factor-analyzed the data from six large data sets, ex-
tracting two factors in each case. They then correlated the
PANAS scales with regression-based estimates of these fac-
tors. The PANAS Positive Affect scale had correlations rang-
ing from .89 to .95 with the Positive Affect factor scores, and
from −.02 to −.17 with the Negative Affect factor. Con-
versely, the PANAS Negative Affect scale had correlations
ranging from .91 to .93 with scores on the Negative Affect
factor, and from −.09 to −.18 with the Positive Affect factor.
Watson and Clark (1997) subsequently extended these find-
ings in 13 additional data sets. Eleven of these were between-
subject data sets with a combined sample size of 8,685.
Across these samples, the PANAS Positive Affect scale had
correlations ranging from .90 to .95 (Mdn = .93) with its cor-
responding factor score; similarly, the PANAS Negative Af-
fect scale had convergent correlations ranging from .92 to .95
(Mdn = .94) with its target factor. In the final two samples,
respondents rated themselves repeatedly over a large number
of occasions: One data set was based on momentary ratings
(10,169 observations) and the other on daily ratings (11,322
observations). The data in each sample were standardized on
a within-subject basis and then subjected to an overall factor
analysis. The PANAS Positive Affect scale had correlations
of .93 and .90 with its corresponding factor score in the
momentary and daily ratings, respectively; the convergent
correlations for the Negative Affect scale were .89 and .89,
respectively.

The construct validity of the PANAS is further supported
by a diverse array of evidence. For instance, state versions of
the scales (in which respondents rate how they are feeling
currently, or how they have felt over the course of the day)
have been shown to be sensitive to a variety of transient
situational and biological factors. Thus, PANAS Negative
Affect scores are significantly elevated in response to stress
and are reduced following moderate exercise. Conversely,
Positive Affect scores are significantly elevated following
exercise and social interactions, and show a systematic circa-
dian rhythm over the course of the day; they also have been
shown to be highly sensitive to variations in the daily body
temperature rhythm and the sleep-wake cycle (see Watson,
2000a; Watson et al., 1999).

Furthermore, trait versions of the scales (in which respon-
dents rate how they have felt over the past year, or how they
feel in general) are strongly stable over several months and
display substantial levels of stability over retest intervals as
long as 7 years (Watson & Clark, 1994; Watson & Walker,
1996). In addition, self-ratings on the scales show significant
convergent validity when correlated with corresponding
judgments made by well-acquainted peers, such as friends,

roommates, dating partners, and spouses (see Watson &
Clark, 1991, 1994; Watson, Hubbard, & Wiese, 2000). Self-
ratings on these scales also show strong convergence with the
Big Two personality traits of extraversion and neuroticism;
for instance, in a combined sample of 4,457 respondents, the
general, trait version of the PANAS Negative Affect scale
correlated .58 with neuroticism, whereas the Positive Affect
scale correlated .51 with extroversion (Watson et al., 1999).
We shall examine the construct validity of these general trait
ratings in greater detail shortly.

It also is noteworthy that Watson (2002) recently created
parallel forms of the PANAS scales. These new scales also
are composed of 10 terms each, none of which overlap with
those included in the original scales. The parallel form of the
Positive Affect scale consists of the terms bold, cheerful, con-
centrating, confident, daring, delighted, energetic, fearless,
joyful, and lively; the alternate form for the Negative Affect
scale includes angry, angry at self, blameworthy, dissatisfied
with self, disgusted, disgusted with self, frightened, loathing,
scornful, and shaky. These parallel versions also show excel-
lent psychometric properties. For instance, across 12 large
between-subject data sets with a combined sample size of
9,887, the new Positive Affect scale had coefficient alphas
ranging from .81 to .89 (Mdn = .88) and the Negative Affect
scale had alphas ranging from .85 to .91 (Mdn = .87). More-
over, these new measures are strongly convergent with the
original scales. Across the 12 data sets, the two Positive
Affect scales had convergent correlations ranging from .79 to
.87 (Mdn = .86) and the Negative Affect scales had correla-
tions ranging from .82 to .89 (Mdn = .85). Furthermore, trait
versions of these parallel forms showed levels of (a) tempo-
ral stability and (b) self-other convergence that were fully as
good as the original PANAS scales. The development of
these parallel forms represents a significant advance in the
assessment of these higher order dimensions; as noted earlier,
by using multiple indicators of a construct, one is able to
compute corrected, latent correlations that control for mea-
surement error (see Watson, 2002, for more details).

Despite (or perhaps because of) their popularity, however,
the PANAS scales have not been immune to criticism. Some
of these criticisms are terminological and need not concern us
here (for discussions, see Watson & Clark, 1997; Watson
et al., 1999). We will focus instead on one very understand-
able concern, namely, the unipolar nature of the scales. As
we have noted, the PANAS scales (and, indeed, virtually all
of the commonly used measures of these dimensions) contain
only high-end terms, such as active, interested, enthusiastic
(Positive Affect), guilty, irritable, and scared (Negative
Affect). The dimensions portrayed in Figure 14.1, however,
clearly are bipolar in nature: Low Positive Affect is defined
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by terms reflecting lassitude and lethargy (e.g., sluggish,
dull), whereas Low Negative Affect is characterized by indi-
cators of serenity (e.g., calm, relaxed). Several writers have
criticized the PANAS for excluding these low-end terms,
arguing quite plausibly that unipolar scales cannot possibly
assess bipolar dimensions validly (Larsen & Diener, 1992;
Mossholder, Kemery, Harris, Armenakis, & McGrath, 1994;
Nemanick & Munz, 1994).

Why were these low-end terms excluded from the PANAS
scales? The reason is that they subsequently were found to be
factorially complex and to correlate significantly with both of
the underlying dimensions. Their factorial complexity is well
illustrated in the bottom half of Table 14.1, which reports cor-
relations among scales assessing the High Positive Affect,
High Negative Affect, Low Positive Affect, and Low Nega-
tive Affect octants of Figure 14.1; these data are based on the
same four samples described earlier. Consistent with the
structural scheme depicted in Figure 14.1, markers of High
and Low Positive Affect do tend to be inversely related, with
a weighted mean correlation of −.41. Contrary to Figure
14.1, however, the Low Positive Affect terms also are moder-
ately correlated with markers of High Negative Affect (mean
r = .30). Similarly, the Low Negative Affect scales are mod-
erately related to both High Negative Affect (mean r = −.39)
and High Positive Affect (mean r = .30). These results estab-
lish some significant inaccuracies in the original formulation
of the affect circumplex (see Watson et al., 1999, for a
discussion).

Moreover, they further suggest that the inclusion of these
low-end terms actually would lessen the construct validity of
the PANAS scales. Watson and Clark (1997) examined this
issue by constructing a bipolar form of the PANAS. They cre-
ated a bipolar Positive Affect scale by reverse-keying ratings
on the four items comprising the PANAS-X Fatigue scale
(sleepy, tired, sluggish, drowsy) and adding them to the 10
regular high-end terms; in parallel fashion, they created a
bipolar Negative Affect scale by reverse-scoring the three
terms included in the PANAS-X Serenity scale (calm,
relaxed, at ease) and adding them to the 10 regular high-
end descriptors. Both the original unipolar PANAS scales
and these alternative bipolar versions then were correlated
with regression-based factor scores in each of 13 data sets.
The results established that the original PANAS scales were
superior measures of the underlying dimensions, in that they
consistently showed both better convergent validity (i.e.,
higher correlations with the target factor score) and superior
discriminant validity (i.e., lower correlations with the other
factor score). In other words, unipolar scales consistently
provide better measures of these dimensions than do bipolar
scales. Thus, for most assessment purposes, researchers

should continue to use only the high-end terms to measure
these constructs.

In summary, the PANAS scales—including both the
original versions and the new parallel forms—provide
reliable and valid assessment of the underlying Positive and
Negative Affect dimensions. The scales are supported by an
impressive array of psychometric evidence and currently
represent the standard measures of these constructs. In a sub-
sequent section, we will explore the construct validity of the
trait forms of the scales in greater detail.

Measures of the Lower Order Discrete Affects

Description of Individual Measures

We turn now to a consideration of inventories designed to as-
sess the specific, discrete affects within the hierarchical struc-
ture. Due to space restrictions, we cannot review all of the
available instruments, or even all of the widely used mea-
sures of affect. For instance, countless scales have been
developed to measure a single target affect, such as anxiety,
depression, or hostility. Instead, we will restrict ourselves
here to five influential multiaffect instruments that attempt to
assess the domain in a reasonably comprehensive manner.
We begin with a brief description of each individual instru-
ment, and then follow with a discussion of two general prob-
lems in this area.

The earliest of these multiaffect inventories was the Mood
Adjective Checklist (MACL), which was based on the pio-
neering factor-analytic work of Vincent Nowlis and Russel
Green (summarized in Nowlis, 1965). It must be emphasized
that despite its name, the MACL was not actually a checklist;
rather, respondents rated their current feelings using a 4-point
response format (definitely feel, feel slightly, cannot decide,
definitely do not feel) that subsequently was subjected to ex-
tensive criticism (see Meddis, 1972; Russell, 1979; Watson &
Tellegen, 1985). Nowlis and Green initially created a large
pool of 130 mood terms. Extensive factor analyses of these
terms identified 12 replicable content dimensions, which
were used to create corresponding scales consisting of two to
six items apiece: Aggression (e.g., defiant, rebellious), Skep-
ticism (e.g., dubious, skeptical), Anxiety (e.g., clutched up,
fearful), Sadness (e.g., regretful, sad), Egotism (e.g., egotis-
tic, self-centered), Fatigue (e.g., drowsy, dull), Surgency
(e.g., carefree, playful), Elation (e.g., elated, overjoyed),
Vigor (e.g., active, energetic), Social Affection (e.g., affec-
tionate, forgiving), Concentration (e.g., attentive, earnest),
and Nonchalance (leisurely, nonchalant).

The work of Nowlis and Green must be accorded a promi-
nent place in the history of affect assessment because of its sub-
stantial influence on such important mood researchers as
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Thayer (1978, 1986) and Stone (1987). Moreover, their com-
prehensive pool of mood terms was the starting point for many
later factor analyses and scale development projects in this
domain (see, e.g., McNair et al., 1971; Zuckerman, 1960). Nev-
ertheless, the MACL itself never became a standard, widely
used measure, in large part because much of the supporting
psychometric data were buried in Office of Naval Research
technical reports and unpublished conference proceedings. In-
deed, the basic psychometric properties of the MACL scales—
such as their internal consistency—never were clearly estab-
lished. Hence, we will not consider this instrument further.

A more popular assessment instrument was introduced in
1960 as the Affect Adjective Check List (AACL; Zuckerman,
1960), which provided a single measure of anxiety. The
AACL was expanded a few years later into the Multiple
Affect Adjective Check List (MAACL; Zuckerman & Lubin,
1965), a 132-item instrument that yielded separate measures
of Anxiety, Depression, and Hostility. One innovative aspect
of the MAACL was that it included both state and trait ver-
sions. In the state format respondents were asked to describe
“how you feel now—today,” whereas in the trait form they
were asked to rate “how you generally feel. Unlike the
MACL, the MAACL was a true checklist, in that participants
were asked to check only those items that apply to them.

The MAACL quickly became quite popular. In fact, Lubin,
Zuckerman, and Woodward (1985) identified 716 published
articles or doctoral dissertations that had used one or more of
the MAACL scales. With its increased use, however, it also
became apparent that the MAACL had serious psychometric
problems, many of them stemming from its use of a checklist
format. This response format is notoriously susceptible to
systematic rating biases that can lead to highly distorted
results; because of this, measurement experts now strongly
recommend that this format be avoided (see Clark & Watson,
1995; Green et al., 1993; Watson & Tellegen, 1999).

The most obvious problem with the original MAACL was
the poor discriminant validity of its scales. The MAACL
scales typically showed intercorrelations ranging from .70 to
.90 and, moreover, tended to produce identical patterns of re-
sults (see Gotlib & Meyer, 1986; Zuckerman & Lubin, 1985).
In response to this problem, Zuckerman and Lubin created
the revised MAACL (MAACL-R; Zuckerman & Lubin,
1985; see also Lubin et al., 1986; Zuckerman, Lubin, &
Rinck, 1983). The most important change in this revision was
that positive mood terms were eliminated from the three orig-
inal scales and used instead to create two new scales: Positive
Affect (e.g., friendly, happy, peaceful, secure) and Sensation
Seeking (active, adventurous, enthusiastic, wild). This modi-
fication also now permits researchers to compute overall,
nonspecific measures of negative mood (by summing the

scores on Anxiety, Depression, and Hostility) and positive
mood (by summing the responses to Positive Affect and
Sensation Seeking).

Although the MAACL-R clearly represents an improve-
ment over its predecessor, it still suffers from two noteworthy
problems. First, the correlations among the three negative
mood scales remain rather high. An inspection of the data pre-
sented in the MAACL-R manual (Zuckerman & Lubin, 1985)
indicates that the average correlations among the negative
affect scales are .61 (Anxiety vs. Depression), .61 (Anxiety
vs. Hostility), and .62 (Depression vs. Hostility; these are
weighted mean correlations—after r to z transformation—of
the data reported in Zuckerman & Lubin, 1985, Table 2). Sec-
ond, although the other scales appear to be internally consis-
tent (with coefficient alphas generally in the .70 to .95 range),
the reliability of the Sensation Seeking scale is unsatisfactory.
Across multiple samples, it has coefficient alphas ranging
from only .49 to .81 (Mdn = .65) in its state form, and from .69
to .81 (Mdn = .77) in its trait version (Lubin, personal com-
munication, August 8, 1997; see also Zuckerman & Lubin,
1985 [In his personal communication, Lubin also reported
that the coefficient alphas for the trait version of this scale are
incorrectly reported in both the 1985 MAACL-R manual and
in the accompanying 1986 article by Lubin et al.])

The Profile of Mood States (POMS; McNair et al., 1971)
is another widely used mood inventory; indeed, the keyword
Profile of Mood States generated 833 references in the
PsycINFO database covering the period from 1984 through
2000. The POMS consists of 65 mood terms that are rated on
a 5-point scale (not at all, a little, moderately, quite a bit,
extremely). The POMS terms can be used with various time
instructions, although the usual format is to have respondents
rate “how you have been feeling during the past week,
including today.” These responses are used to score six scales
(consisting of 7–15 items each): Tension-Anxiety (e.g., tense,
shaky), Depression-Dejection (e.g., unhappy, hopeless),
Anger-Hostility (e.g., angry, peeved), Fatigue-Inertia (e.g.,
worn-out, listless), Confusion-Bewilderment (e.g., confused,
muddled), and Vigor-Activity (e.g., lively, cheerful).

The POMS scales are the product of an extensive series of
factor analyses; not surprisingly, therefore, they generally
show impressive reliabilities. McNair et al. (1971), for in-
stance, report coefficient alphas ranging from .84 to .95
across two large patient samples. Similarly, in a sample of
563 undergraduates, Watson and Clark (1994) obtained coef-
ficient alphas ranging from .77 (Confusion-Bewilderment)
to .92 (Depression-Dejection), with a median value of .89.
Similar to the MAACL and MAACL-R, however, the POMS
suffers from one serious problem, namely, that many of its
negative mood scales show poor discriminant validity. For
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instance, across various samples reported in McNair et al.
(1971), the POMS Depression-Dejection scale had average
correlations of .77 with Confusion-Bewilderment, .75 with
Tension-Anxiety, .65 with Anger-Hostility, and .64 with
Fatigue-Inertia (these are weighted mean correlations—after
r to z transformation—of the data reported in McNair et al.,
1971, Table 7). We shall examine the discriminant validity of
the POMS negative mood scales in greater detail shortly.

The Differential Emotions Scale (DES) is an important
mood measure that is based on Carroll Izard’s influential
differential emotions theory (see Izard, 1977, 1991; Izard,
Libero, Putnam, & Haynes, 1993). The DES also is the prod-
uct of multiple factor analyses and exists in at least four
different versions (see Blumberg & Izard, 1985, 1986; Izard
et al., 1993). Similar to the MAACL and MAACL-R, it can
be used to assess either state or trait affect by varying the time
instructions given to respondents. Izard and his colleagues
also have used different response formats in various incarna-
tions of the DES, most commonly employing either a 5-point
frequency- or a 5-point intensity-rating format. Earlier ver-
sions of the DES contained 10 scales: Interest, Joy, Surprise,
Sadness, Anger, Disgust, Contempt, Fear, Shame-Shyness,
and Guilt. In the most recent modification (the DES-IV),
however, the instrument has been expanded to 12 scales by
(a) splitting Shame and Shyness into separate measures and
(b) adding a new scale assessing Inner-Directed Hostility
(e.g., feel mad at yourself, feel sick about yourself) (see
Blumberg & Izard, 1985, 1986; Izard et al., 1993).

Throughout these various transformations of the DES, one
constant feature is that the scales invariably are quite short,
generally consisting of only three items apiece. One unfortu-
nate consequence of their brevity is that several of the scales
do not show adequate levels of reliability. Izard et al. (1993,
Table 1), for example, report coefficient alphas of .56
(Disgust), .60 (Shame), .62 (Shyness), .65 (Surprise), .73
(Guilt), .75 (Interest), and .75 (Inner-Directed Hostility); in
fact, the median reliability across the 12 scales was only .75.
These data strongly suggest that several of the DES scales
need to be lengthened to increase their reliability.

Finally, the 60-item PANAS-X—which, as noted
earlier, subsumes the original PANAS—includes 11 factor-
analytically derived scales that assess specific, lower order
affects. As with the PANAS, respondents rate the extent to
which they have experienced each mood term on a 5-point
scale (1 = very slightly or not at all, 5 = extremely); the
items can be used with varying time instructions to assess ei-
ther state or trait affect. Four scales assess specific negative
mood states that are strong markers of the higher order Neg-
ative Affect dimension: Fear (six items; e.g., scared, ner-
vous), Sadness (five items; e.g., blue, lonely), Guilt (six

items; e.g., ashamed, dissatisfied with self ), and Hostility
(six items; e.g., angry, scornful). In addition, three scales as-
sess positively valenced states that are strongly linked to the
higher order Positive Affect factor: Joviality (eight items;
e.g., happy, enthusiastic), Self-Assurance (six items; e.g.,
confident, bold), and Attentiveness (four items; e.g., alert,
concentrating). Finally, four scales are less strongly and
consistently related to the higher order dimensions: Shyness
(four items; e.g., bashful, timid), Fatigue (four items; e.g.,
sleepy, sluggish), Serenity (three items; e.g., calm, relaxed),
and Surprise (three items; e.g., amazed, astonished).

Watson and Clark (1994, 1997) report extensive reliability
data on these scales. For instance, Watson and Clark (1997,
Table 7) present median internal consistency estimates across
11 samples (nine of students, one of adults, and one of psy-
chiatric patients), with a combined sample size of 8,194;
these data reflect eight different time frames. All of the longer
(i.e., five- to eight-item) PANAS-X scales were highly
reliable, with median coefficient alphas of .93 (Joviality), .88
(Guilt), .87 (Fear), .87 (Sadness), .85 (Hostility), and .83
(Self-Assurance). As would be expected, the reliabilities of
the shorter scales tended to be lower, but still were quite
good: .88 (Fatigue), .83 (Shyness), .78 (Attentiveness), .77
(Surprise), and .76 (Serenity). We shall examine these lower
order scales in greater detail in subsequent sections, consid-
ering various types of evidence (e.g., discriminant validity,
temporal stability, and self-other agreement) related to their
construct validity.

General Issues in Assessment at the Lower Order Level

We conclude this review by discussing two general problems
in the lower order assessment of affect. First, except for the
introduction of the PANAS-X a few years ago, it appears that
little psychometric progress has been made in this area over
the past 20 to 30 years. It is particularly disturbing that we
still lack a compelling taxonomy of affect at the specific,
lower order level (see also Watson & Clark, 1997). That is,
even after nearly 50 years of study, mood researchers still
show no consensus regarding the basic states that must be
included in any complete and comprehensive assessment of
affect. Without an organizing taxonomic scheme, it is impos-
sible to determine which of the instruments we have reviewed
ultimately provides the most valid and comprehensive assess-
ment of affect.

Our review does suggest two important points of agree-
ment. First, all four instruments in current use (i.e., MAACL-
R, POMS, DES, PANAS-X) assess a common core of sub-
jective distress defined by three specific negative affective
states: fear-tension-anxiety, sadness-depression-dejection,
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and anger-hostility-aggression. Second, all of these invento-
ries include at least one measure of positive mood. Beyond
that, however, one sees many important differences. For
instance, the PANAS-X assesses three different types of
positive mood, whereas the MAACL-R and DES include
two, and the POMS only one. The POMS, DES, and PANAS-
X all include a measure of tiredness-fatigue, whereas the
MAACL-R does not. The PANAS-X combines descriptors of
anger, disgust, and contempt into a single scale, whereas the
DES divides them into three separate scales; moreover, the
POMS and MAACL-R focus exclusively on anger and fail to
include disgust or contempt terms at all. Finally, it is note-
worthy that each of the instruments contains unique content
that is not well captured by any of the others. Thus, only the
DES contains a measure of Shame, only the POMS assesses
Confusion-Bewilderment, only the MAACL-R measures
Sensation Seeking, and only the PANAS-X includes a marker
of Serenity.

These obvious differences give rise to some important
questions: How does one choose among these measures?
Which of these assessment approaches is preferable? For
instance, is it necessary to include descriptors of contempt
and disgust in a comprehensive assessment of mood? If
so, should they be combined with terms reflecting anger (as
in the PANAS-X) or should they be analyzed separately (as in
the DES)? Unfortunately, in the absence of any clear struc-
tural consensus, it is impossible to provide any compelling
answers to these questions.

The second problem is that remarkably few studies have
directly compared the psychometric properties of two or more
instruments in the same sample and under the same assess-
ment conditions. Because of this, it is hazardous to offer any
definitive conclusions regarding the relative psychometric
merits of these inventories. For instance, our survey of the
evidence suggests that the brief DES scales typically are less
reliable than their counterparts in the other inventories;
although this makes good psychometric sense (in that shorter
scales generally have lower coefficient alphas; see Clark &
Watson, 1995), it still would be reassuring to have this point
documented under controlled conditions that eliminate possi-
ble alternative explanations.

There have been a few exceptions, however. Zuckerman
and Lubin (1985, Tables 16 and 17) report convergent corre-
lations between the POMS scales and trait and state
MAACL-R scores. Unfortunately, the sample sizes tend to be
small (e.g., one set of correlations is based on the responses
of 37 college students), and the results are complex and diffi-
cult to interpret. For instance, across four different samples,
the state version of the MAACL-R Anxiety scale had con-
vergent correlations of .09, .68, .47, and .08 with POMS

Tension-Anxiety. Corresponding correlations between the
MAACL-R Depression and POMS Depression-Dejection
scales were .13, .38, .50, and .32, respectively. Although
these convergent correlations seem quite low, it should be
noted that the two instruments reflected different time in-
structions. Specifically, respondents completed daily affect
ratings on the MAACL-R, but rated their moods over the
previous week on the POMS.

Watson and Clark (1994, Table 15) provide a more com-
pelling comparison of convergent and discriminant validity in
a sample of 563 students who rated their mood over “the past
few weeks,” using descriptors from both the POMS and
PANAS-X. Table 14.2 presents an adapted version of these
data, reporting correlations among the fear-anxiety, sadness-
depression, and anger-hostility scales from both instruments
(it also includes reliability information not previously pub-
lished). Three aspects of these data are noteworthy. First, Table
14.2 demonstrates that all of these scales are highly reliable,
with coefficient alphas ranging from .85 (PANAS-X Hostility)
to .92 (POMS Depression-Dejection). Second, the instru-
ments show impressive convergent validity. Specifically, the
convergent correlations between scales assessing the same tar-
get affect are .85 (fear-anxiety), .85 (sadness-depression), and
.91 (anger-hostility); thus, the two instruments provide very
similar coverage of these core affects. Third, the PANAS-X
scales show substantially better discriminant validity than
their POMS counterparts. The average correlation among
the PANAS-X scales (after an r to z transformation) is .56,
whereas that among the POMS scales is .66. Moreover, two of
the three individual correlations (fear-anxiety vs. sadness-
depression; anger-hostility vs. sadness-depression) are signif-
icantly lower in the PANAS-X than in the POMS. Thus, the
PANAS-X scales ultimately provide a more differentiated
assessment of essentially the same content domain.

Watson and Clark (1997) partially replicated these results
using only the fear-anxiety and sadness-depression scales in

TABLE 14.2 Correlations Among Negative Affect Scales from the
PANAS-X and POMS

Scale 1 2 3 4 5 6

PANAS-X Scales
1. Fear (.87)
2. Sadness .61 (.86)
3. Hostility .58 .49 (.85)

POMS Scales
4. Tension-Anxiety .85 .57 .62 (.85)
5. Depression-Dejection .74 .85 .66 .69 (.92)
6. Anger-Hostility .59 .51 .91 .63 .66 (.90)

Note. Convergent correlations are highlighted; coefficient alphas are in
parentheses. All correlations are significant at p < .01, two-tailed. PANAS-
X = Expanded Form of the Positive and Negative Affect Schedule (Watson
& Clark, 1994). POMS = Profile of Mood States (McNair et al., 1971).
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two new samples (521 students and 328 adults). Again, the
scales showed impressive convergent validity, with correla-
tions ranging from .77 to .89 across the two samples. More-
over, consistent with the Table 14.2 results, the correlation
between the Fear and Sadness scales of the PANAS-X was
significantly lower (.58 and .59 in the student and adult data,
respectively) than that between POMS Tension-Anxiety and
Depression-Dejection (r = .69 and .69, respectively) in both
samples.

We badly need further comparative data of this sort, repre-
senting a much broader array of scales, instruments, time
instructions, and participants. In the absence of such data, it
is impossible to offer any definitive evaluation of the relative
psychometric adequacy of these various mood inventories.
With such data, however, we finally could begin to resolve
some of the measurement differences we have noted and,
consequently, move assessment in this area forward.

GENERAL ISSUES IN CONSTRUCT VALIDITY

The Problem of Measurement Error

The Distorting Influence of Measurement Error

We turn now to an examination of several broad issues related
to the overall construct validity of mood measures. We begin
by discussing the general problem of measurement error. Thus
far, the large majority of the findings we have considered are
based on raw correlations that have not been corrected for
the influence of error. Can such uncorrected correlations be
trusted, or do they yield highly distorted results?

Mood researchers have been concerned with the effects of
both random and systematic error for more than 3 decades
(Bentler, 1969; Diener & Emmons, 1984; Russell, 1979,
1980). The general conclusion from the earlier literature on
this topic was that error exerted only a modest effect, assum-
ing that one (a) employed suitably reliable scales and
(b) avoided highly problematic response formats such as
adjective checklists (e.g., Watson & Tellegen, 1985). In a
highly influential paper, however, Green et al. (1993) chal-
lenged the prevailing practice of analyzing raw, uncorrected
data, arguing that it yielded distorted and highly misleading
results. In fact, they argued that raw data could not be trusted
at all. Green et al. (1993) were particularly interested in the
bipolarity of the Pleasantness versus Unpleasantness dimen-
sion (note that they referred to the two poles of this dimen-
sion as “positive affect” and “negative affect,” respectively).
In discussing the nature of this dimension, they made the bold
assertion that “When one adjusts for random and systematic
error in positive and negative affect, correlations between the

two that at first seem close to 0 are revealed to be closer to
−1.00 and support a largely bipolar structure” (p. 1029).

To establish the validity of their claim, Green et al. (1993)
reported supportive findings from several studies. In
discussing the results of their Study 1, for instance, they
pointed out that an observed correlation of −.25 was trans-
formed into a latent correlation of −.84 after controlling for
error (see Green et al., 1993, p. 1033). These seemingly im-
pressive results have been interpreted by subsequent writers
as establishing that raw, uncorrected correlations are highly
distorted and can be expected to yield misleading results
(Feldman Barrett & Russell, 1998; Russell & Carroll, 1999).
Feldman Barrett and Russell (1998), for example, concluded
that “Green et al. (1993) delivered the coup de grâce to all
research in which conclusions are based directly on the
observed correlations between measures of affect” (p. 968;
emphasis in original).

However, as we document in detail elsewhere (see Watson
& Clark, 1997; Watson & Tellegen, 1999; Watson et al.,
1999), these critiques have substantially overestimated the
actual effect of measurement error on mood ratings. Indeed,
corrected correlations will approach 1.00 only when the raw,
uncorrected correlations already are quite substantial. For
instance, as noted earlier, Watson and Tellegen (1999) sum-
marized the results of several studies that reported latent,
corrected correlations between measures of Pleasantness and
Unpleasantness; these correlations ranged from −.84 to −.93,
with a median value of −.91. It is noteworthy, however, that
the mean uncorrected correlations ranged from −.53 to −.78
across these same studies, with a median value of −.56 (see
Watson & Tellegen, 1999, Table 1). Thus, the bipolarity of
this dimension already is readily apparent in raw, uncorrected
data, as we already observed in our own Table 14.1 (weighted
mean r = −.50). In contrast, measures of High Positive Affect
and High Negative Affect had raw correlations ranging from
−.18 to −.36, with a median value of −.25; correcting them
for measurement error yielded latent correlations ranging
from −.43 to −.58 (Mdn = −.46). More generally, analyses
of this issue have established that controlling for measure-
ment error can transform (a) low correlations into moderate
correlations and (b) strong correlations into very strong corre-
lations, but that it will not turn (c) low correlations into strong
correlations (see Watson & Tellegen, 1999).

On the basis of these data, we can conclude that measure-
ment error exerts only a moderate influence on mood ratings,
and that raw, uncorrected correlations do not yield highly dis-
torted or misleading results. This conclusion is unsurprising
once one understands how these correlations are corrected
for measurement error; we therefore will present a brief
discussion of this topic. Recent analyses of this issue (e.g.,
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Feldman Barrett & Russell, 1998; Green et al., 1993;
Tellegen et al., 1999; Yik et al., 1999) have used multiple in-
dicators of each hypothesized construct (e.g., Pleasantness
and Unpleasantness) to define latent underlying factors in a
confirmatory factor analysis; this allows one to estimate the
correlation between these latent factors, which then is inter-
preted as the corrected correlation between the constructs.
For instance, as we discussed earlier, the CMQ provides three
different indicators (using three different response formats)
to measure both Pleasantness and Unpleasantness; these
multiple indicators then can be used to define underlying
Pleasantness and Unpleasantness factors, and the correlation
between them can be estimated.

How is the correlation between these factors estimated?
In essence, confirmatory factor analysis computes a correla-
tion that is corrected for attenuation due to unreliability
(Campbell, 1996); in this case, reliability is estimated by
treating the multiple indicators as parallel forms of the same
instrument. Suppose, for instance, that one has a data set con-
taining six variables: three are markers of Pleasantness, and
three assess Unpleasantness. Let us suppose further that (a)
each of the Pleasantness measures correlates .80 with the oth-
ers, (b) each of the Unpleasantness markers correlates .80
with the others, and (c) all of the cross-construct correlations
(i.e., those between Pleasantness and Unpleasantness) are
exactly −.50. In this simple, idealized case, the disattenuated
correlation between the factors would be estimated as
−.50/.80, or −.625.

To document this important point, we submitted a large
series of idealized correlation matrices of this type to EQS
(Bentler & Wu, 1995), a widely used structural modeling pro-
gram. As in the previous example, all of the correlations
between indicators of the same construct (e.g., between two
indicators of Pleasantness, or between two markers of Un-
pleasantness; we refer to these subsequently as convergent
correlations) were constrained to have the same value; we

tested matrices with convergent correlations ranging from a
low of .20 to a high of .90. Similarly, all of the cross-factor
correlations (e.g., between measures of Pleasantness and
Unpleasantness; we will refer to these as discriminant corre-
lations) were restricted to be the same; we tested matrices
with discriminant correlations ranging from −.10 to −.80.
Finally, we ran parallel series of matrices that included two,
three, or four indicators of each construct.

These analyses (which are summarized in Table 14.3)
yielded two noteworthy findings. First, the number of indica-
tors had no effect whatsoever on the estimated correlations;
in other words, we obtained identical results regardless of
whether we used two, three, or four indicators of each con-
struct. Accordingly, Table 14.3 presents a single matrix of
correlations collapsed across this parameter. This finding is
important because it indicates that using a large number of in-
dicators does not necessarily enhance one’s ability to model
measurement error; we return to this issue later. Second, as
we suggested earlier, the estimated factor intercorrelation can
be computed quite simply by dividing the mean discriminant
correlation by the average convergent correlation. For exam-
ple, if the discriminant correlations all are −.20—and the
convergent correlations all are .40—then the estimated factor
intercorrelation is −.50. Again, this is conceptually analo-
gous to computing the traditional correction for attenuation,
using the multiple indicators of each construct as parallel
forms to estimate reliability.

Viewed in this light, it is easy to see why mood re-
searchers actually have failed to find instances in which raw
correlations of −.25 are transformed into latent correlations
of −.84; indeed, if the average discriminant correlation was
only −.25, one would need mean convergent correlations of
approximately .296 to achieve this result. This was hardly the
case in the data reported by Green et al. (1993). In fact, al-
though they had one raw correlation of −.25 in their initial
analysis, the average uncorrected correlation was much

TABLE 14.3 Estimated Latent Correlations Between Factors as a Function of the Mean Convergent
(Within-Factor) and Discriminant (Between-Factor) Correlations

Mean Convergent
Mean Discriminant Correlation

Correlation −.10 −.20 −.30 −.40 −.50 −.60 −.70 −.80

.20 −.50

.30 −.33 −.67

.40 −.25 −.50 −.75

.50 −.20 −.40 −.60 −.80

.60 −.17 −.33 −.50 −.67 −.83

.70 −.14 −.29 −.43 −.57 −.71 −.86

.80 −.13 −.25 −.38 −.50 −.63 −.75 −.88

.90 −.11 −.22 −.33 −.44 −.56 −.67 −.78 −.89

Note. These correlations are computed from matrices in which (a) all of the convergent (within-factor) correlations are
constrained be equal and (b) all of the discriminant correlations are constrained to be equal. See text for details.
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higher (−.53). Coupled with a mean convergent correlation
of .64, this yielded an estimated factor intercorrelation of
−.84 (see Green et al., 1993, Tables 1 and 2).

Our remarks should not be interpreted as suggesting that
measurement error is unimportant. Error obviously is an im-
portant fact of life that exerts a significant influence on mood
ratings. Our point, rather, is that sweeping dismissals of raw,
uncorrected correlations are not supported by the data. In-
stead, our review of the evidence indicates that uncorrected
correlational data still can play a very useful role in mood
research, as long as one uses reliable mood measures and
adequate response formats.

Modeling Measurement Error

As we have seen, measurement error can be expected to have
a significant effect on mood ratings, and it obviously is im-
portant to be able to estimate its impact on one’s data. How
should one go about modeling the potential effects of mea-
surement error in mood data?

As we have noted, the most popular strategy has been to
adopt a multimethod approach in which a variety of different
formats (e.g., adjective checklist, Likert rating scales) are
used to measure the same constructs. For instance, the CMQ
provides three different rating formats that have been used to
compute corrected, latent correlations among the higher
order dimensions of the affect circumplex (Feldman Barrett
& Russell, 1998; Yik et al., 1999). Similarly, Green et al. used
four different rating formats (adjective checklist, a 4-point
agree-disagree rating scale, a 4-point describes-me format,
and 7-point Likert scales) to assess both Pleasantness and
Unpleasantness. If properly used, this multiformat approach
can provide an excellent way of modeling error.

However, it also suffers from two potentially important
problems. First, it requires that researchers create multiple
parallel forms of the same constructs, which is not always an
easy task. The obvious danger is that systematic differences
in content will emerge across the various formats, thereby
making the measures nonparallel and, in turn, leading to dis-
torted estimates of the interfactor correlations. As we discuss
in detail elsewhere, this appears to be a significant problem in
the CMQ’s assessment of Low Negative Affect (Watson
et al., 1999), and in Green et al.’s (1993) measurement of
High Positive Affect and High Negative Affect (Watson &
Tellegen, 1999).

Second, the use of multiple formats is cumbersome and
time consuming, and it places severe restrictions on the range
of content that can be assessed without taxing the patience of
respondents. This is a particularly vexing problem in the as-
sessment of highly evanescent phenomena such as current,
momentary mood states. It is hardly accidental, for instance,

that Green et al. (1993)—who used four different response
formats—restricted themselves to assessing only Pleasant-
ness and Unpleasantness in most of their studies. More gen-
erally, it clearly would be quite difficult to use three or four
different rating methods to assess the entire range of content
subsumed in multiaffect inventories such as the DES, POMS,
MAACL, and PANAS-X.

Fortunately, one does not necessarily need to use three or
four response formats. Indeed, we already have seen that the
estimated factor intercorrelation is unaffected by the sheer
number of indicators used to define each construct, assuming
that these indicators all show very similar convergent-
discriminant properties. To document this important point
further, we reanalyzed the correlation matrices reported by
Green et al. (1993) and Feldman Barrett and Russell (1998),
subjecting them to confirmatory factor analyses using EQS.
To simplify these analyses, we restricted ourselves to estimat-
ing the interfactor correlation between Pleasantness and
Unpleasantness and ignored other aspects of their data. We
conducted parallel analyses of four different correlation ma-
trices reported by Green et al. (1993), as well as two relevant
matrices presented in Feldman Barrett and Russell (1998).

We began by using only two indicators to define both
Pleasantness and Unpleasantness in each of the four Green
et al. data sets, using all possible pairwise combinations of
formats (e.g., adjective checklist vs. agree-disagree; adjective
checklist vs. describes-me); the mean interfactor correlations
(averaged across the six possible pairwise combinations) are
reported in the first row of Table 14.4. Next, we repeated this
process using all possible combinations of three methods; the
average correlations (computed across the four possible com-
binations) are reported in the second row of Table 14.4.
Finally, we recreated the results originally reported by Green
et al. (1993) by recalculating the interfactor correlations using
all four methods; these are shown in the third row of the table.
Similarly, we first analyzed the two Feldman Barrett and Rus-
sell (1998) data sets using all possible pairwise combinations
of indicators to estimate the factor intercorrelations; the mean
correlations (averaged across the three possible pairwise com-
binations) also are reported in the first row of Table 14.4. We
then recreated their reported results by recomputing the corre-
lations using all three available methods; these are reported in
the second row of the table.

These results clearly establish that one obtains very similar
correlations regardless of whether two, three, or four different
methods are used to define Pleasantness and Unpleasantness.
It is particularly noteworthy that two methods are sufficient to
produce very strong corrected correlations between these
constructs. Across the six data sets, the mean correlations
ranged from −.80 to −.92, with a median value of −.86.
Moreover, these values are deflated somewhat by Green
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et al.’s (1993) use of the highly problematic adjective check-
list format. We therefore reran these analyses, dropping the
checklist data and using only the other three response meth-
ods; paralleling the previous analyses, we initially ran all
possible pairwise combinations and then recomputed the cor-
relations using all three methods. The factor intercorrelations
from these analyses are displayed in the final two rows of the
table. These results are especially striking, in that the mean
two-method correlation actually exceeded the four-method
correlation in every data set. Clearly, one can model measure-
ment error quite well using only two methods.

In fact, it is unclear whether one actually needs two differ-
ent methods (in the sense of two different response formats)
at all. Thus far, we have considered the potential effects of
random error only. One purported advantage of the multifor-
mat approach, however, is that it also permits investigators to
model the effects of systematic sources of error, such as
response biases. This can be done quite easily by allowing the
monomethod error terms (e.g., those representing the adjec-
tive checklist measures of Pleasantness and Unpleasantness)
to be correlated. Somewhat surprisingly, however, Green

et al. (1993) and Feldman Barrett and Russell (1998) both
found that modeling systematic error essentially had no effect
on the interfactor correlations.

To examine this issue more closely, we reconducted all of
the Table 14.4 analyses that used either three or four rating
formats. These new analyses were identical to those reported
earlier, except that the monomethod error terms now were
allowed to be correlated, thereby modeling the effects of both
random and systematic error (we could not conduct these
reanalyses on the two-method models, however, because they
now would be underidentified; this illustrates one important
advantage of having more than two indicators per construct).
The resulting interfactor correlations are shown in Table 14.5,
which also reports the parallel findings from Table 14.4 (la-
beled here as “random error only”) for comparison purposes.
The correlations are virtually identical in every case, regard-
less of whether one controls for systematic error.

All other things being equal, it clearly is preferable to use
multiple measures—and multiple methods—to assess all of
the key constructs in a study. However, all other things rarely
are equal, such that this basic psychometric principle must be

TABLE 14.4 Estimated Latent Correlations Between Pleasantness and Unpleasantness as a Function of the
Number of Assessed Methods

Feldman Barrett 
Green, Goldman, & Salovey (1993) & Russell (1998)

Study 1

No. of Methods Time 1 Time 2 Study 2 Study 3 Study 2 Study 3

All methods
Two methods −.80 −.82 −.92 −.81 −.92 −.92
Three methods −.84 −.85 −.93 −.85 −.93 −.92
Four methods −.84 −.85 −.92 −.86 — —

Dropping Adjective Checklist
Two methods −.87 −.87 −.97 −.89 — —
Three methods −.87 −.86 −.93 −.90 — —

Note. N = 139 (Green et al., 1993, Study 1), 250 (Green et al., 1993, Study 2), 304 (Green et al., 1993, Study 3), 225
(Feldman Barrett & Russell, 1998, Study 2), 316 (Feldman Barrett & Russell, 1998, Study 3).

TABLE 14.5 The Effect of Controlling for Systematic Error on Estimated Latent Correlations Between
Pleasantness and Unpleasantness 

Feldman Barrett
Green, Goldman, & Salovey (1993) & Russell (1998)

Study 1

Type of Correction Time 1 Time 2 Study 2 Study 3 Study 2 Study 3

Three Methods
Random error only −.84 −.85 −.93 −.85 −.93 −.92
Random and systematic error −.84 −.84 −.91 −.87 −.93 −.93

Four Methods
Random error only −.84 −.85 −.92 −.86 — —
Random and systematic error −.84 −.84 −.91 −.87 — —

Note. N = 139 (Green et al., 1993, Study 1), 250 (Green et al., 1993, Study 2), 304 (Green et al., 1993, Study 3),
225 (Feldman Barrett & Russell, 1998, Study 2), 316 (Feldman Barrett & Russell, 1998, Study 3).
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weighed against pragmatic considerations. In light of the data
we have presented, we must question whether it is worth the
time and bother to create multiple parallel measures using a
variety of different response formats. In our view, a much
quicker and easier approach is to create multiple indicators of
each construct within a single rating method (e.g., unipolar
Likert rating scales). Moreover, brief validity scales can be
created within this same format to allow one to model sys-
tematic response biases such as acquiescence. An excellent
example of this approach is reported by Tellegen et al.
(1999), who constructed brief measures of Pleasantness,
Unpleasantness, and acquiescence that were embedded
within a single response format. Using this single-format ap-
proach, Tellegen et al. (1999) obtained a corrected latent cor-
relation of −.92 between Pleasantness and Unpleasantness, a
value that exceeds most of those shown in Tables 14.4 and
14.5. We strongly advocate this method as a simple, quick,
and effective alternative to the multiformat strategy.

The Problem of Social Desirability

We conclude our discussion of measurement error by consider-
ing the problem of social desirability, another potential source
of systematic bias in mood ratings. Psychologists long have
been concerned that people might have only limited insight
into their thoughts, motives, and feelings; furthermore, it has
been argued that self-raters may respond defensively and that
they may consciously or unconsciously distort their responses
in a socially desirable manner (Edwards & Edwards, 1992;
Paulhus & Reid, 1991). This would seem to be a particularly
serious problem in mood measurement, which typically in-
volves asking participants to respond to face-valid items whose
content is completely undisguised.

One way to investigate this issue is to compare overall
mean scores on affect self-ratings with the corresponding
judgments made by well-acquainted peers. Compared to self-
raters, peer judges should be more objective and relatively
free of these biasing, self-enhancing tendencies (see McCrae,
1982, 1994, for a discussion of the various biases attributed
to self- and other-raters). If this is, in fact, a substantial prob-
lem in self-ratings, then one would predict that mean self-
ratings should be tipped in the direction of greater social
desirability; that is, compared to peer judges, self-raters
should report generally higher levels of positive affectivity
and relatively lower levels of negative affectivity.

We examined this issue in four dyadic samples in which
respondents generated both self- and other-ratings on the
complete PANAS-X; all of these responses were made using
general, trait instructions (three of these samples are de-
scribed in greater detail in Watson et al., 2000; the Texas

dating sample is discussed in Watson & Clark, 1994). The
first sample consisted of 279 friendship dyads drawn from the
Iowa City area; on average, these respondents had known
each other for 33.6 months. The second sample was com-
posed of 68 currently dating couples in Dallas, Texas; at the
time of assessment, these couples had been dating for an av-
erage of 21.5 months. The third sample was composed of 136
currently dating couples from the Iowa City area; these cou-
ples had known each other for an average of 36.0 months and
had been dating for an average of 18.2 months. Finally, the
fourth sample consisted of 74 married couples drawn from
the St. Louis, Missouri, area; the mean length of marriage
was 202.6 months, that is, slightly less than 17 years.

Table 14.6 presents a comparison of the mean self- versus
other-ratings in each sample. Specifically, it indicates
whether the mean self-rating was significantly greater than
the mean other-rating (S > O), whether the mean self-rating
was significantly less than the mean other-rating (S < O), or
whether the two scores did not differ from one another (S =
O). The only real support for a self-enhancement bias comes
from the married sample; here, self-raters rated themselves as
less sad, guilty, hostile, and fatigued than did their spouses. In
sharp contrast, however, only 2 of 26 comparisons were sig-
nificant across the two dating samples: Self-raters described
themselves as more alert and attentive in the Texas sample,
and as less surprised in the Iowa sample. Finally, the friend-
ship dyads did show clear evidence of a systematic bias, but
in the direction opposite to prediction; that is, compared to
their friends, self-raters consistently described themselves as
experiencing higher levels of negative affectivity and lower
levels of positive affectivity.

On the basis of these data, we can reject the argument that
affect self-ratings are systematically biased toward greater
social desirability in relation to judgments made by well-
acquainted peers. More generally, these data lead us to
suspect that self-enhancement does not represent a serious
problem in mood measurement. Having said that, however,
we also must emphasize that our results do not necessarily
indicate that social desirability has no discernible impact on
affect ratings; that is, it remains possible that both the self-
ratings and the other-ratings were biased toward greater
social desirability in these samples.

On the Construct Validity of Trait Affect Measures

Temporal Stability

In this section, we consider several issues that are specifically
related to the construct validity of trait affect measures.
Earlier, we briefly summarized a range of evidence (e.g.,
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temporal stability, self-other convergence) that broadly estab-
lishes the validity of such measures. Our goal here is to
examine this evidence in greater detail so as to (a) evaluate
the relative merits of various approaches to trait assessment
and (b) suggest possible areas for improvement.

We begin with an examination of temporal stability, which
is an essential property of any trait dimension. Specifically,
we should expect to see substantial evidence of rank-order
stability: Individuals who initially score relatively high on
the trait should remain relatively high upon retest, whereas
those who initially are low should remain low in subsequent
assessments. We investigated this issue using two samples
who completed general, trait versions of the complete
PANAS-X on two different occasions. The first sample
(short-term stability) consisted of 409 SMU students who
were assessed across a 2-month retest interval (a slightly dif-
ferent version of these data are reported in Watson & Clark,
1994, Table 20). The second sample (long-term stability) was
composed of 396 University of Iowa students who initially
completed the PANAS-X in September, 1996, and subse-
quently were reassessed in the spring and early summer of
1999; these data therefore reflect an average retest interval
of approximately 32 months (see Vaidya, Gray, Haig, &
Watson, 2002, for more details).

Table 14.7 reports stability correlations for the PANAS-X
scales in both samples; the table also includes weighted mean
correlations (after r to z transformation) across the two data
sets. The most noteworthy aspect of these data is that all of
the PANAS-X scales show moderate to strong stability in

both samples; the short-term correlations generally fall in the
.50 to .65 range, whereas the long-term coefficients tend to be
in the .40 to .55 range. Together with other findings in this
area (e.g., Watson & Walker, 1996), these data clearly estab-
lish that general affect ratings contain a stable, dispositional
component; this, in turn, helps to establish their construct
validity as trait measures.

Beyond that, however, we also see evidence of consistent
differences in stability across the various scales. At the one

TABLE 14.6 Comparison of Mean Self- Versus Other-Ratings on the PANAS-X Scales

Texas Iowa
Friendship Dating Dating Married 

Scale Dyads Couples Couples Couples

Negative Affect scales
General Negative Affect S > O S = O S = O S < O
Fear S > O S = O S = O S = O
Sadness S > O S = O S = O S < O
Guilt S > O S = O S = O S < O
Hostility S = O S = O S = O S < O

Positive Affect scales
General Positive Affect S > O S = O S = O S = O
Joviality S > O S = O S = O S = O
Self-Assurance S > O S = O S = O S = O
Attentiveness S > O S > O S = O S = O

Other affect scales
Shyness S > O S = O S = O S = O
Fatigue S > O S = O S = O S < O
Serenity S < O S = O S = O S = O
Surprise S > O S = O S < O S = O

Note. N = 558 (Friendship Dyads), 136 (Texas Dating Couples), 272 (Iowa Dating Couples), 148 (Married
Couples). The entries in the table indicate whether the mean self-rating is significantly greater than the mean
other-rating (S > O), the mean self-rating is significantly less than the mean other-rating (S < O), or the two
means did not differ from each other (S = O).

TABLE 14.7 Retest Reliabilities of the PANAS-X Scales

Scale Short-Term Long-Term Mean r

Negative Affect scales
General Negative Affect .59 .48 .54
Fear .57 .45 .52
Sadness .59 .51 .55
Guilt .66 .46 .57
Hostility .57 .50 .54
(Mean r) (.60) (.48)

Positive Affect scales
General Positive Affect .64 .50 .57
Joviality .64 .54 .59
Self-Assurance .68 .51 .60
Attentiveness .55 .46 .51
(Mean r) (.63) (.50)

Other affect scales
Shyness .65 .58 .61
Fatigue .52 .42 .48
Serenity .51 .48 .49
Surprise .51 .43 .47
(Mean r) (.55) (.48)

Note. N = 409 (short-term), 396 (long-term). All correlations are significant
at p < .01, two-tailed.
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extreme, Shyness, Joviality, and Self-Assurance all show
average stability correlations of approximately .60; at the other
extreme, Fatigue, Serenity, and Surprise have mean retest cor-
relations below .50. In fact, the long-term (i.e., 2- to 3-year)
retest correlations of the most stable scales tend to be as high
or higher than the short-term (i.e., 2-month) correlations of the
least stable scales. These consistent differences suggest the in-
triguing possibility that certain types of affect are more stable
and traitlike than others. More fundamentally, they suggest
that the notion of trait affect can be more meaningfully applied
to some types of mood state (e.g., energy, enthusiasm, confi-
dence, and timidity) than to others (e.g., sluggishness, calm-
ness, surprise). We currently are conducting further stability
analyses to investigate the merits of this idea.

Another interesting aspect of these data is that although the
temporal stability correlations are substantial in magnitude,
they nevertheless tend to be lower than those obtained for
other trait measures. In this regard, 392 of the participants in
the long-term stability sample also completed the Big Five
Inventory (BFI; John, Donahue, & Kentle, 1991) at both as-
sessments. The BFI is a measure of the prominent five-factor
model of personality, which consists of the general dimen-
sions of Neuroticism, Extroversion, Openness, Agreeable-
ness, and Conscientiousness (John & Srivastava, 1999;
Watson, Clark, & Harkness, 1994). The stability correlations
for these broad traits tended to be significantly higher than
those of the PANAS-X scales, ranging from .59 (Agreeable-
ness, Neuroticism) to .71 (Extroversion), with a mean value
of .64.

What do these comparative data tell us about the construct
validity of trait affect scales? To a considerable extent, these
retest correlations likely reflect true, valid differences in the
actual stability of the underlying constructs. It makes sense,
for instance, that affect-centered traits would be somewhat
less stable than behavior-based dimensions such as Extrover-
sion and Conscientiousness. Thus, it is hardly surprising that
the PANAS-X Positive Affect scale (stability r = .57 in this
sample) is significantly less stable than BFI Extroversion
(r = .71).

However, it is surprising that the PANAS-X Negative
Affect scale (r = .48) is significantly less stable than BFI
Neuroticism (r = .59). These two scales correlated strongly
with each other at both Time 1 (r = .62) and Time 2 (r = .60).
Furthermore, the coefficient alphas for the 10-item PANAS-
X Negative Affect scale tend to be somewhat higher than
those of the 8-item BFI Neuroticism scale, so this stability
difference cannot be attributed to differential reliability.
Finally—and most importantly—the content of the two
scales is extremely similar. Indeed, the BFI Neuroticism
items (e.g., can be, tense. can be moody, gets nervous easily,
is depressed, blue, worries a lot) are strongly affective in

character and assess content that is quite similar to that
contained in the PANAS-X Negative Affect scale. This sug-
gests to us that subtle differences in format and presentation
(such as the nature of the instructions given to participants)
may have a significant impact on the long-term stability of
the measures (see Vaidya et al., 2002). If so, then this further
suggests that one can enhance the construct validity of trait
affect measures by introducing relatively subtle stylistic
changes. We currently are conducting research to explore this
important possibility.

Self-Other Agreement

Another traditional approach in establishing the construct
validity of trait measures is to examine the magnitude of the
correlations between self- and peer-ratings of the same tar-
gets. To the extent that these two raters agree, one can be con-
fident that trait measures are validly assessing systematic,
meaningful individual differences.

Accordingly, Table 14.8 presents self-other agreement cor-
relations in the four dyadic samples described in our earlier
discussion of social desirability; in addition, the final column
of the table shows weighted mean correlations (after r to z
transformation) computed across all of the individual data
sets. In many respects, these data closely resemble the stabil-
ity results in the previous table. Once again, the most note-
worthy aspect of these data is that—with the single exception
of Surprise—all of the PANAS-X scales show substantial con-
vergent validity, with weighted mean agreement correlations
ranging from .25 (Fear) to .42 (Self-Assurance). Moreover,
these correlations show clear evidence of the well-established
acquaintanceship effect; that is, numerous studies have shown
that self-other agreement improves with increasing levels of
acquaintance (Funder, 1995; Funder & Colvin, 1988, 1997;
Watson et al., 2000). In Table 14.8, this effect can be seen in
the elevated level of agreement among the married couples;
indeed, the convergent correlations generally fall in the .35 to
.55 range in this sample.

As in the stability data, we also see consistent differences
across the affect scales. At one extreme, Joviality and Self-
Assurance (which also showed relatively high stabilities) had
weighted mean agreement correlations of .41 and .42, respec-
tively; at the other extreme, Surprise showed an average con-
vergence of only .15 across the four samples, and even failed
to display significant self-other agreement in the married
couples. These negative findings are consistent with other
data that challenge the construct validity of trait ratings of
Surprise (Watson & Clark, 1994). In light of these data, we
can conclude that this affect does not have a meaningful dis-
positional component and we recommend that Surprise items
not be assessed in the trait version of the PANAS-X.
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In contrast, the rest of the scales show reasonable conver-
gent validity. Paralleling the stability data, however, it again
is noteworthy that these agreement correlations tend to be
significantly lower than those observed for other traits, such
as the Big Five. In this regard, Watson et al. (2000) also as-
sessed self-other convergence on the Big Five traits in the
friendship, married, and Iowa-dating samples. Across these
samples, the Big Five showed mean agreement correlations
ranging from .42 (Agreeableness) to .53 (Openness; see
Watson et al., 2000, Table 2).

Consistent with our earlier discussion of stability, these
agreement correlations surely reflect true, valid differences in
the nature of underlying constructs. In fact, the accumulating
data clearly establish the existence of a trait visibility effect—
that is, easily observable personality traits (those with clear,
frequent behavioral manifestations) yield better interjudge
agreement and higher self-other correlations than do more
internal, subjective traits (e.g., Funder, 1995; Funder &
Colvin, 1988, 1997; John & Robins, 1993; Watson et al.,
2000). Thus, it is hardly surprising that traits such as Extro-
version and Conscientiousness show better self-other agree-
ment that do measures of trait affectivity. Once again,
however, it is much more difficult to explain why self-other
agreement correlations consistently are higher for measures
of Neuroticism than for the negative affect scales of the
PANAS-X (see Watson et al., 2000). For instance, the BFI
Neuroticism scale produced a significantly higher agreement
correlation (r = .37) in the friendship sample than did the

PANAS-X Negative Affect scale (r = .20). As discussed ear-
lier, this substantial correlational gap cannot be attributed to
differential reliability or to substantial differences in item
content. Consequently, it again suggests to us that subtle dif-
ferences in format and presentation may enhance the con-
struct validity of trait affect measures; as noted previously,
we currently are conducting research to explore this impor-
tant possibility.

General Versus Aggregated Ratings of Trait Affect

Thus far, our review indicates that general trait ratings
(a) have substantial construct validity but (b) perhaps can be
improved somewhat through changes in format and presenta-
tion. We conclude this discussion by comparing the relative
merits of this approach to an alternative method for assessing
trait affect, namely, the use of aggregated, on-line ratings.

This recently has become an important topic in the affect
literature. It arose in response to evidence indicating that gen-
eral affect ratings suffer from a variety of problems that may
substantially lessen their validity (Kahneman, 1999; Russell
& Carroll, 1999; Schwarz & Strack, 1999; Stone, Shiffman, &
DeVries, 1999). Most of these problems arise from the
retrospective nature of these global ratings, which require re-
spondents to (a) recall their relevant past experiences and then
(b) draw inferences from them. This process is subject to at
least three problems. First, Fredrickson and Kahneman (1993)
demonstrated that global ratings suffer from duration neglect,

TABLE 14.8 Self-Other Agreement Correlations for the PANAS-X Scales

Texas Iowa
Friendship Dating Dating Married

Scale Dyads Couples Couples Couples Mean r

Negative Affect scales
General Negative Affect .20* .23* .22* .44* .28
Fear .20* .23* .20* .36* .25
Sadness .31* .31* .32* .47* .35
Guilt .27* .14 .26* .49* .30
Hostility .21* .30* .32* .50* .34
(Mean r ) (.24) (.25) (.26) (.45)

Positive Affect scales
General Positive Affect .30* .32* .33* .39* .34
Joviality .38* .37* .38* .51* .41
Self-Assurance .36* .43* .38* .52* .42
Attentiveness .28* .32* .29* .26* .29
(Mean r ) (.33) (.36) (.35) (.43)

Other affect scales
Shyness .37* .32* .28* .36* .33
Fatigue .13* .31* .17* .53* .29
Serenity .21* .38* .17* .38* .29
Surprise .18* .13 .17* .10 .15
(Mean r ) (.22) (.29) (.20) (.35)

Note. N = 558 (Friendship Dyads), 136 (Texas Dating Couples), 272 (Iowa Dating Couples), 148
(Married Couples). 
*p < .01, two-tailed.
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that is, from an insensitivity to the actual amount of time
that an affect was experienced (see also Kahneman, 1999;
Russell & Carroll, 1999). Second, several studies have shown
that general affect ratings are influenced by the respondents’
mood at the time of assessment (e.g., Schwarz & Clore, 1983;
Schwarz & Strack, 1999; Stone et al., 1999). Third, retrospec-
tive ratings are subject to recency effects, such that more re-
cent experiences have a greater influence than more distant
ones (Schwarz & Sudman, 1994; Stone et al., 1999).

In light of these problems, many researchers have argued
for an alternative assessment approach based on immediate,
on-line ratings of affect (e.g., ratings of one’s current, mo-
mentary mood). A single rating of current affect obviously
cannot provide a valid assessment of long-term individual
differences in trait affectivity. However, multiple on-line
judgments of this type can be averaged to create more reli-
able and valid trait measures. Note that this approach to trait
assessment neatly circumvents all of the problems associated
with retrospective judgments. Moreover, it takes advantage
of the well-established benefits of aggregation, which typi-
cally yields substantial gains in both reliability and validity
(Rushton, Brainerd, & Pressley, 1983). Consequently, after
reviewing the advantages and disadvantages associated with
both global and aggregated ratings, Stone et al. (1999) en-
couraged researchers to avoid retrospective ratings and to
“target multiple, immediate reports from people in their typi-
cal environments” (p. 26; see also Kahneman, 1999; Schwarz
& Strack, 1999).

Before proceeding further, we must emphasize that these
two approaches to trait affect assessment generally show
moderate to strong levels of convergence (see Watson &
Tellegen, 1999; Watson, Tellegen, & Cudeck, 2002). To fur-
ther establish this key point, Table 14.9 reports correlations
between general and aggregated mean ratings in two large
samples; in both cases, affect was assessed using the com-
plete PANAS-X. The first sample was composed of 251 SMU
students who initially completed a general, trait form of the
PANAS-X. They then rated their daily mood once per day
over a period of 6–7 weeks; these responses were averaged
across the entire rating period to yield mean scores on each
PANAS-X scale. To be included in the analyses reported
here, a respondent had to complete a minimum of 30 daily
assessments; overall, the participants produced a total of
11,062 observations (M = 44.1 per participant). The second
sample was composed of 187 University of Iowa students
who first rated their general affect, and then rated their moods
each week over a period of 14 weeks. To be included in these
analyses, a respondent had to complete a minimum of
10 weekly assessments; overall, these participants produced
a total of 2,544 observations (M = 13.6 per person).

Consistent with other evidence of this type (see Diener
et al., 1995; Watson & Tellegen, 1999), Table 14.9 demon-
strates that the two types of ratings converged well in both
samples. Specifically, the correlations ranged from .37 to .60
(Mdn = .51) in the daily data, and from .45 to .64 (Mdn =
.53) in the weekly ratings. These results are quite reassuring,
in that they indicate that these two assessment approaches
can be expected to yield substantially similar results.

Although these two approaches generally converge well,
however, the correlations obviously do not approach 1.00.
This raises an important question: To the extent that they dis-
agree, which assessment strategy should be given greater
credibility? Although general affect ratings clearly suffer
from several problems that render them imperfect, it would
be a mistake to conclude that aggregated, on-line judgments
therefore represent a better, more valid assessment approach.
This is because aggregated ratings have some serious prob-
lems of their own (see Watson et al., 2002).

One particularly serious problem is the reduced level of
discriminant validity among scales assessing specific, lower
order affects. Diener et al. (1995) collected both global
ratings (in which respondents indicated how they had felt
over the past month) and aggregated daily ratings (averaged
over 52 consecutive days) from 212 participants who com-
pleted measures of four different negative affects: fear, anger,
shame, and sadness. The resulting correlations are presented
in Table 14.10. It is noteworthy that the two types of ratings
again showed good convergent validity; specifically, correla-
tions between parallel measures of the same affect ranged

TABLE 14.9 Convergent Correlations Between General Trait
Ratings and Aggregated Mood Scores on the PANAS-X Scales 

Scale Daily Data Weekly Data Mean r

Negative Affect Scales
General Negative Affect .48 .63 .55
Fear .46 .63 .54
Sadness .55 .64 .59
Guilt .60 .68 .64
Hostility .44 .52 .48
(Mean r) (.51) (.62)

Positive Affect scales
General Positive Affect .54 .49 .52
Joviality .55 .53 .54
Self-Assurance .51 .51 .51
Attentiveness .53 .45 .50
(Mean r) (.53) (.50)

Other affect scales
Shyness .47 .61 .53
Fatigue .44 .59 .51
Serenity .52 .52 .52
Surprise .37 .50 .43
(Mean r) (.45) (.56)

Note. N = 251 (Daily Data), 187 (Weekly Data). All correlations are
significant at p < .01, two-tailed.
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from .52 to .69, with a mean value (after r to z transforma-
tion) of .62. The discriminant correlations differed dramati-
cally, however. In the global ratings, correlations among the
negative affect scales ranged from .54 to .61, with a mean
value of .58; note that this average coefficient reflects 33.6%
shared variance. In marked contrast, the corresponding corre-
lations in the aggregated ratings ranged from .70 to .79, with
a mean value of .75; this average coefficient represents
56.2% common variance. The reduced discriminant validity
of aggregated ratings is a very robust phenomenon: We have
replicated this finding in several analyses of the negative
affect scales of the PANAS-X, and have extended it by show-
ing that it also holds true for positively valenced states (see
Watson et al., 2002).

What causes this reduced discriminant validity in aggre-
gated mood ratings? As we discuss in detail elsewhere
(Watson et al., 2002), the most likely explanation is that it
reflects the augmented influence of systematic measurement
errors, such as acquiescence. Acquiescence represents a ten-
dency to respond to different items similarly, irrespective of
content; thus, it will bias all observed correlations toward
greater positivity (i.e., toward +1.00). If the true correlation
between two constructs is positive (as in the case of similarly
valenced affects such as fear and sadness), acquiescence will
artifactually inflate the observed coefficients.

As we already have discussed, systematic error generally
has only a modest impact on disaggregated mood ratings. It
appears, however, that acquiescence exerts a much greater in-
fluence in aggregated ratings, thereby substantially inflating
the correlations among similarly valenced affects such as fear
and sadness (and, in turn, reducing the discriminant validity
of measures of these constructs). This augmented acquies-
cence component likely is an unintended byproduct of the
aggregation process itself. Traditional discussions of aggrega-
tion have argued that it progressively eliminates measurement
error (e.g., Rushton et al., 1983). However, this generalization

applies only to random error. Because random errors are, by
definition, uncorrelated across assessments, they can be ex-
pected to cancel each other out as more observations are aver-
aged. In marked contrast, however, systematic errors (such as
acquiescence) are correlated across assessments; thus, their
influence may grow with increasing aggregation. Further-
more, if this error variance expands more rapidly than the true
score component, increasing aggregation actually may have
the paradoxical effect of lessening the validity of the resulting
measure.

An acquiescence-based explanation also can account for a
second curious property of aggregated ratings, namely, an
almost complete absence of bipolarity. As noted earlier, ac-
quiescence will bias observed correlations toward greater
positivity. If the true correlation between two constructs is
negative (as in the case of oppositely valenced affects such as
happiness and sadness), acquiescence will act to weaken the
observed coefficients so that they become more weakly
negative—or even slightly positive. Consistent with an acqui-
escence-based explanation, correlations between measures of
negative and positive affectivity repeatedly have been found
to be shifted toward greater positivity in aggregated ratings
(see Diener & Emmons, 1984; Diener, Larsen, Levine, &
Emmons, 1985; Russell & Carroll, 1999; Watson & Clark,
1997; Watson et al., 2002).

In light of these data, it seems reasonable to conclude that
response biases such as acquiescence represent a substantially
greater problem in aggregated data than in general ratings of
trait affectivity. This, in turn, suggests that despite the prob-
lems associated with this approach (see Schwarz & Sudman,
1999; Stone et al., 1999), general ratings actually provide
more valid and trustworthy data. We certainly are not arguing
that aggregated ratings be abandoned. These ratings provide
very useful information in a variety of contexts; moreover, as
we have seen, they converge well with general trait ratings.
Our point, rather, is that to the extent these two approaches
disagree, general ratings ultimately appear to have superior
construct validity, and therefore should continue to be viewed
as the gold standard in trait affect assessment.

RECOMMENDATIONS FOR FUTURE RESEARCH

The mood literature has flourished in recent years, in large
part because affect researchers have developed an impressive
array of measures to assess most of the key constructs within
this domain. Our overall evaluation of the current state of
mood assessment is positive. As we have seen, interested re-
searchers have access to a wide range of reliable measures
that show both excellent internal consistency and (in the case

TABLE 14.10 Correlations Among Negatively Valenced Scales
(Diener, Smith, & Fujita, 1995)

1 2 3 4 5 6 7

Month Ratings
1. Fear —
2. Anger .61 —
3. Shame .56 .54 —
4. Sad .59 .60 .57 —

Aggregated Ratings
5. Fear .69 .53 .46 .53 —
6. Anger .46 .61 .44 .51 .76 —
7. Shame .39 .41 .52 .41 .73 .79 —
8. Sad .42 .43 .42 .64 .70 .77 .71

Note. N = 212. Convergent correlations are highlighted. These results are
adapted from Diener et al. (1995, Table 4).
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of trait ratings) adequate temporal stability. Moreover, we
now have amassed extensive evidence (e.g., significant cor-
relations between self- and other-ratings of the same individ-
uals) to establish the convergent and discriminant validity of
many of these measures. Finally, although measurement error
is a universal problem in assessment, we see no evidence that
affect measures are especially susceptible to either random or
systematic error.

The current situation is particularly good at the higher
order level.Assessment in this area has been greatly facilitated
by the emergence of a consensual structural scheme—empha-
sizing the dominance of two general dimensions—during the
1980s (see Feldman Barrett & Russell, 1998; Larsen &
Diener, 1992; Russell & Carroll, 1999; Tellegen, et al., 1999;
Watson & Tellegen, 1985; Watson et al., 1999). This structural
consensus encouraged the development of reliable and valid
measures of Positive Affect, Negative Affect, and Pleasant-
ness.As we have seen, however, mood researchers have relied
largely on ad hoc Pleasantness measures whose psychometric
properties have not been thoroughly analyzed. Accordingly, it
would be helpful if future investigators worked to establish
standard measures of this construct.

Obviously, however, the Engagement or Activation di-
mension constitutes the major unresolved problem at this
level. Although many theorists have argued that Engagement
represents a fundamental dimension of affect (e.g., Feldman
Barrett & Russell, 1998; Larsen & Diener, 1992; Russell &
Carroll, 1999; Yik et al., 1999), no one has yet developed a
fully adequate measure of the construct; thus, we cannot rec-
ommend the routine use of any of the existing instruments.
Furthermore, as discussed earlier, interested researchers face
two formidable—and currently unresolved—assessment
problems: (a) a paucity of good marker terms and (b) the
weak bipolarity of its two hypothesized ends. In light of these
problems, we cannot be optimistic about future attempts to
measure this construct. More fundamentally, these problems
raise the issue of whether Engagement truly represents a
basic dimension of affect. It is particularly disturbing that ex-
tensive analyses have identified very few affectively neutral
terms representing pure, unambiguous markers of this di-
mension. Until good, clear markers of the construct can be
found, its status as a basic dimension remains suspect. These
clearly are crucial issues for future research.

In contrast to assessment at the higher order level, the as-
sessment of lower order, discrete affects remains less satisfac-
tory. As we indicated earlier, the key problem is that we still
lack a compelling taxonomy of affect at the specific, lower
order level. It is particularly discouraging to note that research
in this area appears to have stagnated, such that very little
progress has been made in recent years. We emphasize again

that without an organizing structural scheme, it is impossible
to evaluate the comprehensiveness and content validity of
all existing measures. For instance, should a comprehensive
measure contain descriptors related to disgust? If so, should
they be assessed separately, or instead combined with markers
of anger and contempt? In our view, the absence of a suitable
taxonomy is the single most important unresolved issue in
mood assessment, and it should be accorded top priority by
affect researchers.

In the meantime, it would be enormously helpful if inves-
tigators conducted studies that directly compared the reliabil-
ity and validity of the major instruments in this area (the
DES, MAACL-R, PANAS-X, and POMS). The limited evi-
dence that currently is available is sufficient to demonstrate
that purported measures of the same construct (e.g., fear-
tension-anxiety, sadness-depression-dejection) are not inter-
changeable and differ widely in their internal consistency,
discriminant validity, and other psychometric properties.
Comparative research would be invaluable in helping re-
searchers to identify the specific measures that best suited
their assessment needs.

Finally, trait affect assessment presents us with a paradox-
ical situation. On the one hand, extensive recent evidence has
firmly established the reliability and construct validity of
global trait ratings. Among other things, these global ratings
(a) are substantially stable over time, (b) are strongly corre-
lated with general trait measures such as Neuroticism and
Extroversion, and (c) show significant levels of self-other
convergence. Thus, we can have much more confidence in
these measures than we could 10 years ago.

On the other hand, we also are more painfully aware of their
limitations than we were 10 years ago. Thus, it now is clear
that general affect ratings suffer from a variety of problems—
including duration neglect and recency effects—that may sub-
stantially lessen their construct validity (Kahneman, 1999;
Schwarz & Strack, 1999; Stone et al., 1999). Furthermore,
general affect scales show (a) lower temporal stability and
(b) weaker self-other agreement than do other types of trait
measures, even closely related traits such as neuroticism and
extroversion. As discussed previously, these effects cannot be
attributed simply to differences in content, but reflect in part
subtle influences of format and presentation. Put differently, it
appears that we can improve the construct validity of these
measures by experimenting with various stylistic changes (see
Vaidya et al., 2002; Watson et al., 2000). In this regard, it is
noteworthy that contemporary mood researchers still rely pri-
marily on the same basic assessment instrument that was pio-
neered by Nowlis and Green more than 40 years ago.Although
this instrument generally has worked quite well over the years,
it now is time to revisit it—and, perhaps, to reinvent it.
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TRADITIONAL APPROACHES TO PERSONALITY
TEST CONSTRUCTION

Rational-Theoretical Approach

Over the past century, there have been four generations, as it
were, of approaches to the construction of personality mea-
sures. The oldest of these traditions is the rational or theoret-
ical approach. This form of test construction relies heavily
upon the developer’s notions of the concept in question, as he
or she attempts to design an instrument that reflects a partic-
ular theory about the concept. This theoretical reflection can
either be implicit or explicit. For example, the items of the
Woodworth Personal Data Sheet, assembled in response to
needs for psychiatric screening during the U.S. entry into
World War I, represented Woodworth’s implicit theory about
important indicators of psychological adjustment. Alterna-
tively, the items of the Myers-Briggs Type Indicator represent
an attempt to implement an explicit psychological theory of
personality, that of C. G. Jung. 

An important advantage of the rational approach to per-
sonality test construction is that it places an important em-
phasis upon the content validity of the resultant measure. As
will be discussed in more detail in following sections, this
important emphasis has sometimes been lost in more recent

approaches to test construction, with unfortunate conse-
quences. However, the early rational approach also suffered
from a number of drawbacks. One particular problem was the
failure to use any data-driven procedures in the development
of the measures. Thus, these measures were entirely depen-
dent upon the assumptions of the test author, and these
assumptions may or may not have been well founded.
Erroneous assumptions could take place at the level of inter-
preting the theory or at the level of generating the relevant
indicators. At the level of theory, for example, a test author
might assume two concepts are related when in fact they are
not. At the item level, an item that might appear relevant at
first glance may in fact turn out to be measuring something
other than what was intended. In the absence of any confirm-
ing data prior to the general use of the test, any instrument de-
veloped entirely by rational means is likely to contain several
such errors.

Empirical Approach

As American psychology became increasingly behavioris-
tic in outlook, a second criticism of the rationally devel-
oped measures emerged. These behavioral psychologists
were unwilling to base conclusions about personality or
psychopathology on the introspections of the respondent.
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Rather, the personality measure began to be viewed as sim-
ply another mechanism by which to observe the behavior of
the respondent. From this framework emerged the next gen-
eration of personality test construction, the empirical ap-
proach. From this perspective, the only aspect of item
responses that mattered was their correlates; the content or
theoretical applicability of the item was of no interest in con-
struction. Meehl (1945) provided a manifesto for this ap-
proach, stating that “it is suggested tentatively that the
relative uselessness of most structured personality tests is
due more to a priori item construction than to the fact of their
being structured” (p. 6).

The empirical approach to test construction is exemplified
by the creation of the Minnesota Multiphasic Personality
Inventory (MMPI; Hathaway & McKinley, 1967) and the
Strong Vocational Interest Blank (Strong, 1927). In these in-
struments, a single extratest criterion—ability to differentiate
members of a criterion group from those in a control group—
was used to select items for the final version of these tests.
For the Strong, group membership involved persons engaged
in particular occupations, whereas for the MMPI, group
membership was determined by psychiatric diagnosis. Thus,
it was this criterion correlate that determined the composition
of test items, and item content was ignored.

The potential advantages of the approach over the rational
method, as discussed by Meehl (1945), were numerous. Tests
developed from this perspective were unlikely to fall subject
to the mistaken theoretical assumptions of the test authors
(except perhaps in the generation of the initial pool of items),
because the approach was explicitly atheoretical. The ap-
proach was initially thought to be much less susceptible to at-
tempts by the respondent to falsify or distort their results, a
common concern with the earlier generation of tests that were
heavily content based. The use of empirical item selection re-
sulted in the inclusion of a number of so-called subtle items
on scales; these items had content with little apparent rela-
tionship to the construct for which it was scored. As an ex-
ample, the MMPI Depression scale included the item “I
sweat very easily even on a cool day,” which was scored for
depression if answered false.

Unfortunately, the promise of the empirical approach was
often not borne out by subsequent research, because a number
of important problems began to surface as research on such in-
struments accumulated. First, it quickly became apparent that
empirical tests were not free from distortions introduced by
efforts at impression management; such results led rather
quickly to efforts to develop so-called validity scales for the
MMPI (e.g., Meehl & Hathaway, 1946) that could assist in
identifying such distortion.Asecond shortcoming was that the

selection of items based upon their ability to make a particular
discrimination led to problems when these items were called
upon to make other discriminations. For example, the MMPI
items, selected to contrast normality with psychopathology,
tended to have difficulty making distinctions among different
forms of psychopathology, leading to efforts by some re-
searchers (e.g., Rosen, 1958) to create empirical MMPI scales
designed to make distinctions within clinical populations.
Finally, the reliance upon empirical methods to identify subtle
items appeared to lead to the inclusion of such items on scales
that appeared to have questionable validity upon cross-
validation (e.g., Lees-Haley & Fox, 1990). As problems such
as these were discovered, the field began to search for more
sophisticated, yet still empirically based, strategies that could
address these shortcomings.

Statistical Approach

This second alternative to the rational/theoretical approach
began to emerge at approximately the same time as the
empirical approach, although it gained acceptance more
slowly, perhaps because of its greater computational com-
plexity. This approach, sometimes called the statistical or
classic psychometric approach, shared a quantitative em-
phasis with the empirical perspective. However, the statisti-
cal approach received impetus from the development of the
classical approach to psychometric theory (e.g., Guilford,
1936) as well as the development of the then-novel set of
statistical techniques known as factor analyses. Rather than
emphasizing external criterion-group membership, as in the
empirical approach, the statistical approach emphasized
item intercorrelations as its basis for test construction. From
this perspective, test construction centered around a statisti-
cal search for dimensions that could summarize personality,
and items were accordingly selected on the basis of their
ability to represent these dimensions. This approach sought
to construct scales that were collections of homogeneous in-
dicators of an underlying factor (or factors). In the case of
measures of single factors (e.g., trait anxiety), the instru-
ments have sought to maximize item interrelationship,
resulting in high internal consistency and factor analysis so-
lutions suggesting a unifactorial structure. Such instruments
have often selected items by focusing upon item-scale cor-
relations and choosing those items that demonstrated the
largest correlations with the parent scale. This results in
high mean interitem correlations and consequently a large
coefficient alpha (Cronbach, 1951), which provides an esti-
mate of the average of all possible split-half combinations
of items.
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Some instruments, particularly multiscale inventories,
that were developed from this perspective have tended to rely
upon exploratory factor analysis techniques to assign items to
scales, selecting and eliminating items as part of creating
scales that are internally consistent and factorially pure. In
other words, scales for a particular factor are constructed
from items that load highly on one factor, and preferably on
only one factor. Items with multiple or ambiguous loadings
are removed from the instrument. Ideally, this will result in
an instrument whose items have what is known as simple
structure (Thurstone, 1935). One pioneering instrument de-
veloped from the statistical perspective was the Guilford-
Zimmerman Temperament Survey (Guilford & Zimmerman,
1949), for which the authors factor-analyzed items from
many different instruments to create scales representing only
those items tapping the resultant dimensions.

One of the most enduring examples of the statistical ap-
proach to constructing a personality inventory is the Sixteen
Personality Factor Questionnaire (16PF; Cattell, Cattell, &
Cattell, 1993). Developed and refined over a number of
years, the basis of the instrument was the “lexical” approach
advocated by Cattell, who sought to identify a finite number
of source traits that explained the various individual differ-
ences among people as captured by personality adjective
terms in the English language. Based upon factor analyses of
various forms of personality data (including behavioral de-
scriptions as well as questionnaire data), Cattell initially con-
cluded that 16 obliquely related source traits appeared to
serve as the basis for most observable personality differ-
ences, and he sought to construct a questionnaire that could
measure these source traits directly. For Cattell, the use of
factor analyses to construct the 16PF was a natural extension
and replication of the methods that had been used to develop
its underlying theory. However, subsequent investigations
have generally found that the 16 scales are not factorially in-
dependent, and even efforts to replicate Cattell’s results using
his original data tend to find far fewer factors than 16 (Fiske,
1949; Goldberg, 1993).

One of the most popular models of normal personality in
contemporary research is the five-factor model (FFM). The
FFM, proposed initially by Tupes and Christal (1961) and re-
fined by Norman (1963), has a number of elements in common
with other popular dimensional approaches; in fact, it resem-
bles an integration of the Eysenck (1952) model and the higher
order factors of Cattell’s (1965) theory. The five factors may
be described as follows (Costa & McCrae, 1986): neuroticism,
characterized by worry, insecurity, and self-pity, as opposed to
a calm and self-satisfied nature; extraversion, referring to a so-
ciable and affectionate nature in contrast to a sober, reserved

one; openness, implying an imaginative, independent person-
ality as contrasted to a conforming, orderly nature; agreeable-
ness, characterized by a trusting, helpful attitude in contrast to
a suspicious, exploitative orientation; and conscientiousness,
denoting a well-organized, careful, disciplined personality as
opposed to a careless, weak-willed personality.

As pointed out by McCrae and Costa (1996), the utility
and robust nature of the FFM has been supported in a number
of research studies. In addition, there is substantial evidence
to suggest that these five factors reflect enduring characteris-
tics that persist throughout much of adult life (Costa and
McCrae, 1988). There are a number of instruments available
for measuring these five dimensions, with one of the most pop-
ular being the NEO Personality Inventory (Costa & McCrae,
1985, 1992b). The emergence of this model is an interesting
example of the interaction between theory and measurement
in personality, as the emergence of the statistical–factor ana-
lytic measurement model provided the foundations for a
dimensional theory of personality. As this theory became in-
creasingly well articulated, investigators developed new and
refined measures that, while continuing to rely upon factor
analysis for development and validation, increasingly did so
within a perspective that resembled the construct validation
approach.

THE CONSTRUCT VALIDATION APPROACH

During the 1950s, the field of psychological assessment
began to move somewhat away from the behaviorally based
focus upon criterion validity, which used behavioral criteria
for test validation, moving toward the notion of construct va-
lidity, which represented the extent to which a test could be
said to reflect a theoretical (and hence not directly observ-
able) construct. A number of seminal articles (Campbell &
Fiske, 1959; Cronbach & Meehl, 1955; Loevinger, 1957)
began to describe the implications of this shift in emphasis,
which included new perspectives on how best to construct
psychological measures (Jackson, 1967a, 1970). The con-
struct validation approach as delineated in these important
works remains the state of the art in test construction today.

In working within a construct validation framework, it is
essential to understand that each of the two words—construct
and validation—is there for a reason. Neither is very useful
without the other. Constructs without validation tend to be ab-
stractions that typically have little utility in an empirical or in a
pragmatic sense; validation in the absence of a construct tends
to yield specific-use applications that have little generalizabil-
ity and do little to further an understanding of what is being
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measured. The construct validation approach emphasizes the
interplay between the theoretical elaboration of the construct
and its methodological validation, and both elements deserve
some further consideration.

Constructs

Within the construct validation framework, test development
cannot proceed without a specification and elaboration of the
construct to be measured. Although this may seem intuitively
obvious to many, the history of psychological assessment is
replete with examples to the contrary. The differences can be
seen in as basic a level as the names of scales on instruments.
Construct validation requires that the scale name reflect the
construct being measured; this contrasts with instruments in
which scale names are task descriptions (such as the sub-
scales on the Wechsler intelligence scales), factor names (as
on the 16PF), or even numerals (such as eventually became
the case with the MMPI).

When a scale is designed to measure a particular con-
struct, the scale must be evaluated within the context of a the-
oretically informed network that makes explicit hypotheses
about interrelationships among indicators of various con-
structs. I have advocated (e.g., Morey, 1991b) that our classi-
fications in personality and psychopathology be viewed
simply as a collection of hypothetical constructs that are
themselves subject to construct validation procedures. In re-
cent years, there has been increasing recognition that these
constructs are best represented by rules that are probabilistic
rather than classical (i.e., the use of necessary and sufficient
features) in nature. The resulting fuzzy quality of critical
constructs in mental health weighs against the success of
criterion-referenced approaches (e.g., those tied to specific
etiology in a strong sense) to the development and validation
of construct indicators. Despite recent efforts to increase the
rigor with which certain clinical constructs are identified,
the fact remains that no gold standard has been discovered for
use as a criterion for membership in any of the major cate-
gories of mental disorder or personality since the discovery
of the specific qualitative etiology of general paresis around
the turn of the twentieth century. Most constructs in psychi-
atric classification are “open concepts” (Meehl, 1977) with
little known about their inner nature. Thus, the construct val-
idation approach is perhaps the only viable strategy with
which to tackle this type of measurement problem.

Cronbach and Meehl (1955) suggested that assigning
variability in observable behavior to a hypothetical construct
requires a theory with respect to that construct that is
comprised of an interconnected system of laws (which
Cronbach and Meehl called a “nomological network”)

relating hypothetical constructs to one another and to behavior
observable in the environment. Skinner (1981, 1986) has de-
scribed a three-stage framework for the elaboration of psy-
chopathological constructs that follows Loevinger’s (1957)
and Jackson’s (e.g., 1971) construct validation frameworks in
psychometrics. The stage of theory formulation involves an
explication of the content domain of the construct, a delin-
eation of the nature of the classification model and the linkages
between constructs in the model, and a specification of the re-
lationship of constructs to external variables, such as etiology
or treatment outcome. The second stage, internal validation,
involves the operationalization of the constructs and the ex-
amination of various internal properties of the classification;
specific properties to be emphasized would depend on the the-
ory elaborated in the initial stage. These properties might in-
clude interrater reliability, coverage of the classification,
stability of measurement over occasions, internal correlation
matrices, internal consistency of features assumed to be indi-
cators of the same construct, or the replicability of classifica-
tion or factorial structures across different samples. The third
stage of construct validation described by Skinner (1981) in-
volves external validation.At this stage, links of the constructs
to other variables related to etiology, course, or prediction
must be tested. This process will involve both convergent and
discriminant validation (Campbell & Fiske, 1959). That is, in
addition to showing that expected relationships prevail be-
tween the construct and to conceptually similar constructs, the
process must also involve efforts to demonstrate that observed
relationships are not attributable to constructs presumed not to
be operating within the theoretical network. As empirical evi-
dence is gathered, the theoretical formulation will likely be re-
vised to accommodate new and unexpected information.

It should be noted that the links among constructs in the
theoretical network may be of many types. Historically, clas-
sification in medicine has given prominence to etiology as a
basis for organization, but there is no reason to presume that
theoretically based construct validation research must begin
and end with investigations into causation. Meehl (1977)
points out that the complexity of causation of most phenomena
in the biological and social sciences does not seem compatible
with the notion of specific etiology. Consequently, specific eti-
ology may not be a particularly promising candidate to serve
as the basis of a scientific classification of mental disorders.
Even with the presumption of multiple etiological pathways,
there seems to be a need to provide a theoretical link between
the observed phenomena and some etiologically proximal
final common pathway if the taxonomic construct is to achieve
scientific coherence. Thus, efforts directed at establishing the-
oretical links between constructs and other external validator
variables such as treatment response or personality outcome
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may have as much promise for clarifying these constructs as
do etiological investigations. As with etiological research,
there is little reason to presume to find specificity (e.g., that
disorders should respond specifically to particular treatments)
because factors such as treatment response or personality
change may involve variables fairly distal to the core of the
construct. Nonetheless, more proximal links between certain,
presumably malleable, elements of the construct and theoreti-
cal mechanisms of treatment or change are reasonable objects
of investigation for construct validation. Ultimately, those
constructs that are central in a theory that provides such link-
ages to etiology, description, and intervention should be those
that emerge as superordinate in a taxonomy of psychopathol-
ogy or personality.

Thus, development of construct-validated instruments is
possible only for constructs with some depth of elaboration in
the theoretical and empirical literature. For example, con-
struction of a measure for passive-aggressive personality is
hampered by a lack of theoretical and empirical articulation
in the scientific literature. In contrast, depression is useful as
an example of a well-articulated construct. Of all mental-
disorder concepts, its description is perhaps the most stable,
because it has been described consistently at least since the
time of the classical Greek physicians. The construct has also
received a great deal of theoretical and empirical attention,
with a host of instruments available for assessing depression,
including the self-report Beck Depression Inventory (BDI;
Beck & Steer, 1987), Zung (1965) Depression Scale, and
MMPI D scale, as well as the observer rating scales such
as the Hamilton Rating Scale for Depression (HAM-D;
Hamilton, 1960). Despite the fact that these scales are widely
used and tend to be positively correlated, they all have some-
what different characteristics (Lambert, Hatch, Kingston, &
Edwards, 1986). For example, the HAM-D is one of the most
commonly used instruments in psychopharmacologic trials
of antidepressants, perhaps because it emphasizes the mea-
surement of physiological symptoms of depression that are
reasonably responsive to such medications (a nomological
link to treatment). As an example, 3 distinct items of the
17 items on the original scale inquire about sleep distur-
bances, but none ask about negative cognitions or expectan-
cies. In contrast, the BDI tends to emphasize cognitive
features of depression, such as beliefs about helplessness and
negative expectations about the future (Louks, Hayne, &
Smith, 1989). This emphasis is not surprising, given Beck’s
theoretical elaboration (e.g., Beck, 1967) of the role of these
factors in the development and maintenance of depression
(a nomological link to etiology). Empirically, factor analyses
of the BDI support the conclusion that such cognitive
elements of depression are a major source of variance on this

instrument, with somatic and affective elements relatively
undifferentiated (Steer, Ball, Ranieri, & Beck, 1999). In con-
trast, other commonly used instruments, such as the MMPI D
scale, focus upon affective features such as unhappiness and
psychological discomfort, with limited assessment of either
the cognitive or physiological features of depression. As a re-
sult, they tend to tap more generalized distress and have little
specificity in the diagnosis of depression. 

Given the consistency of the literature on the indicators of
depression, and the convergence of empirical research on the
major grouping of these indicators, it is relatively straightfor-
ward to pursue the development of depression scales from the
construct validation perspective. For example, the construc-
tion of the Depression (DEP) scale of the Personality Assess-
ment Inventory (Morey, 1991a) proceeded with the goal of
representing these empirically related, but conceptually inde-
pendent, components of the depression construct, because the
empirical and theoretical significance of each had been estab-
lished in the literature. The initial item pool for these compo-
nents was generated by examining the literature in each area
to identify those characteristics of each that were most central
to the definition of the concept. The content of these items
was assumed to be crucial to its success, because each item
was carefully constructed to measure a reasonably well artic-
ulated facet of a complex construct.

The above discussion makes it clear that the construct vali-
dation method of test construction differs markedly from athe-
oretical methods, such as the empirically keyed method of
item selection employed in instruments such as the MMPI. In
the construct validation view, theory and measurement are in-
extricably interlinked, and an instrument is viewed as a scien-
tific theory that is open to empirical falsification. Thus, not
even instruments such as the MMPI or even the Diagnostic
and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV; American Psychiatric Association, 1994) are truly
atheoretical (e.g., Faust & Miner, 1986; Schwartz & Wiggins,
1987), because each represents an implicit theory about the
representation of the constructs and the boundaries between
them. However, in such so-called atheoretical methods, the
theoretical networks underlying the constructs are typically
poorly articulated, and measurement problems invariably
result. Thus, for example, in constructing a measure of psy-
chopathology, the investigator may be faced with the choice of
developing a direct measure of the DSM definitions of a par-
ticular disorder or, alternatively, a representation of the disor-
der that attempts to instantiate contemporary knowledge about
the constructs. Each approach has its advantages and disad-
vantages. The DSM-based measurement approach would pro-
vide a clear link to a widely used definition of a construct.
However, the poor articulation of the constructs potentially
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complicates interpretation of psychometric properties of the
resulting measure. Would properties such as poor internal con-
sistency, limited temporal stability, or poor discriminant valid-
ity be a property of the DSM definition, or of the measure of
that definition?

In the context of a discussion of the utility of theory-based
assessment, some mention should be made of the nature of the
theories from which assessments may be derived. In general,
the nomological network for one construct may look quite dif-
ferent from that for another; for example, it is unlikely that the
same set of explanatory principles will hold for introversion,
bipolar affective disorder, posttraumatic stress disorder, and
dependent personality disorder. Consequently, many of the
theories that most help to elaborate psychopathologic con-
structs tend to be restricted in scope. Theories that are intended
to be applicable across the broad expanse of psychopathology
(e.g., early applications of psychoanalytic theory, or Millon’s
1969 model of syndromes) tend to achieve their expansive
coverage at the expense of specificity, and hence falsifiability.
Thus, in selecting a theory as a guide to test construction, the
developer must consider the relative advantages of breadth
of applicability versus specificity of articulation of the
theory. For example, the Millon Clinical Multiaxial Inventory
(MCMI; Millon, 1994) maintains a particular theoretical focus
(Millon’s theory) across scales tapping a variety of constructs,
whereas the Personality Assessment Inventory (PAI; Morey,
1991a) draws from more circumscribed theoretical models
that have shown promise for specific constructs, including
models that are psychodynamic, interpersonal, cognitive, or
psychopathologic in nature.

Normal Versus Abnormal Constructs

In designing and evaluating a personality instrument, one
must take into account the nature of the constructs being as-
sessed, and one aspect of this nature involves whether the
constructs reflect normal personality or an abnormal process
(i.e., disordered personality or psychopathology). In the psy-
chometric field it is clear that there are differences between
instruments depending on whether they are designed to mea-
sure normal or abnormal constructs; for example, catalogs
from test publishers often present such tests in separate sec-
tions. However, the distinction between normal and abnormal
aspects of personality has not been well articulated conceptu-
ally. For example, the American Psychiatric Association’s
DSM, despite admirable attempts to objectify many critical
distinctions, is still unclear on distinctions among normal
personality, abnormal personality, and clinical syndromes.
Instruments themselves are ambiguous in their terminology;

for example, the MMPI was named a personality inventory
despite the fact that it was clearly created as a clinical diag-
nostic instrument.

To assist in the delineation of personality constructs,
Morey and Glutting (1994) discussed a number of empirical
criteria that may help to identify whether a construct captures
an element of normal personality or whether it represents
something abnormal. Each of these criteria will be discussed
in some detail, because they serve to highlight some critical
differences to anticipate in the design of measures of normal-
ity versus abnormality.

1. Normal and abnormal personality constructs differ in the
distribution of their related features in the general popu-
lation. Differentiating normal and abnormal personality in
this manner is similar to the approach taken by Foulds
(1971). Foulds separated what he called personality de-
viance from personal illness (i.e., psychopathology), and
he proposed a model of the relationship between these
conditions whereby they were viewed as overlapping but
conceptually independent domains. In making this dis-
tinction, he focused upon quantitative aspects of these
conditions, namely the distributions of symptoms (fea-
tures of personal illness) and traits (features of personality
deviance) in various populations.

In distinguishing between features associated with
these conditions, Foulds hypothesized that abnormal
symptoms should have distributions that have a marked
positive skew (i.e., that occur infrequently) in normal sam-
ples, while being roughly normally distributed in clinical
samples. In contrast, normative personality traits should
be distributed in a roughly Gaussian (i.e., bell-shaped)
manner in the general population; a sample of individuals
with so-called deviant personalities is distinguished by the
personality traits’ being manifest to a degree rarely en-
countered in the general population. It should be noted
that both types of constructs may be of clinical interest.
Various regions of each type of construct may represent an
area of concern; a person can be having difficulties be-
cause he or she manifests a particular normative trait (e.g.,
introversion) to an extreme degree, or because he or she
manifests an abnormal construct (e.g., suicidal ideation) to
even a slight degree. The primary difference is in the na-
ture of the construct: The individual with a clinical trait
(i.e., psychopathology) may be somehow qualitatively dif-
ferent from normals, whereas individuals with what is
considered an abnormal amount of a normative personal-
ity trait are quantitatively distinct; that is, their trait mani-
fests a difference of degree rather than kind.

schi_ch15.qxd  8/7/02  12:22 PM  Page 382



The Construct Validation Approach 383

These distributional differences will affect the desired
properties of the eventual scales. For example, a measure
of introversion-extraversion is likely to be bipolar, with a
nearly Gaussian distribution, interpretable variance at
each end of the scale, and expected scale means that fall
somewhere within the middle of the possible range. In
contrast, a measure of suicidal ideation is likely to be
unipolar, with an absolute zero point, a positively skewed
distribution in the general population, and a scale mean in
this population that may lie fairly close to this zero point.
Interpretations of the suicidal ideation scale are more
likely to be made solely in the higher ranges of the scale.
Efforts to use a normalizing transformation in standardiz-
ing a normal personality measure thus may make sense
because the underlying construct may well be normally
distributed. However, a similar transformation for a suici-
dal ideation scale would be problematic, because it would
tend to magnify small and perhaps unreliable differences
at the low end of the scale and compress differences that
might be meaningful at the higher end of the scale.

2. Normal and abnormal personality constructs differ dra-
matically in their social desirability.Assessment investiga-
tors have long recognized that self-report personality tests
can be vulnerable to efforts at impression management. In
particular, much concern has been expressed about the in-
fluence of efforts to respond in a socially desirable fashion
on such tests. Various diverse and creative efforts have
been directed at resolving this dilemma, including the em-
pirical keying strategy behind the development of the orig-
inal MMPI as well as the subsequent use of the K correction
and the forced-choice matched item alternatives employed
in the Edwards Personal Preference Schedule. However,
for self-report tests that focus on so-called abnormal con-
structs, these strategies tend not to work very well. It is sug-
gested that the reason for these problems is that abnormal
constructs are inherently socially undesirable. Thus, most
measures of social desirability responding will correlate
quite highly with measures of abnormal constructs. In con-
trast, the social desirability of normative personality fea-
tures is more ambiguous, less evaluative, and more likely to
be tied to a specific context. For example, the trait adjective
talkative might be a socially desirable characteristic in a
salesperson but not in a librarian. There is likely to be little
consensus among people as to whether talkative is a desir-
able or undesirable characteristic, whereas characteristics
such as depressed or delusional will invariably be viewed
consensually as undesirable.

This implies that the social desirability of a con-
struct may be useful as an indicator of its status in capturing

normal or abnormal variation between people. The desir-
ability of the construct may be measured in many ways; for
example, correlations with measures such as the Marlowe-
Crowne social desirability scale (Crowne & Marlowe,
1960) can yield an estimate of the desirability loading of a
measure of some construct. Another means by which to as-
sess the desirability of a construct measured by a particular
scale is to gauge the impact that efforts at impression man-
agement have upon scale scores. In establishing the dis-
criminant validity of a normal personality measure, the test
developer may wish for effect sizes of social desirability
manipulations that are close to zero, but the author of a
measure of an abnormal construct should not have this aim.
Instead, discriminant validation of the latter will focus
upon the magnitude of social desirability effects relative to
convergent validity indicators, because some relationship
to social desirability should be anticipated.

Another implication of the impact of this assumption
is that treatment of social desirability as a nuisance vari-
able should differ in measures of normal and abnormal
constructs. As an example, the Edwards Personal Prefer-
ence Schedule (EPPS; Edwards, 1959) attempts to mea-
sure the constructs of Henry Murray’s (1938) theory of
personality using a forced-choice item response format
(e.g., Edwards, 1957), where alternative item responses
are equated for social desirability valence. Such an ap-
proach makes sense if one assumes that these are normal
personality constructs, but it becomes problematic if
applied to constructs reflecting abnormality. This assump-
tion may also help clarify why psychometric efforts to
correct for stylistic aspects of response variance, such as
the MMPI’s K correction, tend to meet with failure in clin-
ical settings (Archer, Fontaine, & McCrae, 1998). Such
strategies essentially treat social desirability as a suppres-
sor variable (Wiggins, 1973) that can be added or sub-
tracted from some substantive indicator to enhance the
validity of that indicator. However, in order for this strat-
egy to be successful, it is important that the suppressor
variable be minimally correlated with the validity crite-
rion (Wiggins, 1973), and, according to the assumption
presented here, this would not be the case for most indica-
tors of abnormal constructs. Such correction strategies
may have greater promise for use as suppressor variables
in measures of normal personality, which are more likely
to meet this requirement.

3. Scores on measures of abnormal personality constructs
differ dramatically between clinical and community sam-
ples, whereas scores of normal constructs do not. This cri-
terion is based upon the assumption that, in dealing with an
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abnormal personality construct, more is worse; that is, the
more of the construct a person has, the greater the impair-
ment the person manifests and the more likely the person is
to come to the attention of mental health professionals. For
example, when one considers disordered thinking as a per-
sonal characteristic, greater amounts of thought disorder
will be associated with greater impairment and need for in-
tervention. Thus, a clinical population should invariably
obtain higher scores on measures of such constructs than a
community sample. In contrast, for a normative personal-
ity trait, the adaptive direction of scores is less clear-cut.
Given the assumption that such traits are normally distrib-
uted, then the traits are inherently bipolar, and extreme
scores at either end of the trait may be maladaptive. Thus,
even if clinical samples were restricted to persons with
problems on a particular normative trait (e.g., extreme
scores on introversion-extraversion), there would still be
no reason to suspect mean differences between clinical and
community subjects, because the extreme scores of the
clinical subjects at either end of the continuum would be
expected to balance out.

4. Measures of normative personality traits should demon-
strate factorial or correlational invariance across clinical
and community samples, whereas measures of abnormal
traits may not. The basic assumption behind this criterion
is that the correlation pattern that gives abnormal con-
structs their syndromal coherence should only emerge in
samples where there is adequate representation of individ-
uals manifesting the syndrome (i.e., clinical samples).
In community samples, which may include relatively few
individuals who have a clinical syndrome, the association
between features of the same syndrome may be no greater
than that between any two features selected randomly. As
an example, if depression were defined by five necessary
and sufficient criteria, and these five criteria were intercor-
related in a community sample that contained no depressed
subjects, the average correlation between these features
might well be zero. In a sample of nondepressed individu-
als, sleep problems and low self-esteem may be associated
only at chance levels because individuals who share the pu-
tative causal process that underlies the clinical association
of these features have been removed from the sample. It is
the convergence of these features in individuals considered
to be depressed that lends a correlation pattern to these
features. Thus, distinct sets of highly intercorrelated fea-
tures (i.e., syndromes) might emerge from a factor analysis
of clinical subjects that would not be identified in a sample
of subjects selected from the community.

In contrast, those traits that describe normal variation
in personality would be expected to capture this variability

among clinical as well as normal subjects. Even though
the clinical subjects may be, as a group, more extreme on
normal personality traits, similar correlational patterns
among elements of the trait should be obtained. For exam-
ple, the construct of extraversion/introversion should
identify meaningful differences among clinical subjects as
well as normal subjects, and the intercorrelation of the be-
haviors that make up this construct should be similar in the
two populations. This should yield predictable empirical
results with respect to the factor structure (for multifac-
eted scales or constructs) and the average item intercor-
relation (i.e., coefficient alpha, for unidimensional
constructs); for a normative trait, these results should be
similar in clinical and nonclinical samples. In contrast,
these values may well differ if an abnormal construct is
being examined.

The preceding four criteria can be useful for distinguish-
ing between normal and pathological aspects of personality,
and also for designing the type of investigations necessary to
accumulate evidence of construct validity. The important
message is that indicators of validity are not always applica-
ble across different types of constructs. Because of this, a va-
riety of commonly used criteria for scale validity, such as
factorial invariance or social desirability loading, are only
useful when justified within the theoretical context of the
construct. This points to the importance of the construct in
construct validation; the discussion now turns to the valida-
tion aspect.

Validation

The second part of the construct validation picture is the val-
idation. Once a construct has been identified and the major
elements of the construct delineated, the putative indicators
of the construct need to be examined for validity. Although
this sounds simple enough, it is critical to understand that the
validation of an indicator is a complex process, and the va-
lidity of an indicator cannot be reduced to a single coeffi-
cient. The importance of validation has been understood
since the beginnings of psychometrics, but the multifaceted
nature of validity has not been clearly recognized until rela-
tively recently. In particular, the literature on test develop-
ment and validation is replete with studies documenting
convergent validity, or the association between indicators
that supposedly measure the same construct. However, two
other important aspects of validation often receive short
shrift in the test construction literature, and the construct val-
idation approach has been central in highlighting the impor-
tance of these overlooked aspects. The following sections
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examine two of these areas, namely content validity and dis-
criminant validity.

Content Validity

The content validity of a measure involves the adequacy of
sampling of content across the construct being measured.
Often, this characteristic of a test is confused with face valid-
ity, referring to whether the instrument appears to be measur-
ing what it is intended to measure, particularly as it appears to
a lay audience. These are not synonymous terms; a test for
depression that consists of a single item such as I am unhappy
may appear to be highly related to depression (i.e., it has high
face validity) but provides a very narrow sampling of the con-
tent domain of depression (i.e., it has low content validity).
Content validity dictates that scales provide a balanced sam-
pling of the most important elements of the constructs being
measured. This content coverage should be designed to in-
clude a consideration of breadth as well as depth of the con-
struct. The breadth of content coverage refers to the diversity
of elements subsumed within a construct. For example, as de-
scribed earlier, in measuring depression it is important to in-
quire about physiological and cognitive signs of depression
as well as features of affect. Any depression scale that focuses
exclusively on one of these elements at the expense of the
others will have limited content validity, with limited cover-
age of the breadth of the depression construct.

The issue of construct breadth brings up one illustration of
a situation in which two supposedly desirable aspects of a
measure can actually be inversely related. Coefficient alpha
(Cronbach, 1951) and its dichotomous version, K-R 20, are
measures of internal consistency that provide an estimate of a
generalized split-half reliability. Many texts (e.g., Hammill,
Brown, & Bryant, 1993) state that a high coefficient alpha
(e.g., higher than .80) is a desirable property of a test, and test
construction procedures that use part-whole correlations or
factor-analytic structures essentially attempt to maximize this
psychometric property. However, sometimes internal consis-
tency can be too high, an issue described as the “attenuation
paradox” by Loevinger (1954) more than 40 years ago. High
internal consistency indicates that all test items are measur-
ing the same thing, which at its extreme can result in highly
redundant items that address a very narrow portion of a com-
plex construct. As an example, a depression test that consists
of 10 questions that all ask about difficulties in falling asleep
might be highly internally consistent, but such a test would
miss a considerable portion of the breadth of the depression
construct, including mood and relevant cognitions. 

The depth of content coverage refers to the need to sample
across the full range of intensity or severity of a particular

element of a construct. Most (if not all) interesting constructs
in personality and psychopathology have meaningful dimen-
sional variance with at least ordinal properties; in other
words, it makes sense to describe one individual as more ex-
troverted or more depressed than another. To assure depth of
content coverage, the test developer must attempt to capture
the differences that exist along the full spectrum of the char-
acteristic. One way that this is commonly done is through the
use of response options scaled to address differences in in-
tensity or severity. For example, a question about sociability
might provide a range of response options describing differ-
ing amounts of social contact during a given time period; a
question about hallucinations might capture the frequency
with which they occur (as opposed to simply whether they
occur). Such questions provide one way to capture dimen-
sional differences among respondents; different response-
scaling options are discussed in more detail later in this
chapter.

In addition to differences in intensity reflected in the re-
sponse options, items themselves are often constructed to tap
different levels of intensity or severity in the manifestation of
a characteristic. Tests have been constructed in this fashion
for many years; for example, the harbinger of standardized
intelligence tests developed by Binet and Simon in 1905 in-
cluded items scaled to capture distinctions at different levels
of intelligence. In recent years, (Hulin, Drasgow, & Parsons,
1983; Lord, 1980) has made important contributions in repre-
senting and utilizing the information inherent in this dimen-
sionality. Item response theory attempts to estimate the value
of an individual on some latent trait using information con-
tained in the responses of specific items. Tests developed
from an item response approach attempt to provide items that
sample information across the entire relevant range of the
construct, rather than including items that optimally make a
given discrimination. Scales that are developed with refer-
ence to an external criterion, such as those on the MMPI, are
examples of the latter approach; if items are selected with re-
spect to a particular discrimination (such as schizophrenic vs.
normal), they will provide only that information that is opti-
mal for that particular distinction. 

To illustrate this issue, consider the hypothetical distribu-
tions of three groups on the construct of thought disorder
shown in Figure 15.1. If items are selected on the basis of
their ability to make a discrimination between two particular
groups (e.g., schizophrenics vs. controls), those items that
provide information at the point of rarity between the dis-
tributions of the two groups on the severity continuum will
be seen as most useful. For the example in Figure 15.1, in
differentiating schizophrenia from normality, items cali-
brated around point A will provide the most information for
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Figure 15.1 Empirical item selection and discrimination.

making this distinction. However, in differentiating schizo-
phrenia from affective disorder, item information should be
maximized around point B. If a scale is intended to be useful
in making a variety of such distinctions, one would prefer a
scale to be composed of items that contain information rele-
vant to discriminations across the entire relevant range—or
the full depth—of the construct. In other words, a scale
should be composed of items sampling information across
the full spectrum of the concept if it is to be able to make a
variety of different diagnostic distinctions. 

As an example, the item response model was used as a
conceptual guide in selecting items for the final version of the
PAI (Morey, 1991a), in an attempt to select items that pro-
vided information across the full spectrum of the concept in
question. Through an examination of the item characteristic
curves of potential items, the final items were selected to
provide information across the full range of construct sever-
ity. The nature of the severity continuum varied across the
constructs on the test; for example, for the Suicidal Ideation
scale, this continuum involved the imminence of the suici-
dal threat. Thus, items on this scale varied from vague and ill-
articulated thoughts about suicide to immediate plans for
self-harm, allowing the examiner to capture information, not
only about the presence of suicidal thinking, but about its
intensity.

Discriminant Validity

A test is said to have discriminant validity if it provides a
measure of a construct that is specific to that construct; in
other words, the measurement is free from the influence of
other constructs. Although discriminant validity has long
been recognized as an important facet of construct validity, it
has not traditionally played a major role in the construction of

psychological tests. This is unfortunate, because discriminant
validity represents one of the largest challenges in the assess-
ment of psychological constructs. 

There are a variety of threats to validity where discrim-
inability plays a vital role. Three of the major areas include
discrimination among constructs, the influence of response
sets and response styles, and the operation of test bias. The
following paragraphs review these discriminant validity is-
sues and discuss potential means of handling the issues.

Discrimination Among Constructs 

This aspect of discriminant validity is a major challenge to
instruments, particularly in the realm of psychopathology.
Psychiatric diagnoses tend to be highly comorbid (e.g.,
Maser & Cloninger, 1990), which in essence means that an
individual manifesting any type of mental health problem is
at greatly increased risk of simultaneously manifesting an-
other such problem. This means that clinical problems are
positively correlated in the population at large, and some
(e.g., depression and anxiety, or the different personality dis-
orders) are quite highly correlated. This poses an obvious
challenge to the discriminant validity of any instrument that
seeks to measure such constructs.

One practice that has compromised the discriminant valid-
ity of many multiscale inventories involves the use of overlap-
ping items, that is, items that are scored on more than one
scale. Overlapping items force a certain correspondence in the
measurement of presumably distinct constructs; thus, the rela-
tionship between scales can be entirely artifactual rather than
representing a true association between distinct characteris-
tics. Given that many constructs are inherently challenging to
distinguish, a methodological handicap such as item overlap is
ill advised. Even where certain constructs may share particu-
lar behavioral manifestations (e.g., social withdrawal), instru-
ment developers should utilize distinct items that capture
manifestations typical of the constructs being considered
(e.g., social withdrawal due to anxiety vs. withdrawal due to
disinterest). Instruments that contain large amounts of item
overlap tend to display considerable discriminant validity
problems (e.g., Welsh, 1952; Retzlaff & Gilbertini, 1987). Ide-
ally, a test should allow no item overlap in order to reduce this
potential source of discrimination problems; each scale should
consist of items loading only on that scale.

There are a number of steps in the development of a test in
which procedures should be implemented in an attempt to
maximize discriminant validity. Items should be written with
particular attention to specificity concerns. Tasks involving
sorting of items into scale constructs can determine whether
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the relationship of item content to appropriate constructs is
ambiguous. Items should also be examined to insure that they
were more highly associated with their parent constructs than
with any other constructs measured by the test (e.g., Jackson,
1970, 1971). Such procedures are reviewed in more detail
later in this chapter.

Response Styles 

Over the past 30 years, the issue of response styles has been
a hotly debated topic in the field of objective psychopathol-
ogy assessment. A classic review of this area by Wiggins
(1962) distinguished among three components of variance
in responding to self-report questionnaire items: strategic,
method, and stylistic variance. Strategic variance is directly
related to the discriminative purpose of the test and is deter-
mined by the subject’s true positioning on the construct of in-
terest. Method variance is affected by structural aspects of
the instrument, such as phrasings of statements, format of
response options, and directionality of item keying. Finally,
stylistic variance consists of response consistencies that exist
independent of the test itself, and notions of such as an ac-
quiescence set or a social desirability set have been proposed
as examples. However, there have been many debates as to
whether the natures of various constructs represent strategic
or stylistic variance in the measurement of personality
(Helmes, 2000). For example, the construct of social desir-
ability has been alternatively interpreted as a tendency for in-
dividuals to endorse unrealistically positive statements when
describing themselves (e.g., Edwards, 1957) or as an indica-
tor of a personality style related to autonomy, extraversion,
optimism, and ego strength (Block, 1965; McCrae & Costa,
1983).

One useful approach involves a consideration of the pos-
sible influence of response styles as an issue of discriminant
validity. In other words, response styles are viewed neither as
totally artifactual contributions to variance to be eliminated
nor as unimportant features to be ignored. Rather, this influ-
ence can be examined at the level of the individual items,
with the aim of eliminating items that seem to measure styl-
istic or method variance to a greater extent than strategic
variance (e.g., Jackson, 1971). From this perspective, re-
sponse styles (either method or stylistic) are treated as inde-
pendent constructs from which measured constructs should
be distinguishable. The idea of eliminating all stylistic vari-
ance from a test was neither desirable nor practical, because
there is no reason to suspect that response styles such as
social desirability will be orthogonal to certain syndromes of
mental disorder or to certain personality traits. The psycho-

logical phenomena experienced by the schizophrenic will
never be seen as socially desirable, whereas the depressed in-
dividual usually manages to see the black cloud surrounding
every silver lining. With discriminant validity as an aim,
however, items can be evaluated to determine whether they
are better measures of their parent constructs than they are of
constructs representing method and stylistic variance. 

Test Bias

One implication of discriminant validity is that a test that is
intended to measure a psychological construct should not be
measuring a demographic variable, such as gender, age, or
race. This does not mean that psychological tests should
never be correlated with age, gender, or race. However, the
magnitude of any such correlations should not exceed the
theoretical overlap of the demographic feature with the con-
struct. For example, nearly every indicator of antisocial be-
havior suggests that it is more common in men than in
women; thus, it would be expected that an assessment of an-
tisocial behavior would yield average scores for men that are
higher than those for women. However, the instrument
should demonstrate a considerably greater correlation with
other indicators of antisocial behavior than it does with gen-
der; otherwise, it may be measuring gender rather than mea-
suring the construct it was designed to assess.

There are a number of procedures for attempting to exam-
ine and identify test bias. Conceptual evaluations of bias can
be accomplished by having a panel of individuals represent-
ing diverse backgrounds (e.g., both lay and professional indi-
viduals, both men and women, of diverse racial and ethnic
backgrounds) review items with regard to any potential for
bias. Empirical strategies for eliminating test bias typically in-
volve the examination of item psychometric properties as a
function of demography. For example, associations between a
given item and its corresponding full scale can be evaluated
using regression models, and items can be selected that dis-
play minimal variation in slope or intercept parameters as a
function of demographic variables (Cleary, 1968). Such
analyses can help identify and eliminate items that have dif-
ferent meanings for different demographic groups. Thus, if an
item inquiring about crying easily seemed to be related to
other indicators of depression in women but not in men, then
that item should not be included on a depression scale, be-
cause interpretation of the item would vary as a function of
gender. Note that this strategy will not eliminate mean demo-
graphic differences in scale scores. For example, an item
inquiring about stealing may have a similar meaning for iden-
tifying antisocial personality characteristics for both men
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and women, yet this behavior may still be more common
among men. In this example, the resulting gender difference
is not a function of test bias; rather, it is an accurate reflec-
tion of gender differences in the disorder. It is important to
recognize that such differences are not necessarily a sign of
bias and that a test with no such differences can in fact be quite
biased.

PROCEDURES IN TEST CONSTRUCTION

Once the test developer has arrived at a well-articulated defi-
nition of the psychological construct to measure, the next
step is to decide how it should be measured. Typically, this
involves a two-step process whereby items are generated by
the developer and then evaluated to determine whether the
items need to be revised or eliminated before the scale is
finalized. In both steps, the definition of the construct serves
as the blueprint for determining how the items should be pre-
sented, the format in which they should appear, and the crite-
ria which should be used to evaluate them.

Item Generation

Items in personality and psychopathology scales typically in-
volve two aspects: a stimulus aspect (e.g., the verbal presen-
tation of an item) and a response method (e.g., answering an
item as either yes or no). For questionnaire methods, item
stems are typically verbal statements or questions, whereas
responses are generally constrained to facilitate scoring.
Although such methods have the advantage of ease of use,
there clearly is a wide array of other forms of assessment. For
example, with respect to stimulus properties, items can in-
volve perceptual material, such as the Rorschach inkblots,
Thematic Apperception Test (TAT) pictures, or Witkin’s Em-
bedded Figures Test; or experimental situations such as the
infamous Milgram (1965) shock experiment, which was orig-
inally designed as a measure of authoritarianism. Similarly,
responses can be open-ended, behavioral, or physiological.
However, most measures involve some verbal presentation of
material and some need for scaling response alternatives. The
following sections describe some issues pertinent to each of
these aspects of measurement, particularly as they apply to
application in a questionnaire format.

Stimulus Properties of Items

Once the construct has been identified and defined and the
major theoretical facets of each construct delineated, items
must be generated to tap these constructs. The first step

involves creating a preliminary pool of stimulus items.
Because a rigorous evaluation of items is likely to reveal con-
siderable variability in the quality of the items, it is recom-
mended that the initial pool of items be considerably larger
than the desired final length of the scale. Eliminating items
from an item pool in sequential evaluation studies is rela-
tively simple, but adding new items to the pool is often not
plausible at later points in the sequence. Although practical
and procedural limitations will vary across types of mea-
sures, the initial pool should at minimum be twice as long as
the desired final scale, and an initial pool five times as large
as the final version provides a more comfortable margin for
selecting an optimum combination of items. 

In generating the initial item pool, it is helpful to keep sev-
eral guidelines in mind. The following sections describe
some of these.

1. Content of items is critical. In generating and revising test
items, it is always best to assume that the content of a self-
report item will be critical to its utility as a measure of some
phenomenon. Items should be written so that the content is
directly relevant to the construct measured by the test. Em-
pirically derived tests may include items on a scale that
have no apparent relation to the construct in question.
However, research over the years (e.g., Holden, 1989;
Holden & Fekken, 1990; Peterson, Clark, & Bennett,
1989) has continually indicated that such items add little or
no validity to self-report tests. The available empirical evi-
dence is entirely consistent with the assumption that the
content of a self-report item is critical in determining its
utility in measurement. This assumption does not preclude
the potential utility of items that are truly subtle (in the
sense that a lay audience cannot readily identify the rela-
tionship of the item to mental health status). However, the
assumption does suggest that the implications of such
items for personality or mental health status should at least
be apparent to experts in these areas if the item is to prove
useful. Thus, the process of item development should be
done with a careful eye cast toward the content validity of
the resultant scale, with respect to both breadth and depth
of the construct, as described previously.

2. Item self-report must capture phenomenology. Good items
should be written to reflect the phenomenology of various
traits and disorders in order to capture the experience of the
person manifesting these constructs. Care should be taken
not to confuse the experiences of the respondent with those
of an outside observer, such as a clinician. For example,
the experience of the paranoid individual is not one of
being unreasonably suspicious, even though this feature
is readily apparent to outside observers and is what is
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clinicians consider to be the core of the disorder. Rather,
the paranoid individual feels surrounded by obstacles and
barriers created by others who may be envious of his or her
potential.

3. Items should be reasonably specific to the construct under
consideration. As described previously, discriminant va-
lidity represents one of the largest challenges in the devel-
opment of a psychological measure. Thus, particular care
should be taken in constructing items to insure that they
capture aspects that tend to be unique or specific to the
construct in question. 

As an example, one of the subscales of the Mania scale
from the PAI is Irritability. The literature indicated that irri-
table mood quality was particularly common in patients
presenting during a manic episode (Goodwin & Jamison,
1990), and so this construct was targeted as a facet of
mania. However, irritability tends to be associated with
many forms of emotional problems—for example, it is
often found in people who are depressed, have somatic
complaints, or have drinking problems. Thus, an item such
as I am irritable might prove to converge reasonably well
with other indicators of mania, but it would likely have
poor discriminant validity. However, extending the item to
make it more characteristic of the form of irritability found
in this disorder can improve its specificity. Thus, extending
this item to something like I get very irritated when people
interfere with my plans captures the relation of the irritation
to the expansiveness and poor frustration tolerance of the
manic individual. Such an expansion can thus provide in-
formation much more specific to the construct in question,
which is likely to enhance discriminant validity.

4. Items should not reflect only the most extreme manifesta-
tions of the trait. If one assumes that there is meaningful
dimensional variability on most constructs of interest in
personality and psychopathology, then it is important to
have items that make discriminations at various points on
this dimension. This fact was described earlier as pertain-
ing to the depth aspect of content validity: Items should
sample across the full range of phenomena associated with
this dimensional variability. Perhaps the best example ap-
pears on ability or intelligence tests, in which questions are
typically ordered across different levels of item difficulty.
Assuming reasonable validity for the items, this variability
of difficulty translates into items that have the capacity to
make distinctions at differing levels of ability; so-called
easy items distinguish those with low levels of ability from
others, whereas so-called difficult items discriminate at
higher levels of ability. The same logic can be applied to
scales measuring personality or psychopathology; items
should capture the less extreme as well as the more

extreme forms of characteristics. A collection of items
written at the extreme end of a trait will be able to identify
only those individuals at that extreme, while making no
valid discriminations among individuals at lower levels of
the trait.

5. The item should not be offensive or potentially biased with
respect to any gender, ethnic, economic, religious, or other
group. Given the wide array of cultural subgroups, it is
difficult to anticipate all possible objections to various
items. A useful strategy in this regard is to have a very di-
verse group of individuals involved in generating the ini-
tial pool of items. In such a strategy, items likely to be
problematic can be discussed and revised prior to the col-
lection of any data, although it is still important to conduct
subsequent data-based evaluations of item bias later in the
development process.

6. The item should be worded simply and unambiguously. In
general, a short and simple item is preferable to one that is
complex and contains multiple clauses. To make a scale
widely applicable, and to ease any subsequent translations
of the scale that might be undertaken, items should be writ-
ten at a very basic reading level, in the 4th- to 6th-grade
range.Also, they should have no more than 10 words if pos-
sible, and 20 words at maximum. Scientific or professional
jargon should be avoided and reframed in everyday lan-
guage terms. Items with conjunctions like and and or make
it more difficult to discern the intent of the respondent from
the answer, and they also increase the probability that the
item can be misinterpreted. No double negations should be
used in an item, and single negations should be avoided
if possible. Also, no “damned-if-you-do, damned-if-you-
don’t” items, such as I have stopped abusing my children,
should be included. The meaning of endorsing an item in a
particular manner (as true, yes, or very much like me),
should be readily apparent.

7. Colloquialisms or slang should be avoided. Although the
use of colloquial terms may appear at first glance to make
the test more accessible to respondents, it typically leads
to problems in broader applications of a scale that are dif-
ficult to anticipate. The popularity of slang terminology
tends to wane quickly, resulting in items that sound dated
or peculiar in a few years. References to local social or
cultural institutions are unlikely to be interpreted similarly
in a different part of the country or world, and difficulties
are particularly likely to arise in attempts to translate a
scale into other languages. For example, the MMPI item I
liked “Alice in Wonderland” by Lewis Carroll proved dif-
ficult to translate into languages such as Chinese, because
few Chinese respondents had heard of, let alone read, this
particular book. Attempts to reword the item with a similar
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book of local importance also prove to be difficult, be-
cause there are numerous dimensions along which to
equate such works, and attempting to provide a close par-
allel proves to be a formidable task. It is simply easier to
avoid using such terminology at the outset of scale devel-
opment than to address these problems subsequently.

Response Properties of Items

Another critical step in test construction involves the selec-
tion of a response-scaling format for the test stimuli. There
are a number of methods for scaling items or combinations of
items; some are simple, whereas others are quite complex.
Simpler formats often have a number of advantages, includ-
ing being easy to score and less likely to be misinterpreted by
the respondent. However, there may also be important advan-
tages to more complex formats. Completing a more complex
scale might be more interesting, particularly for experienced
test-takers. Also, many complex response formats can be
combined later into simple (e.g., dichotomous) scales if this
appears appropriate, whereas the simpler scale cannot be
made more complex after data are collected. Finally, larger
numbers of response options can allow a scale to capture
more true variance per item, meaning that even scales of
modest length can achieve satisfactory reliability. The fol-
lowing sections describe some of the advantages and disad-
vantages of the more commonly used formats.

Binary Summative Method

The binary summative method of item scaling is one of the
most common methods used with objective personality tests.
It involves a scale score that represents the total number of
items endorsed in the direction of the construct; each item is
thus scored 1 if so endorsed and 0 if not endorsed in the critical
direction. The item response options for this scaling approach
are often binary, with yes-no, true-false, or present-absent
being common choices. However, other options are possible
as well; a multiple-choice format (with only one of several al-
ternatives indicating a response in the direction of the con-
struct) is frequently used in this type of scaling.

The binary summative method assumes that all items are
comparable indicators of the construct in question. It has
the advantage of being simple to score, which tends to en-
hance scorer reliability, and in the case of binary response
options, it is also easy for the respondent to understand. The
primary disadvantage is that a limited amount of construct
variance is captured by each item; thus, to achieve adequate
scale reliability, it is typically necessary to include a fairly
large number of items for each construct.

Binary Weighted Method

The binary weighted method of item scaling involves the use
of items that are initially scored in a binary fashion, and then
weighted according to some scaling scheme by their supposed
importance for the construct. For example, a personality char-
acteristic might be noted as either present or absent (binary),
and then a score for that item is added to the scale total that re-
flects the weighting of that characteristic. One well-known ex-
ample of such a scaling method is the Holmes and Rahe (1967)
Social Readjustment Rating Scale, which asked respondents
to indicate whether certain stressful life events had occurred in
the recent past and then weighted these binary responses ac-
cording to Life Change Units derived by the test authors.
Thus, the death of a spouse counts for 100 points in the total
Life Change Unit score, whereas a traffic violation counts for
10 points. In the Holmes and Rahe scale, these weights were
derived by survey; in other applications, weights are some-
times derived empirically, using regression coefficients, factor
loadings, or discriminant function weights.

Unlike the binary summative method, the assumption of
the binary weighted method is that not all items are compara-
ble indicators; some are assumed to be more important than
others and thus are assigned greater weight in determining the
final scale score. In principle, this may seem congruent with
theoretical assumptions; in practice, however, experimenter-
assigned weights often appear to make little difference in the
final result. For example, Skinner and Lei (1980), in studying
the Social Readjustment Rating Scale (Holmes & Rahe,
1967) previously described, found that the total Life Change
Unit score correlated .97 with an unweighted unit scoring
( present-absent) of the questionnaire. Other studies have
suggested that item weightings based upon regression coef-
ficients or factor scores tend to correlate highly with unit-
weighted versions of the scale, with these correlations nearly
always higher than the reliability of the scale. Thus, although
the binary weighted scaling method may appear to offer the
opportunity to capture true score variance more precisely
than the binary summative method, it is not clear that it typi-
cally does so to a significant extent. Any slight gain that does
occur may be offset by greater complexity in scoring and po-
tential scorer reliability problems.

Guttman Scale Method 

The Guttman scale is a unidimensional scaling procedure in
which items have a monotonic, deterministic pattern. The
basic concept is that any individual who endorses an item on
one scale will also endorse items lower on the scale. Thus, the
scale is deterministic in that, if the evaluator knows how a
person answered one item on a scale, the evaluator knows
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how all items lower on the scale were answered (for the strict
Guttman scale, no error in measurement is assumed). The
scale is monotonic in the sense that this determinism works in
only one direction; one does not know how a respondent will
answer any items higher on the scale. For example, consider
the following Guttman scale for social activity:

1. I socialize with others more than
10 times per week. T F

2. I socialize with others more than
7 times per week. T F

3. I socialize with others at least
4 times per week. T F

4. I socialize with others at
least once per week. T F

A person answering true to Item 3 must also answer true
to Item 4; in this sense, the scale is deterministic. However,
one cannot be certain how this person would answer Item 1
or Item 2, and thus in this sense the determinism is monoto-
nic, applying in only one direction.

The Guttman scale is conceptually useful in thinking about
variability of item parameters, but it is generally not very use-
ful in practice. First, the assumption that items are all perfect
indicators of the construct being assessed is questionable,
particularly in the area of personality and psychopathology
measurement. Second, aside from highly artificial construc-
tions such as the scale just presented, it is very difficult to as-
semble items that fit the model. Third, one can construct a set
of items that does fit the model but that is composed of items
that almost certainly do not form a unidimensional scale, sim-
ply by varying the base rate (i.e., the a priori probability) of
endorsing particular items. Finally, the scores provided by
such scales tend to be only ordinal in nature, restricting the
applicability of the resulting measure.

Thurstone-Type Scales

Thurstone attempted to adapt psychophysical methods to the
measurement of attitudinal judgments (Thurstone, 1959). His
work led to a number of important developments in psycho-
metrics, including efforts to develop a method of absolute
scaling whereby respondents could be placed along a fixed
continuum, rather than being scaled against a particular
group. The Thurstone-type scales represent an effort to place
individuals along such a fixed continuum by identifying the
scale values of a number of different items and placing re-
spondents on that continuum according to where agreement
with a particular attitude is expressed. This type of scaling is

nonmonotonic, in that a respondent would be expected to dis-
agree with items above his or her absolute placement on the
scale and to disagree with items below this placement. Thus,
ideally each item tends to receive agreement at only one zone
of the attribute, although in practice the model is probabilis-
tic in the sense that the probability of agreeing with a partic-
ular attitude tends to increase as the scale value of items
approaches the actual scale placement of the respondent, and
tends to decrease as the scale values get further away.

Although the Thurstone-type scale is important in concep-
tualizing how items may vary across some absolute contin-
uum, this approach is rarely used in practice. One shortcoming
is that it is very difficult to find items that fit the scale model.
The pattern of endorsement probabilities is often seen only if
items are double-barreled to cut off individuals higher and
lower on a continuum; such an item might be I like to go to
parties once in a while, but not too often. Interpretation of
responses to items phrased in this manner can be ambiguous,
because some respondents might be responding primarily to
the first part of the statement whereas others might be re-
sponding to the second part. Also, finding items that fit the
model toward the extremes of the scale can be particularly dif-
ficult. As a result, Thurstone-type scales are difficult to con-
struct and not commonly used in personality and clinical
measurement.

Rasch Scaling and Item Response Theory 

The item response models are to some extent a combination
of the Thurstone and Guttman approaches to item scaling.
These models are based upon the item characteristic curve
(ICC) that relates probability of endorsement to absolute
scale placement of the respondent; they are thus monotonic
(at least for valid items) like the Guttman scale, but proba-
bilistic and theoretically distribution free, resembling the
Thurstone approach in these respects. The Rasch approach
models the ICC with one parameter (the difficulty parame-
ter), whereas two- and three-parameter models (incorporat-
ing discrimination and chance or guessing characteristics of
items) are also used. In all three approaches, items may be
scaled by examining the item information function, which is
a function of the first derivative of the modeled item charac-
teristic curve. Each item thus contributes information toward
making distinctions along the continuum of the latent trait;
some items (e.g., those with high endorsement rates) may
make this distinction best at the low end of the continuum,
and others (e.g., those with low rates of endorsement) may
discriminate best at the upper ranges of the trait. In this fash-
ion, individuals are scaled according to the information
contained in the patterns of items endorsed.
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Likert Scaling Method

The Likert (1932) scaling method involved the use of five-
point anchored response choices for a particular item in
which each item received a scoring weight from 1 to 5 de-
pending upon the response selected. Items for a scale were se-
lected by examining relationships with the total scale score
(e.g., item discrimination or item-total correlations), and
items displaying the greatest internal consistency were re-
tained for the final version of the scale. Scale scores were then
derived when the total of the item weights was summed. In
practice, the term Likert scale has come to signify nearly any
type of item with nonbinary, graded response alternatives.

Unlike the binary weighted scaling approach, in which the
variable item weights are determined by the experimenter,
Likert scales use item weights that are dependent upon the
respondent’s behavior. Because of this, the Likert approach
can (and often does) improve the reliability of a scale by cap-
turing more respondent variability per item, particularly with
scales composed of relatively few items (Comrey, 1988). Use
of this approach can increase the depth of content validity,
because each item can capture differences in the intensity or
severity of the measured characteristic. If a scale relies upon
one or two items, it is recommended that many response al-
ternatives along the scale be offered. Guilford (1954) re-
ported that reliability increases as a function of the number of
scale steps, rapidly up to roughly 7 response alternatives, and
beginning to asymptote at about 11 alternatives. Nunnally
(1978) describes studies that suggest that overuse of a scale
midpoint may constitute a response style that may decrease
scale reliability; consequently, use of an even number of al-
ternatives may be preferable because it eliminates use of a
scale midpoint and facilitates subsequent dichotomization of
responses, if desired.

Forced-Choice Method

The forced-choice method (e.g., Edwards, 1957) requires the
respondent to select between response alternatives that differ
in their relationship to the measured construct but are equated
with respect to some nuisance variable. Typically, this nui-
sance variable is social desirability. For example, the EPPS
(Edwards, 1959) attempted to equate item response alterna-
tives based upon indicators of desirability, such as their desir-
ability ratings in a representative group, or the frequency with
which an item is endorsed in such groups. The effectiveness of
this approach was controversial, with a number of potential
shortcomings described. First, the social desirability of a re-
sponse may be strongly tied to the context of evaluation; for
example, the personality traits perceived as desirable for a

police officer and a librarian may be quite different. Thus, the
use of universal ratings to equate items is unlikely to work
across different contexts. Furthermore, it is not clear that use
of the forced-choice procedure yields results that are appre-
ciably different from those obtained under a free-response
format (Lanyon, 1966). The forced-choice format also poten-
tially loses information about the absolute strength of the
characteristic; for example, asking an individual whether
he or she would rather hallucinate than contemplate suicide
yields little information about the likelihood that the respon-
dent would do either. Finally, for many personality or psy-
chopathological characteristics, social desirability is not a
mere nuisance variable, but represents a valid aspect of the
construct. For example, many symptoms of schizophrenia or
of antisocial personality are inherently undesirable, so efforts
to remove variability associated with social desirability are
likely to remove valid variance from the scale. Even for per-
sonality traits that fall within more normative ranges of func-
tioning, it has been suggested that social desirability
represents a substantive dimension of personality (McCrae &
Costa, 1983). Perhaps because of such shortcomings, the
method has seen little use in recent years, despite its inclusion
on some widely used personality measures (e.g., the Myers-
Briggs Type Indicator).

Rank-Order Methods

Ranking response-formats ask the respondent to rank a series
of items or statements according to some characteristic, typi-
cally along dimensions such as personal preference or the ex-
tent to which the statement is descriptive of the respondent.
On such ranking scales, the score for an item is typically the
rank selected for the statement. Number of ranked statements
can vary; the standard forced-choice method is essentially
a rank-order method with two statements being ranked,
whereas other rank order procedures may involve ordering of
more than 100 statements. To facilitate comparisons with such
large numbers, some investigators use a Q-sort technique, in
which respondents are asked to sort statements, provided on
cards, into piles that conform to the normal distribution. For
example, participants would place a relatively large number of
statements into a middle pile (which might be labeled some-
what like me), while assigning a few statements to the ex-
tremes (e.g., not at all like me or very much like me). Even
where items are not sorted into a normal distribution by the
participant, they can be converted to z scores based upon the
percentile score of the rank ordering (Guilford, 1954).

Alternatively, Guilford (1954) has also suggested a
paired-comparison ranking method, whereby each stimulus
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Figure 15.2 Iterative stages in test development.

statement is paired with every other statement, with the score
for a particular statement indicated by the number of times
that the statement was selected. Because the number of pair-
wise comparisons increases exponentially with additional
statements, this method quickly becomes impractical with
larger items sets.

Rank-order techniques are primarily interpretable as ip-
sative measures, meaning that they are most informative in
making comparisons within an individual rather than across
individuals. As such, they are most often used in examining
change within a particular individual; for example, Carl
Rogers popularized the use of the Q-sort technique as a
means of describing changes occurring with psychotherapy.
However, the rank-ordering techniques are problematic for
making absolute comparisons among individuals; there is no
way of knowing whether a person who ranks a particular
statement first actually has more of that characteristic than
another person who ranked it third. Where comparisons
across subjects are desired, or where inferences about ab-
solute standings of subjects are being drawn, alternatives to
rank-ordering approaches should be considered.

Item Evaluation

After decisions about test format and response options have
been made and an initial pool of test items has been developed,
the next step typically involves an effort to refine the measure
by selecting only the best items for inclusion on the final ver-
sion of the scale. However, there is no consensual way to iden-
tify the so-called best items on a scale, nor should there be. In
selecting items, it is important to consider that no single quan-
titative item parameter should be used as the sole criterion for
item selection. An overreliance on a single parameter in item
selection typically leads to a scale with one desirable psycho-
metric property and numerous undesirable ones. By recogniz-
ing this, the application of the construct validation approach
can avoid the many pitfalls associated with naive empiricism
in test construction. In general, the test developer has the goal
of including items that strike a balance between different de-
sirable item parameters, including content coverage as well as
empirical characteristics, so that the resulting scale can be use-
ful across a number of different applications.

Because the construct validation approach emphasizes
theoretical as well as empirical strategies of test construction,
strategies for selecting items should include both conceptual
and statistical investigations. It is not necessary that all of
these evaluation strategies be applied simultaneously in se-
lecting items; for example, Figure 15.2 presents a sequential
strategy for item selection of the type used in constructing the

PAI (Morey, 1991a). In this strategy, the developer begins
with an initial pool of items that is 10 times larger than the
target length of the final instrument, then successively win-
nows down this pool using different samples and different
selection criteria. The sections that follow describe some use-
ful such criteria for assessing the quality of items on a scale.

Conceptual Evaluation of Items

As mentioned previously, implicit in the construct validation
approach is the assumption that the content of a self-report
item is critical to its utility as a measure of a subjective phe-
nomenon. Thus, the first stage of evaluation of an initial item
pool often consists of studies of the conceptual meaning of
item content, preceding any actual data collection from rep-
resentative respondents. The following procedures are com-
monly employed in these early stages of item evaluation.

Content Evaluation Ratings

One commonly employed method of evaluating items is to
obtain ratings of item quality from individuals familiar with
the theoretical domain being measured. It is critical that these
raters be given a clear and precise definition of the construct
that the items are intended to measure; if there are important
facets to the construct, each facet should be defined as well,
and the item ratings should be grouped by facet. In these de-
finitions, examples of the characteristics of individuals high
and low on the construct might be given. Also, some differ-
entiation of the construct from related but conceptually dis-
tinct concepts should be provided as a means of underscoring
the importance of discriminant validity to the raters. If possi-
ble, raters should be encouraged to provide feedback on
items that were rated as being of low quality, because such
feedback may be useful in revising the item or in identifying
other potential problems with the scale.
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Bias-Panel Review

A second conceptual study of potential items involves the use
of bias review panels, often helpful in identifying items that
might be interpreted in different ways depending upon demo-
graphic or cultural factors. Every proposed item for a scale
can be reviewed by people from a wide variety of back-
grounds, both culturally and professionally. The items should
be reviewed in the context of the intended construct; for ex-
ample, items can be presented as supposed indicators of emo-
tional problems, and people from different backgrounds
offered an opportunity to raise objections to this explanation
of the item. Such bias-panel reviews can reveal interesting
and unintended interpretations of items and can circumvent
later problems. Again, having these individuals provide feed-
back on any problem items provides information that can
serve as a guide to revising the items.

Blind Sorting Tasks

Another conceptual item evaluation involves the use of ex-
ternal experts in specific fields to appraise items via a blind
sorting of item content. A similar procedure, described as
“back translation” (Smith & Kendall, 1963), involves using
informed judges who were not involved in writing the items
to assign the items back to the hypothesized categories. For
example, in the construction of the PAI (Morey, 1991), an
expert sorting task was used to assess the appropriateness of
item content as assessed by a panel of experts in psy-
chopathology; each of these experts was internationally rec-
ognized in the assessment of constructs relevant to those
measured by the instrument. Preliminary items were divided
into contrast groups composed of items from scales on which
discriminations were thought to be particularly difficult; for
example, the items concerning schizophrenia and anxiety-
related disorders were placed within the same contrast group
to determine whether the experts could distinguish items tap-
ping schizophrenic social detachment from those tapping
heightened social anxiety and phobic avoidance. The per-
centage agreement among the experts in such studies can be

helpful in determining whether the content of items can be
reliably interpreted by leading experts in the field.

Empirical Evaluation of Items

The second aspect of item evaluation involves examining the
psychometric properties of items in samples obtained from
representative respondents. Because of the time and effort
involved in obtaining samples that are sufficiently large to
provide stable estimates of important psychometric parame-
ters, it is often most efficient to use the results of conceptual
analyses of items (as described previously) to narrow the
pool of potential items before gathering these data (although
small runs of pilot subjects can be useful in the early stages of
scale development to identify problems with administrative
aspects of the scale, such as in the instructions or in the
response format).

There are a number of empirical properties that may be
desirable for certain purposes in a scale, and the scale devel-
oper should examine many of these properties for each item
in a variety of different samples, to the extent that this is pos-
sible. In doing so, the investigator is likely to make a disqui-
eting discovery—that many of these supposedly desirable
psychometric items are unrelated or even inversely related!
For example, test sensitivity and test specificity are both
desirable test properties, and it is well known that each can
be altered through changing the cutting scores on which
decisions are based (Meehl & Rosen, 1955). Unfortunately,
changing the cutting score affects these two desirable test
properties inversely—for example, lowering a cutting score
will tend to raise sensitivity but lower specificity. Similar ef-
fects may be noted at the level of individual items: Those
items that are highly sensitive to the presence of some char-
acteristic are often not specific to that characteristic. Other
desirable but inversely related psychometric properties are
also commonly encountered; for example, items that evi-
dence good convergent validity tend to demonstrate rela-
tively poor discriminant validity. As an example, Table 15.1
lists various item characteristics for five hypothetical items;
of these items, Item 4 actually appears to be the most

TABLE 15.1 Empirical Item Characteristics for Five Hypothetical Binary Items

Selection Criterion

Item 1 2 3 4 5

Item difficulty (endorsement rate) .10 .22 .37 .48 .45
ICC discrimination threshold +2.0 SD +1.3 SD +0.4 SD −0.2 SD −0.3 SD
Item-total correlation .21 .32 .45 .67 .65
Average discriminant validity (r) .03 .17 .21 .48 .37
Response-set manipulation F value 14.54 3.21 1.07 0.56 0.75
Squared multiple correlation .18 .21 .27 .78 .61

schi_ch15.qxd  8/7/02  12:22 PM  Page 394



Procedures in Test Construction 395

expendable item despite having the highest item-total corre-
lation of the five items under consideration. Despite this
one desirable property, it appears to provide information in
the same range of the construct as Item 5, but with less dis-
criminant validity and contributing less unique information
(squared multiple correlation) to the measure. In contrast,
Item 1 has a low item-total correlation but provides a useful
indicator of the higher range of the construct (with corre-
spondingly attenuated correlations) and does so with good
discriminant validity.

Thus, the goal for selecting items is to include items that
strike a balance between different desirable item parameters,
while avoiding an overreliance on a single parameter as the
criterion for item selection. The following psychometric pa-
rameters are often useful considerations in selecting test
items.

Item Distributions Across Different Samples

In selecting items, the first step generally is to examine distri-
butions, involving endorsement frequency or item difficulty
(for binary items) or item means, standard deviations, and
skew (for graded items). These distributions should be exam-
ined to determine their properties in samples that might be
expected to vary with respect to the construct of interest;
thus, for a depression measure, it would be important to ex-
amine the distributions of items in community and clinical
samples. Also, it can be useful to compare distributions in
samples that would not be expected to differ. For example, if
there is no reason to suspect true gender differences in the
construct, different item distributions in men and women
might suggest problems in the item.

In general, it is important that there be some variability in
the item when examining a sample suspected to be heteroge-
neous with respect to the construct. Items with markedly un-
balanced or skewed distributions will appear problematic in
correlational studies of item validity, because the extreme
base rates can make such correlations unstable and severely
attenuated due to restriction of range. Nonetheless, it is criti-
cal to interpret such distributions in light of the sample in-
volved, the nature of the construct, and the place of the item
in that construct. For example, items with an endorsement
frequency of 1% might appear to be of little use in measuring
differences between people. However, it is important to rec-
ognize that this requirement must be considered in the con-
texts of the sample and of the construct. Such an endorsement
frequency might well be expected for an item indicating
high-intensity symptoms of schizophrenia if the sample was
selected at random from the community, because this is
roughly the prevalence rate for this disorder.

As has been noted earlier, it is typically advantageous to
select items that discriminate along different points on a con-
tinuum when attempting to measure a continuous construct.
For example, item response theory relies upon the parameters
of the ICC to select items for this purpose. In practice, this
yields items that tend to have distributions that are quite vari-
able. Thus, in addition to avoiding item distributions that
are too extreme, the developer should also try to avoid item
distributions for a particular scale that are too similar, be-
cause this might be an indication that all items are providing
information about the construct at the same point on an inten-
sity or severity continuum. Such a concern is less an issue for
responses presented on a continuum (e.g., Likert-type scales)
than for dichotomous (binary) scaled items, because the con-
tinuous nature of the former provides some allowance for dif-
ferences in intensity for each item.

Item-Total Correlations/Factor Analyses

This commonly used family of item parameters examines
patterns of interitem correlations for item selection. Often,
developers examine the corrected part-whole correlation of
the item, reflecting the correlation of the item with the sum of
other items from the same scale; the correction thus removes
the artifactual contribution of the item to the total scale score.
Typically, items with negative values or values near zero are
considered problematic if obtained in samples with reason-
able variability in the construct in question. Scales that use
this as the sole criterion for item selection typically will
demonstrate high internal consistency (i.e., high K-R 20/
coefficient alpha).

Another related strategy involves the factor analysis of
item intercorrelation matrices, with an examination of the
factor loadings serving as the basis for item selection. Such
factor analyses can involve the use of either exploratory or
confirmatory methods, but each is typically conducted to
evaluate the hypothesis that the item set is unidimensional.
In applications of factor analysis for scale construction, it is
typical to retain items displaying a standardized factor load-
ing above some threshold (often .40) for inclusion on the
scale. As is the case with the use of item-total correlation,
reliance upon factor analysis for item selection results in
scales that demonstrate high internal consistency—in fact,
coefficient alpha is functionally related to the eigenvalue of
the first component extracted from item intercorrelations.
However, the factor-analytic approach has the added advan-
tage of potentially identifying problems in discriminant
validity, because other factors may emerge from the analy-
ses and certain items may display multiple high loadings,
suggesting ambiguity in interpretation of the item.
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These types of item selection criteria can lead to the “at-
tenuation paradox” (Loevinger, 1957) whereby increasing
item intercorrelation through the inclusion of redundant (and
hence highly correlated) items will decrease validity for mea-
surement of complex constructs. Overemphasis on item in-
tercorrelation can also impair the ability of a scale to capture
depth as well as breadth in content validity, as described pre-
viously. Waller (1999) gives an example in which factor
analysis segregates items that reflected a unidimensional con-
struct onto different factors, as a function of differing item
difficulties. Thus, overreliance on factor loadings in that in-
stance would have led to retaining only those items with
highly similar item difficulties—a problematic outcome, as
noted before. 

Suggestions for the recommended magnitude of average
item intercorrelations tend to vary widely, ranging from .15
to .50 (Briggs & Cheek, 1986; Clark & Watson, 1995). In
general, averages for broad constructs typically fall in the .15
to .30 range. As the average item intercorrelation begins to
increase above .40, the measurement of the construct is be-
coming quite narrow, and it is generally advisable to keep this
average comfortably below .50 unless the scale is quite brief
and highly specific in nature.

Squared Multiple Correlations

As a check upon the possible operation of the attenuation
paradox just described, the developer can calculate the
squared multiple correlation between each item and all other
items from the same scale. Such values are useful in identify-
ing highly redundant items, because the response to a redun-
dant item should be easily predicted from other items in the
scale. To maximize the efficiency of the scale, the ideal item
should be consistent (but not redundant) with other items
from the same scale. Where these values are large (e.g.,
higher than .70), individual item intercorrelations should be
examined to isolate redundancies; where two items are
highly redundant, the better of the two items on other para-
meters can be retained, increasing efficiency without losing
any additional information.

Item Characteristic Curve Parameters

As mentioned earlier, ICCs can be modeled by a logistic
ogive defined as having up to three parameters. These three
parameters include the point of inflection of the curve (some-
times referred to as the threshold or difficulty parameter),
the slope at this point of inflection (the discrimination para-
meter), and the intercept of the logistic function (the guess-
ing parameter). Although up to three parameters may be

estimated, the most commonly used procedure involves a
one-parameter, or Rasch, model (Rasch, 1966) that focuses
only upon the threshold parameter. In this model, only re-
spondent ability is assumed to affect responses—items are
assumed to be equally discriminating, and guessing is as-
sumed to have no influence upon responses. When a two-
parameter item response model is used, typically the
guessing parameter is excluded and item threshold and item
discrimination are each estimated. In personality and psy-
chopathology, one-parameter and two-parameter models are
most useful because the concept of guessing typically has lit-
tle meaning outside the area of ability testing. With respect to
the threshold parameter, it is advisable to select items whose
estimated thresholds fall along the full range of the construct,
so that the resulting scale can provide discriminations in a
wide range of applications; in a one-parameter model, this
can be achieved by selecting items with varying levels of
item difficulty, as described previously. For the discrimina-
tion parameter, the desired values may vary according to the
function of the scale. For example, adaptive testing, which
uses item response theory to tailor test questions to a respon-
dent by selecting the most informative item as estimated from
previous responses, works most efficiently when items are
sharply discriminating (i.e., have steeper slopes at the point
of inflection). On the other hand, a scale with relatively few
items may be able to achieve a more even assessment across
the continuum by selecting items with a less steep (although
still positive) discrimination slope.

Although item response theory is most typically applied to
scaling items with binary scoring, models have also been
developed for items with graded response options, such as
Likert-type scaling (Samijema, 1969). The Samejima graded
response model treats the graded item as a series of di-
chotomies, and models the resulting item information as a
function incorporating the component ICCs for these
dichotomies. For example, an item rated on a scale of 1 to 4
has three such dichotomies—response 1 versus responses 2,
3, and 4; responses 1 and 2 versus 3 and 4; and responses 1,
2, and 3 versus response 4. The use of the graded approach
introduces additional complexities to the interpretation of the
results, and a simpler (although less informative) alternative
is to dichotomize the graded items in some fashion. In order
for the results to be meaningful, the same dichotomizing
strategy should be employed for all items on the scale (e.g.,
responses above vs. below the midpoint of the scale). Also,
the dichotomy must be drawn based upon the raw responses
rather than on any distributional properties of the items, such
as a median split. The latter approach would artificially force
all items to appear as if they had similar item difficulties and
would seriously distort the estimation of the item parameters.
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Operation of Response Styles

The operation of response styles in measures of personality
and psychopathology has been a source of concern for many
years. For example, efforts to circumvent operation of a
social-desirability response style have included strategies
such as the forced-choice response format of the EPPS, and
the K correction of undesirable characteristics on the MMPI.
However, as noted earlier, many of these strategies create
more problems than they solve, particularly when they are
based upon the assumption that substantive aspects of
personality and psychopathology are independent of social
desirability. The construct validity approach postulates that
substantive constructs may be conceptually independent but
still correlated with social desirability. Thus, control of this
response style becomes a discriminant validity issue, with the
developer seeking to insure that the item is a better measure
of the substantive domain than of desirability responding. In
constructing the Personality Research Form, Jackson (1971)
used a differential reliability index to examine this discrimi-
nant validity issue, which is computed as follows:

(
r2
is − r2

id

)1/2
,

where the first term reflects the corrected item-total correla-
tion of the item with its parent content scale, and the second
term reflects the correlation of the item with a scale measur-
ing social desirability. Thus, the larger the difference between
these values, the greater the content saturation of the item and
the better the discriminant validity of the item with respect to
social desirability. Items are candidates for deletion if the
correlation with any such scales approaches or is larger than
its corrected part-whole correlation with the parent construct.

Impression Management and Item Transparency

Another approach to examining stylistic aspects of item re-
sponses involves studying the influence of experimentally in-
duced response sets. Items that are more transparent with
respect to evaluative valence will demonstrate a larger effect
of response sets designed to simulate positive or negative im-
pression management. Including items with varying trans-
parency on a scale may be useful for evaluating impression
management issues; for example, a comparison of subtle and
obvious item content on the MMPI has long been suggested
for such purposes (Dubinsky, Gamble, & Rogers, 1985).

If such concerns are an issue for the construct under con-
sideration, the transparency of items can be investigated. Pre-
liminary items on the PAI (Morey, 1991) were evaluated for
transparency by examination of the F value of an ANOVA

between naive subjects in standard, positive impression, and
malingering instructional conditions. Larger F values indi-
cated more transparent items, suggesting that responses to the
items could be affected by an examinee’s attempts to distort
his or her profile in either a positive or negative direction.
However, because many key symptoms of mental disorder
(such as hallucinations) are easily identified by a naive
subject as pathological, transparency alone should not be
grounds for deletion of an item from a clinical instrument.
Furthermore, the validity of subtle versus obvious distinc-
tions for identifying impression management is clearly ques-
tionable (Hollrah, Scholttmann, Scott, & Brunetti, 1995).
Although item transparency should never serve as a principal
consideration in item selection, insuring a range of trans-
parency may make future research on the topic possible.
Thus, where items are equivalent in other respects, develop-
ers may seek to include both transparent and nontransparent
indicators of a construct.

Acquiescence and Related Sets

Acquiescence refers to the tendency to agree with personality
items as being accurate self-descriptions, regardless of the
content of the particular item. Similarly, a nay-saying set can
emerge in clinical instruments, whereby respondents display
a set to deny any symptoms regardless of their specific na-
ture. It has become standard practice to address the operation
of such sets by balancing the number of true- and false-keyed
items. However, this procedure does not insure that the influ-
ence of acquiescence has been removed from the scale, as the
psychometric properties of the true- and false-keyed subsets
of items can (and often will) be different (Jackson, 1967).

Although item content is generally found to be a much more
powerful determinant of test results than such response sets
(Koss, 1979), some variation in direction of response keying
of items is advisable to insure that stimulus items are attended
to carefully and that some perseverative response set does not
emerge. The operation of response sets on a multiscale inven-
tory can be examined by calculating a score based upon the
frequency of use of different response alternatives (Morey,
1991). These scores may then be considered as discriminant
validity indicators; items should expected to demonstrate
higher correlations with other items from their own scales than
with any such indicators of response set tendencies.

Discriminant Validity Correlations

As noted earlier, discriminant validity is one of the most
difficult properties for a measure of personality or psy-
chopathology to achieve. The discriminant validity of an
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instrument can be greatly enhanced by the use of discrimi-
nant validity correlations as parameters in item selection. In
doing so, the greatest potential threats to discriminant valid-
ity of the scale should be considered, and the correlations of
potential items with indicators of these discriminant con-
structs be determined. Items should be related to the other in-
dicators of the parent construct (i.e., convergent validity) to a
greater extent than to any other construct. It should be as-
sumed that an item that demonstrates sizable correlations
with measures of other constructs will have discrimination
problems. Thus, items are candidates for deletion if they
demonstrate greater correlation with other scales than with
their own scales, or if they are highly correlated with a num-
ber of other scales in addition to their own. Jackson’s (1971)
differential reliability index, described earlier, provides a
useful metric for making this discriminative evaluation; how-
ever, rather than comparing the corrected item-total correla-
tion to a correlation with an indicator of social desirability,
in this index the latter is replaced by correlations with other
potential threats to discriminant validity.

Item Bias Analyses

One particularly important threat to test validity is the possi-
bility that some demographic feature may serve as a modera-
tor of test validity. Such a situation can lead to applications of
the test that may be biased in some manner. Often, a first step
in evaluating this possibility is to look for significant demo-
graphic differences in item endorsement. For example, mean
endorsement frequencies for items can be examined to deter-
mine whether large disparities exist as a function of gender,
race, or age. However, it is important to point out that different
endorsement rates are neither sufficient nor necessary evi-
dence of item bias. Items can be biased with equivalent en-
dorsement rates between groups, and they can also be
unbiased where observed item differences are indicative of
actual group differences on the construct. It is not necessary in
all instances to equate mean values across demographic fea-
tures, because certain characteristics are in fact associated
with such variables. For example, it is well established that an-
tisocial personality is more frequently observed in men than in
women, and also more common in younger than in older
patients—as a result, attempting to equate mean scores of
these groups would not yield results reflecting the true nature
of the disorder. However, in the absence of well-established
demographic relationships for a construct, items with no
demographic differences are preferable over those with dis-
cernible differences.

Rather than focus upon endorsement frequency of an item,
efforts should be directed at insuring that items are equally

useful indicators of the construct across different demo-
graphic groups. This process typically involves comparing
the psychometric performance of the item across groups as
gauged against some validity criterion. In some instances, the
criterion may be external to the test (as with a widely ac-
cepted alternative measure of the construct, or a specific cri-
terion behavior), but can also involve a criterion derived from
internal test properties, such as the total scale score. One such
approach involves a comparison of ICCs across demographic
group membership. Item response theory can be used to esti-
mate item parameters separately for the groups of interest,
and the resulting parameters should be linearly related across
groups (Allen & Yen, 1979). Items whose parameters are not
linearly related are potentially biased and can be revised or
deleted from the test. For graded response options, another
commonly employed method involves the use of regression,
whereby some criterion (total test score, or an external valid-
ity indicator) is regressed upon the item response (e.g.,
Cleary, 1968). Unbiased items should display identical slope
and intercept parameters across demographic groups; differ-
ences in the slope of the regression line suggest differential
item validity in the groups, whereas differences in the inter-
cept may point to problems in test fairness that may require
the use of demographic-specific norms to correct. Regardless
of whether ICC or regression approaches are used, items that
demonstrate parameters differing significantly across demo-
graphic groups are potentially biased and should be targets
for deletion.

Some authors have proposed the use of factor analysis to
investigate consistency of item validity across demographic
group membership. For example, differences in factor load-
ings might be observed in one group versus another, suggest-
ing that the meaning of item endorsement might differ in
these groups. However, true frequency differences among de-
mographic groups can result in factor solutions that are not
invariant; for example, the factor structure of a measure of
antisocial personality might look quite different at different
ages, because of restriction of range in the construct among
older respondents. Using a criterion of factorial invariance
across populations for item selection is probably most useful
when no population differences on the construct are either
expected or observed.

TEST VALIDATION AND EXTENSION

The final step in the construct validation strategy of test con-
struction involves the gathering of evidence of validity, as
gauged against expectations derived from the theoretical
nomological network. The validation is never complete, but
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rather is an ongoing process that provides feedback that is
important in refining the use and interpretation of the test.
Typically, the test developer is called upon to provide evi-
dence of the reliability and validity of the test, but neither is
truly a property of the test itself; they are properties of the
resulting scores in a given application of the instrument. Fur-
thermore, reliability and validity are not distinct, but are
simply both elements representing nodes in the aforemen-
tioned nomological net. The following sections briefly dis-
cuss some applications of these constructs, and some
potential pitfalls.

Reliability

In classical test theory, reliability is considered to be a criti-
cal aspect of an instrument inasmuch as it is interpreted as
“freedom from random measurement error,” and thus as a
constraining factor on validity. From this framework, mea-
surement error is assumed to be random, and the reliability
coefficient can be interpreted directly as the percentage of
variability in performance that could be attributed to variance
in the true scores of the individuals tested. A test-taker’s ob-
served score on a measure is thus interpreted as reflecting a
combination of the person’s true score and the influence of
random measurement error; tests with lower reliability have a
larger contribution of error to determining the observed score.

Estimating the reliability of a measure is typically per-
formed by varying some nonsubstantive facet of the scoring
process to evaluate its impact upon the consistency of scores
observed. There are four widely used methodological ap-
proaches to gathering these estimates. Test-retest reliability
examines the consistency of scores obtained on two different
occasions; thus, time is the facet varied using this approach.
Internal consistency reliability examines the consistency of
scores obtained using different subsets of items from a par-
ticular scale; this approach varies items as a potential facet of
error. Alternate-forms reliability, less widely used in the field
of personality and psychopathology, examines the consis-
tency of scores across different (but supposedly equivalent)
forms of the same test, with form as a potential source of
measurement error. Finally, scorer reliability refers to the
consistency of scores resulting from an application of the
scoring process; for example, differences in scores assigned
by different raters would reflect error associated with the
facet of rater.

One important extension of classical test theory is gener-
alizability theory (Cronbach, Gleser, Nanda, & Rajaratnam,
1972), which decomposes the different sources of error vari-
ance in a reliability design, allowing the test evaluator to
specify the possible facets of measurement error more

precisely. Generalizability theory represents a significant
advance over classical test theory, because it recognizes that
reliability depends upon a number of possible different con-
ditions of measurement, such as time, items, or raters, as
noted previously. This approach is particularly useful to the
test developer because it can point out strategies to improve
reliability estimates. Regardless of whether a classical or
generalizability approach is used, it is important to examine
critically the assumption that the error associated with the
different sources or facets are indeed random and do not
reflect substantive constructs. These assumptions must be
understood as part of the nomological net that provides the
theoretical articulation for the construct. The following sec-
tions discuss some of these issues as related to specific
procedures for estimating reliability.

Test-Retest Reliability

Any test-retest reliability study must take into account the
theoretical stability of the construct in evaluating the mean-
ing of reliability estimates. For example, assumptions about
temporal stability in the measurement of mood may be quite
different from those assumptions made in measuring intelli-
gence, yet many textbooks fail to differentiate such concepts
when discussing optimal levels of reliability for a test. 

Although personality traits are typically assumed to be
stable over time (an assumption itself the source of some con-
troversy, as witnessed by the debate triggered by Mischel’s
1968 book), constructs in psychopathology are diverse with
respect to temporal stability. Some constructs refer to states
that can be quite fleeting (e.g., acute suicidal ideation, or
transient psychotic phenomena in borderline personality),
whereas others may involve traits that can be stable over
many years (e.g., social deficits in schizophrenia). To further
complicate matters, test-retest reliability estimates of clinical
phenomena conducted in clinical settings are typically con-
founded with treatment received during the retest interval,
because it is ethically problematic to withhold treatment for
the purposes of establishing reliability. Alternatively, reliabil-
ity studies of such measures are often conducted with non-
clinical samples, but this creates a problematic restriction of
range; variances in measures of clinical constructs will be
smaller in normal than in clinical samples and this restricted
variance will attenuate all (including reliability) correlations
with scale scores. Given the diverse range of phenomena that
the psychopathologist might measure, no single, optimal
stability value can be applied equally to such theoretically
differing constructs. Textbooks often mistakenly suggest a
minimum guideline for test-retest reliability without an
adequate specification of the nature of the construct and the
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conditions of measurement under which the estimate will
be obtained.

Internal Consistency

It is also critical to examine the assumption of nonsubstantive
facets of error when examining the method of internal con-
sistency as an estimate of reliability. Internal consistency is
typically measured by splitting the items of a multi-item
scale into two parts and determining the correlations between
the parts; hence the use of the term split-half reliability to
describe this technique. Because the approach depends upon
the particular split of items involved (e.g., correlating odd
and even items will not necessarily give the same result as
correlating the first and last halves of items on the scale),
estimates of the results of all possible split-half combinations
of items can be provided by the K-R 20 formula or by coeffi-
cient alpha, the generalized form of K-R 20 for nonbinary
items with calculable item variances. These numbers are a di-
rect function of the average item intercorrelation and the
number of items on the scale; higher values for either lead to
higher estimates for coefficient alpha.

Conceptually, coefficient alpha is simply a summary met-
ric of the equivalence of items, and once again any dis-
tinctions between items are assumed to reflect random
measurement error. However, there are problems with as-
suming (or even desiring) item equivalence. Loevinger’s
classic 1954 article on the attenuation paradox pointed out
that high interitem correlations can constrain validity (al-
though they may maximize internal consistency) by narrow-
ing the measurement of complex constructs through a focus
upon redundant, albeit valid, variance. As noted previously,
the paradox is that, while under the assumptions of classi-
cal test theory, reliability is considered to be a necessary con-
dition for that sets an upper bound for validity. Loevinger
points out that interitem correlation is not conceptually nec-
essary, and that it can, in fact, lower validity. This lowering of
validity tends to work through the mechanism of reducing
content validity, because highly redundant items cannot cap-
ture a broad range of phenomena that might be associated
with a complex construct.

There are other instances in which content validity can be
compromised by the assumption of item equivalence. One
such example is provided by item response theory, whereby
items are selected to provide information at differing points
on the trait continuum, and thus are specifically assumed
not to be equivalent. Internal consistency is also influenced
by the composition of the sample in which it is determined:
Item intercorrelation should be lower in samples that are
homogeneous on the trait, and higher in heterogeneous

samples. In fact, this variability of item intercorrelation
serves as the basis of some quantitative efforts to identify the
taxonic status of a construct, such as the MAXCOV method
(Meehl, 1986). Finally, Cronbach and Gleser (1964) discuss
the bandwidth-versus-fidelity trade-off inherent in scale
construction; a developer who wishes to construct an efficient
instrument with a broad bandwidth, such as a measure that
screens for a wide variety of quite distinct physical or psy-
chological problems, often must sacrifice fidelity to achieve
this breadth—particularly if fidelity is defined by coefficient
alpha. Thus, high internal consistency could be viewed as an
undesirable aspect of a broadband screening instrument, be-
cause it would involve a sacrifice of efficient content cover-
age for the sake of redundancy.

In sum, although various references (e.g., Nunnally, 1978;
Hammill, Brown, & Bryant, 1993) are often cited stating that
a supposedly good coefficient alpha is one above .80, the re-
ality is more complex. A desirable value for internal consis-
tency statistics will vary as a function of the nature of the
phenomenon being measured, the length of the scale used to
measure it, and the composition of the sample used to calcu-
late it. Thus, the test developer is encouraged to move away
from viewing internal consistency estimates as necessarily
being an evaluative property of an instrument, and toward
viewing it more as a metric that is simply descriptive of a
particular data set.

Scorer Reliability

Scorer reliability refers to the consistency of scores resulting
from an application of the scoring process. The so-called ob-
jective tests are usually so described because the objectivity
of the scoring procedures typically results in higher scorer
reliability; but this is not always the case. Automated scor-
ing procedures such as optically scannable answer sheets
can still result in misread information if a respondent does
not use the correct type of pencil or does not erase a stray
mark cleanly. As the 2000 U.S. presidential election re-
vealed, use of automated scoring systems will not necessar-
ily result in perfect scorer reliability; thus, even with these
systems, scorer reliability should be assessed if a high
degree of precision is critical for the measurement. Such
procedures could include multiple scans of the same raw
data, or in the case of hand-entered information, double-
punched data entry, in which the data-entry technicians must
enter the same information twice (with identical results) be-
fore it is accepted into the data set.

The most common form of scorer reliability comes into
play when a human is used as a measuring device. Common
applications of this approach include the use of behavioral
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observations, psychiatric diagnoses, or construct-based
rating scales. As with other types of reliability, scorer relia-
bility values for these types of scales are typically expressed
with some form of correlation. Early reliability studies of
nominal-categorical scales, such as psychiatric diagnoses,
often reported percentage agreement statistics—that is, sta-
tistics describing the percentage of ratings on which scorers
agreed—in support of reliability. However, there were signif-
icant problems in interpreting these values because differ-
ences in the marginal probabilities of the response categories
greatly influenced the likelihood of observed agreements;
agreement by random chance was much more likely to occur
when the probabilities of the different response categories
were highly unbalanced. The kappa coefficient (Cohen,
1960), a derivative of an intraclass correlation coefficient, has
thus become somewhat of a standard for reporting scorer re-
liability for categorical judgments, because it incorporates an
adjustment to percentage agreement that accounts for the
probability of chance agreement.

Shrout and Fleiss (1979) provide a general model for the
use of intraclass correlation in the study of scorer reliability.
They provide reliability calculations for scorer reliability
under different assumptions about the nature of the scores.
For example, calculations differ depending upon whether
the rater variable is assumed to represent a random or a fixed
effect. The random effect approach assumes that the raters
studied are a sampling from the universe of possible raters,
and is more useful as an estimate of the generalizability of re-
liability estimates to other sets of raters; the fixed effect
approach provides a reliability value for a particular set of
raters in a particular study. Another calculation distinction
can be drawn depending upon whether the final scale score
reflects the ratings as provided by the mean of a group of
raters, in contrast to a score provided by a single rater. Be-
cause individual ratings tend to be less reliable, comparing
these estimates can provide the developer with information
about the improvements that can be obtained by having
multiple raters provide scores for all subjects.

Validity

The process of validating a psychological measure is a cumu-
lative process that is never complete. In part, this is because
validity is not a property of a test per se, but rather is a prop-
erty of a score obtained in a particular context. Validity is a
process that evolves as evidence begins to accumulate that
scores from a particular instrument, gathered in many con-
texts, are behaving in theoretically anticipable ways. There
are many types of evidence, both qualitative and quantitative,
that contribute to the process of validation. Messick (1995)

described six aspects of evidence of construct validity that
represent a useful starting point for validation. As might
be expected, these principles overlap considerably with
processes involved in scale construction from the construct
validation perspective. The following sections review and
discuss Messick’s types of validity evidence.

Content Aspects

Evidence of the content aspect of construct validity addresses
the relevance and representativeness of the scale content. The
content should be relevant in that it falls within the bound-
aries of the construct in question, and it should be representa-
tive in that it captures the processes and experiences of the
respondent in an ecologically valid way. Such evidence is
typically gathered through the use of tasks involving expert
professional judgment, such as the rating or sorting tasks de-
scribed earlier as item selection strategies.

Substantive Aspects

Evidence for the substantive aspect of construct validity de-
rives from theories around the processes assessed by the
scale. Such a task represents a particular challenge for objec-
tive assessments of personality, because the respondent is
typically asked to comment or introspect about response
processes (e.g., interpersonal actions) without specifically en-
gaging those processes. However, certain process aspects are
open to investigation. For example, investigators have found
that emotionally evocative personality-test items tend to dis-
play longer response latencies than neutral items (Tryon &
Mulloy, 1993). Such studies suggest that process-based ex-
aminations of self-report measures are possible and may hold
an important place in the future of construct validation as the
theoretical processes that are proximal to self-description be-
come better articulated.

Structural Aspects

Evidence for the structural aspect of construct validity per-
tains to the validation of the internal structure and scoring of
the instrument. The interrelations among elements of a mea-
sure (e.g., items or subscales) should be consistent with what
is known about the structure of the construct domain. The
many item-selection parameters discussed previously will re-
sult in items that are related to each other. However, the
means by which the items are combined into scale scores
(typically through addition) are typically not compared for
validity to alternative scorings (e.g., configural or interactive
combinations of items). 
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Researchers often perform factor analyses of instruments,
either confirmatory or exploratory, in an attempt to provide
evidence of the structural aspect of construct validity. How-
ever, as described earlier, the use of factor analysis makes
certain assumptions about scale structure that should be con-
sidered carefully. Furthermore, such factor analyses (particu-
larly the exploratory variants) are largely useless in the
absence of a well-articulated theory of the classificatory rela-
tions (Skinner, 1981) among the different elements. Factor
analysis represents a means of simplifying scale interrela-
tions and representing them as linear functions, but in the ab-
sence of a theory to explicate how the relationships should
look, it is simply a data-exploration tool and not a construct
validation one. For many tests, such relations can be articu-
lated. The NEO-PI (Costa & McCrae, 1985), for example, is
based upon a theory that posits five orthogonal factors that
underlie most stable personality characteristics. Thus, one
aspect of the construct validity of the NEO-PI can be exam-
ined by determining whether the items load on five orthogo-
nal factors (ideally, regardless of one’s choice of extraction
or rotation methods). Interestingly, even McCrae et al.
(1997) has expressed skepticism that a confirmatory ap-
proach is very useful for validating measures derived from
the five-factor model.

Generalizability Aspects

Generalizability evidence involves the extent to which score
properties and interpretations generalize across different
groups and contexts. Although many such studies should be
conducted in selecting items for the scale, it is typically not
possible to sample all population groups or all plausible con-
texts in which the scale might be used. Thus, further studies
involving stability of item or scale parameters across settings,
raters, or groups are important. Many of these investigations
may conducted under the rubric of reliability studies, but as
discussed previously, reliability itself falls within the gener-
alizability aspect of construct validation.

External Aspects

The external aspects of construct validity refer to score rela-
tionships with other measures and behaviors; these relation-
ships should reflect the relations implicit in the theory of the
construct being assessed. The classic paper by Campbell and
Fiske (1959) highlighted that both convergent and discrimi-
nant patterns of correlations are important. Convergent vali-
dation involves examining correlations with other indicators
of the same construct, and as such typically subsumes the
concept of criterion validity; discriminant validation, as

discussed previously, involves elimination of alternative
interpretations of test scores through examining correlations
with indicators of other constructs. Campbell and Fiske pio-
neered the use of the multitrait-multimethod matrix as a pow-
erful tool for examining these correlation patterns within a
single study. With this approach, the investigator assesses
two or more constructs (the traits) using two or more mea-
surement techniques (the methods) and then evaluates the in-
tercorrelations among the various measures. Campbell and
Fiske proposed four classic criteria for interpreting the matrix
as supportive of construct validity:

1. The correlations among multiple measures of the same
construct (monotrait-heteromethod correlations) should
be sufficiently large and significantly different from zero;

2. The correlations described in Criterion 1 should be larger
than correlations between differing constructs, measured
across different methods (heterotrait-heteromethod);

3. The correlations described in Criterion 1 should be larger
than correlations between different constructs as mea-
sured by the same method (monomethod-heterotrait), im-
plying that the methods are relatively free from method
variance that forces interrelationships among traits; and

4. The pattern of correlations among the different constructs
should be similar across measurement methods.

Although the Campbell and Fiske (1959) criteria are im-
portant guidelines, they are not explicit and make a number of
assumptions that often do not hold (Schmitt & Stults, 1986).
In recent years, many investigators have used confirmatory
factor analysis to model the multitrait-multimethod matrix.
This approach has a number of potential advantages, such as
allowing the researcher to distinguish the contributions of
trait, method, and error components to score variance. How-
ever, analyzing this type of matrix using confirmatory factor
analysis tends to be quite difficult in practice, because para-
meter estimates often fail to converge or yield values that
fall out of permissible ranges (Kenny & Kashy, 1992). One
confirmatory factor analysis variant that tends to provide
interpretable solutions is the correlated uniqueness model
(Marsh, 1989), which represents method variance as corre-
lation between error terms of indicators derived from the
same method. However, this model assumes independence of
method factors, which may not be the case when similar
methods are used, such as different self-report techniques
(Bryant, 2000). Although the confirmatory approach reflects
the state of the art in the analyses of matrices composed of ex-
ternal validation correlates, there are important limits to its
use, suggesting that a rigorous implementation of the original
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Campbell and Fiske (1959) criteria retains a place in con-
struct validation.

Consequential Aspects

Messick’s (1995) final aspect of construct validation in-
volves evidence to evaluate the intended and the unintended
consequences of score interpretation. Messick points out that
the social consequences of testing may be either positive,
such as greater identification and hence earlier intervention
for mental health problems, or negative, such as restriction
of access to services because of biases in interpretation or
fairness in use. Research in this area needs to establish that
any negative impact that a test score may have on an indi-
vidual or group does not derive from some failure in test va-
lidity, such as the inclusion of construct-irrelevant variance
in the scale score that is associated with demographic group
membership.

CONCLUSION

The construct validation approach to psychological assess-
ment appears deceptively simple, yet the subtleties become
much more apparent in the process of developing and validat-
ing an instrument. However, because of the application of
these procedures, psychological assessment has more to offer
the researcher and clinician today than it did four decades ago.
The construct validation approach yields instruments that are
straightforward in terms of meaning and interpretation; be-
cause the measures are tied explicitly to constructs, the inter-
pretation of a scale score generally corresponds directly to the
name of the scale, which, remarkably, has often not been
the case in the history of assessment. This parsimony of inter-
pretation should not be viewed as a limit, but rather as a solid
beginning point for any individual who seeks to learn more
about a particular personality or psychopathology construct.
Ultimately, the goal for an assessment instrument is the same
as the goal for a more general science of psychology, this
being a thorough elaboration of the nomological network
relating important constructs and their various indicators. The
process of developing and validating an instrument informs
this elaboration, and ultimately both theory and method gain
from the interaction. This chapter describes some of the
approaches and some of the pitfalls that the scale developer
can encounter. In constructing scales, as in so many other
important areas of inquiry, there is no one approach that is
superior. Each assessment problem reflects unique challenges
with diverse solutions. The developer’s goal must be to as-
semble a mosaic of indicators and studies of those indicators

that together may suggest the optimum route for assessing
the target construct.
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From the signs of the Zodiac to Jung’s mandalas to formal
geometric models with precise mathematical specification
(e.g., Gurtman & Pincus, 2000; Wiggins & Trobst, 1997),
circular representations of a variety of domains of human ex-
perience have been conceived and presented throughout
human history (Wiggins, 1991, 1996). In the field of psychol-
ogy and beyond, the appeal of circular models lies in the
combination of circle’s aesthetic (organizational) simplicity,
yet powerful potential to describe data in uniquely com-
pelling substantive and geometric ways. Gurtman (1998)
noted that, like the form of the circle itself, circumplex mod-
els intrigue by their elegant simplicity, yet at the same time
have complex features and hidden unfixed properties that
compel further exploration.

Building on the work of Louis Guttman (1954), empiri-
cally derived circumplex models describing interpersonal

behavior began to formally appear in the psychology litera-
ture in the 1950s (e.g., Leary, 1957; Schaefer, 1959). The
seminal work of Wiggins (1979, 1980, 1982) stimulated the
development of progressively diverse applications and for-
malized empirical approaches. In the last 20 years, increas-
ingly sophisticated circumplex analytic methods have been
developed.

The purpose of this chapter is to review these methods and
their research applications. We have chosen to organize the
majority of this chapter with reference to basic empirical
questions likely to underlie investigators’ applications of cir-
cumplex models and methods. Thus, after the circumplex is
defined and examples from contemporary psychological lit-
erature are described, the chapter is divided into sections re-
lated to the following basic research questions: (a) How do I
evaluate circular representations in my domain of interest?,
(b) How do I use the circumplex to describe individuals?, (c)
How do I use the circumplex to describe and compare
groups?, and (d) How do I use the circumplex to evaluate

The authors wish to thank Terence J. G. Tracey for several important
contributions to this chapter.
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Figure 16.1 A geometric circumplex with eight variables.

TABLE 16.2 Circulant Correlation Model for an Eight-Element
Circle

v1 v2 v3 v4 v5 v6 v7 v8

v1 1
v2 �1 1
v3 �2 �1 1
v4 �3 �2 �1 1
v5 �4 �3 �2 �1 1
v6 �3 �4 �3 �2 �1 1
v7 �2 �3 �4 �3 �2 �1 1
v8 �1 �2 �3 �4 �3 �2 �1 1

Note. �1 > �2 > �3 > �4.

constructs and their measures? We conclude the chapter with
a brief discussion of future directions in the development and
application of circumplex methodology.

DEFINITION OF A CIRCUMPLEX AND EXAMPLES
FROM LITERATURE

Louis Guttman (1954) originated the term circumplex to de-
scribe a “system of variables which has a circular law of
order” (p. 325). He also proposed “a very specialized exam-
ple of a circumplex” (p. 326), having a structure definable in
terms of a uniform system of additive components. This led,
in turn, to the exposition of a particular kind of correlation
pattern among tests (“the equally-spaced, uniform, perfect,
additive circumplex,” p. 327), which he characterized on the
basis of its form (p. 328) as a circulant. Table 16.1 provides
an example of such a matrix (Guttman, 1954, p. 329).

Guttman’s (1954) work, and developments that followed
it (see, e.g., Shepard, 1978), suggest two ultimately compati-
ble conceptualizations of the circumplex model. The geomet-
ric circumplex (e.g., Conte & Plutchik, 1981) defines the
circumplex as a circular array of variables (see Figure 16.1).
More technically, the circular curve provides a basis for scal-
ing the set of similarities among variables; thus, the similar-
ity between any two variables is inversely related to their
distance apart on the circle (Browne, 1992; Fabrigar, Visser,
& Browne, 1997; Shepard, 1978). In an earlier article
(Gurtman & Pincus, 2000), and similar to Browne (1992), we
have formalized this as a highly general correlation model:

�i j = inverse ƒ(�i − �j ) (16.1)

where �i j is the correlation between variables i and j, and
�i and �j are their respective angular displacements
(0◦ ≤ � ≤ 360◦) on a circle. It is assumed that the function is
monotone in form, and that variables are distributed uni-
formly throughout the full circular continuum.

From a slightly different perspective (see Gurtman, 1994),
we note that a valid circular representation implies three

defining properties about the set of variable interrelation-
ships: that (a) the differences among variables can be reduced
to differences in two dimensions; (b) each of the variables
has an equal projection in this plane, as represented by the
variable’s distance from the origin (of a hypothetical circle);
and (c) the variables’ distribution around the hypothetical
circle is uniform, generally translated into the property of
equal spacing. These properties are increasingly specific for
a circumplex model (see Gurtman, 1994). Indeed, the third
criterion (equal spacing) is often used to differentiate
between circumplex and simple-structure models (e.g.,
Hofstee, De Raad, & Goldberg, 1992).

The second way in which the circumplex has been con-
ceptualized in the literature is as a particular kind of corre-
lation matrix. This circulant correlation model was first
presented by Guttman (1954), as noted earlier, and has been
further explored and developed by others (e.g., Browne,
1992; Cudeck, 1986; Rounds, Tracey, & Hubert, 1992;
Wiggins, Steiger, & Gaelick, 1981.) This model defines the
circumplex as a particular kind of nonrestrictive (i.e., not
fully constrained) correlation pattern characterized by a cir-
cular, repeating pattern of values in each row and column.
Table 16.2 formalizes this model for the eight-variable case;

TABLE 16.1 An Example of an Equally Spaced, Uniform, Perfect,
Additive Circumplex

v1 v2 v3 v4 v5 v6

v1 1.00
v2 .75 1.00
v3 .50 .75 1.00
v4 .25 .50 .75 1.00
v5 .50 .25 .50 .75 1.00
v6 .75 .50 .25 .50 .75 1.00

Note. Adapted from Guttman (1954), p. 329.

schi_ch16.qxd  9/6/02  12:47 PM  Page 408



Definition of a Circumplex and Examples from Literature 409

Table 16.1 provides a numerical example. It may be noted
that the circulants presented in Tables 16.1 and 16.2 have the
property of equal spacing (Guttman, 1954, p. 328), as indi-
cated by the equality of values in each diagonal of the matrix
(hence the values are represented by a single parameter, as
illustrated in Table 16.2). For equally-spaced circulants, the
sum of each column or row of values will be the same
(Guttman, 1954).

Examples of Models From the Literature

In our view, the three psychological domains of interpersonal
behavior, mood and affect, and vocational preference provide
exemplars of the most well developed and empirically evalu-
ated circumplex models in psychology. 

The Interpersonal Domain

The most well-established domain for both the application of
circumplex models in psychology and the development of
circumplex methodology is the study of interpersonal behav-
ior (Wiggins, 1996). Two seminal early lines of research,
each employing a different unit of analysis (individuals or
dyads), converged in identifying a circular structure in rat-
ings of interpersonal behavior (for a full review, see Pincus,
Gurtman, & Ruiz, 1998).

Leary and colleagues (Freedman, Leary, Ossorio, &
Coffey, 1951; Leary, 1957) focused on the individual’s be-
havior and catalogued an initial taxonomy of interpersonal
mechanisms (essentially behavioral verbs) observed in group
psychotherapy sessions. Early dimension-reduction tech-
niques were applied to these ratings and to a complementary
set of trait adjectives. As noted by LaForge, Freedman, and
Wiggins (1985), “Slowly the nodal points or axes of affilia-
tion versus aggression and dominance versus submission
emerged” (p. 624).

The Leary Circle (Leary, 1957), a circumplex of inter-
personal behaviors and traits, organized all interpersonal
behaviors in a circular array around the two fundamental di-
mensions of Dominance versus Submission on the verti-
cal axis and Love versus Hate on the horizontal axis. This
model has been operationalized through a number of objec-
tive assessment instruments over the years (see Kiesler, 1996,
or Pincus, 1994, for reviews). Although considerably refined
across its near-50-year history and most commonly referred
to as the Interpersonal Circle (IPC; Kiesler, 1983), this basic
circumplex model has remained relatively unchanged in its
structural underpinnings. From the perspective of the IPC, all
interpersonal behavior can be described as a blend of the
basic dimensions of Dominance and Nurturance (Wiggins,

1979), with substantive distinctions ordered around the
perimeter of the circle typically segmenting the perimeter’s
continuum into quadrants, octants, or sixteenths. The IPC
structure has generalized across a variety of interpersonal do-
mains, including nonverbal interpersonal behaviors (Gifford,
1991), interpersonal acts (Kiesler, 1985), psychotherapy
transactions (Kiesler, 1987; Tracey & Schneider, 1995), in-
terpersonal traits (Gurtman & Pincus, 2000; Wiggins, 1979),
interpersonal problems (Alden, Wiggins, & Pincus, 1990;
Horowitz, Alden, Wiggins, & Pincus, 2000), social support
transactions (Trobst, 2000), and covert interpersonal impact
messages (Kiesler, Schmidt, & Wagner, 1997; Wagner,
Kiesler, & Schmidt, 1995).

A second early line of research focused on interpersonal
behavior within dyads. Schaefer (1959, 1961) observed the
interactions of mothers and children and catalogued behav-
iors of mothers toward their children and the reactions of
children to their mothers. His data also suggested that two
complementary circumplex models appropriately captured
maternal behavior and children’s reactions. Schaefer’s origi-
nal circumplexes of maternal behavior and child reactions
were similar to the IPC with a single difference. The funda-
mental dimensions were Hostility versus Love (converging
with the IPC on the horizontal axes) but Autonomy versus
Control (diverging with the IPC on the vertical axis). The
most detailed circumplex model of interpersonal behavior,
originally stemming from Schaefer’s work, is Benjamin’s
(1974, 1996) Structural Analysis of Social Behavior (SASB).
SASB is a three-circle (or surface) model that describes ac-
tions toward others (transitive behaviors) on one circumplex
surface, reactions to others (intransitive behaviors) on a sec-
ond surface, and introjected behaviors directed toward the
self on a third surface. Each SASB surface describes its focus
of behavior in an array of blends of the two dimensions of Af-
filiation and Interdependence. SASB has been used widely in
investigations of process and outcome in psychotherapy and
interpersonal aspects of psychopathology (e.g., Benjamin,
1996; Henry, 1996).

Mood and Affect

Like interpersonal models, circumplex models of affect have
emerged from different theoretical perspectives and pro-
grams of research. Russell (1980) and Watson and Tellegen
(1985) put forth circumplex models of affect that have
inspired a significant amount of research and debate. Russell
(1980, 1997) proposed that the basic dimensions of affect
could be labeled High Arousal versus Low Arousal and
Pleasure versus Displeasure, and demonstrated that discrete
emotions arose from blends of these two fundamental
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dimensions. For example, anxiety reflects of blend of High
Arousal and Displeasure, whereas joy reflects a blend of
High Arousal and Pleasure. Watson and Tellegen (1985)
proposed that the basic dimensions of mood could be labeled
Negative Affect (NA) and Positive Affect (PA). Similarly, dis-
crete emotions were suggested to emerge from variation in
blends of NA and PA. For example, sadness reflects a blend
of high NA and low PA, while surprise reflects a blend of
high NA and high PA.

Over the last 20 years, debates among affect researchers
have led to the recognition that these two circumplex models,
as well as other more recent two-dimensional formulations
(Larsen & Diener, 1992; Thayer, 1996), generally converge
in terms of the content of circular affect space but often differ
in terms of the identified fundamental dimensions or axes un-
derlying the circular models. Although differences in these
structural models of affect are not solely an issue of rotation
(Cacioppo, Gardner, & Bernston, 1999; Green, Salovey, &
Truax, 1999; Russell & Feldman-Barrett, 1999; Watson,
Wiese, Vaidya, & Tellegen, 1999), theoretical and empirical
efforts at integration of these perspectives continue to support
the circumplex as an appropriate structural model for the do-
main (Yik, Russell, & Feldman-Barret, 1999).

Vocational Interests

A third area in which circumplex models have emerged and
flourished is the vocational interests domain, largely on the
basis of a reconceptualization of Holland’s (1973) hexagonal
model of interests (e.g., Tracey & Rounds, 1993). According
to Holland’s highly influential theory, individuals’ occupa-
tional preferences, as well as corresponding work environ-
ments, can be categorized in terms of six major types:
Realistic (R), Investigative (I), Artistic (A), Social (S),
Enterprising (E), and Conventional (C). Holland also pro-
posed that these six occupational interests could be arranged
as a hexagon on the basis of their strength of relation (the
so-called calculus hypothesis). The Holland model, gener-
ally referred to in its duality as the RIASEC model, has be-
come the standard for the assessment of occupational
preferences, and is represented by all major vocational inter-
ests tests.

As Tracey and Rounds (1993) among others (e.g., Hogan,
1983) have duly noted, the hexagonal model is essentially a
circular model; moreover, as Prediger (1982) has shown, this
circle is situated in a two-dimensional space definable by
interests in People versus Things and Data versus Ideas. A
large number of studies have now examined the structure of
the RIASEC circumplex across different age, culture, gender,
and ethnic groups (e.g., Day & Rounds, 1998; Fouad,
Harmon, & Borgen, 1997; Rounds & Tracey, 1996; Tracey &

Ward, 1998). These structure-of-interest studies have not
always yielded consistent support for the assumed circular
structure of the traditional RIASEC, yet enough to suggest
that, perhaps with refinement, the RIASEC space can assume
an improved circular form at least in some populations
(Tracey & Rounds, 1995; however see Rounds & Day, 1999).
Indeed, Tracey and his colleagues (e.g., Tracey & Rounds,
1995) have developed an eight-scale RIASEC type of mea-
sure that appears to possess superior circumplex properties;
they have also proposed a more elaborate spherical model
(Tracey & Rounds, 1996a, 1996b) from which circumplex
measures of vocational interests can be derived. Later in this
chapter, an updated circumplex version of their measure will
be used to illustrate different analytic methods.

Others

A number of additional circular models have been proposed
in psychology and related fields, although none is as exten-
sively investigated and evaluated as those models reviewed
above. Some circular representations, such as Nobel Laureate
Charles Hartshorne’s (1980) circular model of the aesthetics
of science are purely conceptual, whereas other proposed
models are based on moderate amounts of empirical investi-
gation. These include (but are not limited to) family and mar-
ital systems (Olson, 1996), personality disorders (Millon,
1987; Plutchik & Conte, 1985; Romney & Byner, 1997), psy-
chological defenses (Benjamin, 1995; Plutchik, Kellerman,
& Conte, 1979), psychotic disturbance (Lorr, 1997), and trait
structures based on combining all possible pairs of the Five-
Factor Model of personality (Hofstee et al., 1992).

HOW DO I EVALUATE CIRCULAR
REPRESENTATIONS IN MY DOMAIN
OF INTEREST? (EVALUATING DATA FOR
GOODNESS-OF-FIT TO A
CIRCUMPLEX MODEL)

The issue of how to evaluate whether a particular data set has
circumplex properties (i.e., conforms to the circumplex
model), and hence mirrors a particular theoretical concep-
tion, has now been addressed in a number of worthwhile arti-
cles and chapters (e.g., Browne, 1992; Fabrigar et al., 1997;
Gaines et al., 1997; Gurtman, 1994; Gurtman & Pincus,
2000; Rounds et al., 1992; Tracey, 2000; Tracey, Rounds, &
Gurtman, 1996; Wiggins et al., 1981). Of these, Tracey’s
(2000) recent chapter stands out as both a technical and prac-
tical resource for researchers interested in testing for possible
circumplex structure in their measures and in the correspond-
ing domains of interest.
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Figure 16.2 The Personal Globe Inventory–Circumplex. Source:
Adapted from “Personal Globe Inventory: Measurement of the Spherical
Model of Interests and Competence Beliefs” by T. J. G. Tracey, Journal of
Vocational Behavior, in press. Adapted from original source by permission.

In general, methods of analysis can be divided into two
groups. Exploratory methods, such as multidimensional
scaling and principal components analysis, yield mainly spa-
tial representations of the sample data (Gurtman & Pincus,
2000); these representations are then evaluated informally or,
in some cases, heuristically (e.g., Pincus et al., 1998) for fit to
a circular ideal. Confirmatory methods, on the other hand,
provide formal tests of circumplex model fit to the data (e.g.,
to the correlation pattern), and are exemplified by Browne’s
(1992) CIRCUM routine and by Hubert and Arabie’s (1987)
tests of order hypotheses. Confirmatory methods often have
the added flexibility of allowing different circumplex models
to be compared and tested (e.g., Browne, 1992; Gaines et al.,
1997; Rounds et al., 1992).

Rather than being considered adversarial approaches to
model analysis (e.g., Fabrigar et al., 1997), exploratory and
confirmatory methods are arguably complementary in their
essential yields. In line with earlier description (also see
Gurtman & Pincus, 2000), we see the main role of ex-
ploratory methods as providing spatial representations of the
data structure. Today, however, any serious test of the cir-
cumplex model should also include application of confirma-
tory methods. Hence, confirmatory methods offer the logical
next step in validating the circumplex properties of a given
data set. 

In the remainder of this section, each method is briefly
described and a sample analysis is conducted for illustration.
The data for the demonstration consist of scores on a
circumplex-based measure of vocational interests, the Per-
sonal Globe Inventory–Circumplex (PGI; Kovalski, Tracey,
& Darcy, 2000; Tracey, 1998, 2002), a slightly revised ver-
sion of the Inventory of Occupational Preferences (IOP;
Tracey & Rounds, 1995). Figure 16.2 shows the hypothe-
sized structure of this scale, and its relationship to the tradi-
tional RIASEC space. For our analysis, data were available
for 253 women (henceforth female sample) and 172 men
(male sample); respondents were college students enrolled in
a career exploration class. We thank Terence Tracey for gen-
erously supplying us with these data.

Exploratory Methods

Exploratory Factor Analysis

Perhaps the most widely used method for examining data for
circumplex structure is through the application of exploratory
factor analysis, notably principal components analysis
(PCA). An excellent example is provided by Wiggins,
Phillips, and Trapnell (1989), who subjected the Interpersonal
Adjective Scales to PCA in an attempt to validate its theoret-
ical structure. The goal of PCA is to identify a small number

of orthogonal components that can account for the obtained
correlations among variables. When subjected to PCA, cir-
cumplex matrices generally yield a two-factor solution (e.g.,
Wiggins et al., 1989) or a three-factor solution (e.g., Alden
et al., 1990); if a three-factor solution, the first factor is a
general factor on which all variables manifest positive and
generally high loadings. The two nongeneral factors should
be comparable in size (eigenvalue), suggesting a circular
rather than elliptical structure (e.g., Pincus et al., 1998). In ad-
dition, when the variables are plotted in a two-dimensional
plane based on their factor loadings (using the two non-
general factors), a circular arrangement should exist—caused
by variables having roughly equal projections (communali-
ties) in that plane, and roughly equal (i.e., uniform) spacing.

Table 16.3 shows the results of a PCA conducted on the
Personal Globe Inventory–Circumplex, as described earlier.
(For brevity, only female data are presented, although the re-
sults are virtually identical for the two groups.) A scree test of
the eigenvalues suggested a three-factor solution, with the
first factor clearly a general factor and the next two factors
somewhat similar in magnitude, as expected. (The eigenval-
ues for the first four factors were as follows: 3.47, 1.90, 1.46,
and 0.39.) Although not shown, a two-dimensional plot of the
variables’ loadings on the second and third factors would re-
veal a roughly circular pattern.

Multidimensional Scaling

As Davison (1985, 1994) among others has shown, multidi-
mensional scaling (MDS) methods are especially well-suited
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TABLE 16.3 Factor Loading Matrix Based on Principal Components
Analysis of PGI Scales (Females Only)

Factor

Scale 1 2 3

Social Facilitating .55 .72 −.07
Managing .54 .63 .33
Business Detail .64 .16 .56
Data Processing .73 −.36 .39
Mechanical .75 −.49 .16
Nature/Outdoors .72 −.52 −.25
Artistic .68 −.13 −.62
Helping .57 .46 −.52

Note. n = 253; PGI = Personal Globe Inventory.

for recovering circumplex structure from data sets. Such
methods seek to identify a minimum number of dimensions
that can be used to parsimoniously represent the proximities
(e.g., correlations) among variables, and generally use non-
metric scaling algorithms. Following Davison (1985), Tracey
(2000) has noted that because MDS techniques are “data cen-
tered,” they effectively eliminate general factors from the ob-
tained solutions, and hence, compared to PCA, can bring
greater clarity to the interpretation of the results. This said,
MDS and PCA typically produce very similar solutions (i.e.,
spatial representations), except for how the general factor (if
present) is handled (Davison, 1985). A complete example of
MDS applied to a circumplex measure (again the Interper-
sonal Adjective Scales) is provided by Gurtman and Pincus
(2000).

For the present example, we subjected each of the PGI
correlation matrices to Kruskal’s nonmetric MDS procedure.
For the female data, stress values (smaller values indicating
better goodness-of-fit) were .28 in one dimension and .01 in
two dimensions, indicating an excellent fit of the proximity
data in two dimensions (proportion of variance accounted
for = 99.83%). Similarly, for the male data, stress values
were .26 in one dimension, and dropped to .02 for the two-
dimensional solution (proportion of variance accounted
for = 99.60%).

Figures 16.3 and 16.4 show the female and male plots,
respectively, of the eight PGI scales based on the scales’ ob-
tained dimensional coordinates. Circles are added by fitting
the points to a circular model, using a least-squares fit crite-
rion. (For ease of interpretation, the scales’ polar coordi-
nates were rotated so that the first scale, Social Facilitating,
was positioned at its theoretical location on the circle; see
Figure 16.2). Although not apparent in the figures, in each
solution the scales were perfectly ordered according to the
Figure 16.2 model. Visual inspections of the spatial repre-
sentations reveal a close correspondence to a circular form
in each case.

Confirmatory Methods

Covariance Modeling and CIRCUM

As described earlier and shown in Table 16.2, the circumplex
is associated with a particular kind of covariance model, re-
ferred to by Guttman (1954) as the circulant matrix. The cir-
culant is a relatively nonrestrictive model characterized by a
circular, repeating pattern of values occurring in each row
and column.

Using structural equation modeling (SEM) techniques, it is
possible to fit versions of this model to an obtained correlation
matrix. Standard SEM programs, such as LISREL (Jöreskog
& Sörbom, 1986), can and have been used for this purpose
(e.g., Romney & Byner, 1997; Rounds et al., 1992; cf. Gaines
et al., 1997). However, perhaps the best current tool for per-
forming this kind of specialized analysis is Browne’s (1992)
CIRCUM program. Fabrigar et al. (1997) provide a relatively
nontechnical introduction to the program; Browne (1992) of-
fers a more technical and detailed description. A growing
number of studies have now used CIRCUM to test for
circumplex structure in data (e.g., Carroll, Yik, Russell, &
Feldman-Barrett, 1999; Gurtman & Pincus, 2000; Pincus et
al., 1998; Schmidt, Wagner, & Kiesler, 1999; Tracey, 2000;
Watson et al., 1999; Yik et al., 1999).

Described as a covariance structure modeling technique
(Fabrigar et al., 1997), CIRCUM was developed specifically
to evaluate circumplex correlation models, as well as imple-
ment tests of Browne’s (1992) circular stochastic model of

Figure 16.3 Multidimensional scaling plot of Personal Globe Inventory
Scales (female sample).
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Figure 16.4 Multidimensional scaling plot of Personal Globe Inventory
Scales (male sample).

the circumplex. In this regard, Browne has demonstrated that
a circulant matrix (see Table 16.2) can be “reparametricized”
as a Fourier series having the following general form:

�i j = �0 +
∑

�k cos (k × �d) (16.2)

with k = 1 to m components in the Fourier series (m < 4 for
an eight-variable circumplex, such as the circumplex de-
picted in Table 16.2), and where �i j is the common-factor
correlation of variables i, j, and �d is the angular discrepancy
(0◦ ≤ �d ≤ 180◦) between their respective polar angles.

A particular advantage of this reparametricization is that it
allows for testing of different geometric versions of the
circumplex model. The most restrictive is the equally spaced
model; it assumes that variables are distributed evenly
around the circle. Hence, polar angles are fixed parameters in
the equation, and only the �s are estimated. This model

corresponds to Guttman’s (1954) equally spaced circumplex,
and is given in Table 16.2. CIRCUM can also be used to fit a
less restrictive model, the unequally spaced circumplex. Here
no constraints are placed on the variables’ polar angles; they
are also estimated, thus the model has more free parameters
(i.e., is less parsimonious) than the equally spaced alterna-
tive. Finally, it is also possible using CIRCUM to estimate
versions of the model in which neither angles nor communal-
ities (i.e., variables’ projections) are constrained (unequally
spaced, unequal communalities model). This is the least par-
simonious model, and arguably may not qualify technically
as a circumplex (because the variables are not constrained to
fall along the circumference of a circle).

As a demonstration, we subjected the two PGI data sets to a
CIRCUM analysis. For each data set, we successively tested
the three models for fit to the obtained correlation pattern.
Model fit was evaluated using multiple indices, as is common
practice in the SEM literature. The fit statistics included (a) �2;
(b) F, the maximum likelihood discrepancy function; (c) GFI,
the Goodness-of-Fit index (Jöreskog & Sörbom, 1986);
(d) AGFI, the Adjusted Goodness-of-Fit index (Jöreskog &
Sörbom, 1986); and (e) RMSEA, the Root Mean Square Error
of Approximation (Browne & Cudeck, 1992; Steiger & Lind,
1980). Three of the measures—�2, F, and GFI—are absolute
measures of model fit, whereas two measures—AGFI and
RMSEA—are parsimony-weighted and thus compensate for
the model’s complexity. (GFI and AGFI were computed from
formulas presented in Maiti and Mukherjee (1990), and based
on directions generously provided by Michael Browne.)

Table 16.4 presents the results of the CIRCUM analyses.
Considering the female sample first, none of the three models
had poor fit (e.g., GFI and AGFI generally > .9, RMSEA <

.13); but, even with adjustments made for their greater com-
plexity (i.e., more free parameters), the unequally spaced
models appeared to offer better fit than the highly constrained
equally spaced circumplex. CIRCUM also yields estimates
of the variable’s polar angles. Examining these (not shown),
it is apparent that most of the variables were indeed evenly
spaced ≈45° gaps); however, a larger-than-expected gap of

TABLE 16.4 Summary of Model-Fitting Tests for PGI Circulant Correlational Structure

Model Goodness-of-fit Measures

Sample N Spacing Communality F � 2 RMSEA GFI AGFI df P

Female 253 Equal Equal .495 124.83 .129 .918 .877 24 12
Unequal Equal .256 64.39 .105 .967 .929 17 19
Unequal Unequal .065 16.36 .050 .991 .967 10 26

Male 172 Equal Equal .239 40.80 .064 .968 .952 24 12
Unequal Equal .098 16.82 <.001 .987 .972 17 19
Unequal Unequal .035 6.02 <.001 .995 .982 10 26

Note. Analyses conducted with CIRCUM (Browne, 1992); PGI = Personal Globe Inventory, F = maximum likelihood discrepancy function, RMSEA = root
mean square error of approximation, GFI = goodness-of-fit index, AGFI = adjusted goodness-of-fit index, df = degrees of freedom, P = parameters.
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TABLE 16.5 Obtained Correlation Matrix for PGI Scales (Males Only)

Scale 1 2 3 4 5 6 7 8

Social Facilitating 1.00
Managing .66 1.00
Business Detail .35 .51 1.00
Data Processing .13 .24 .55 1.00
Mechanical .09 .17 .38 .75 1.00
Nature/Outdoors .06 .03 .24 .54 .71 1.00
Artistic .28 .11 .14 .28 .43 .68 1.00
Helping .59 .35 .19 .12 .12 .23 .57 1.00

Note. n = 172; PGI = Personal Globe Inventory.

TABLE 16.6 Reproduced Correlation Matrix for PGI Scales (Males Only)

Scale 1 2 3 4 5 6 7 8

Social Facilitating 1.00
Managing .63 1.00
Business Detail .35 .63 1.00
Data Processing .16 .35 .63 1.00
Mechanical .09 .16 .35 .63 1.00
Nature/Outdoors .16 .09 .16 .35 .63 1.00
Artistic .35 .16 .09 .16 .35 .63 1.00
Helping .63 .36 .16 .09 .16 .36 .63 1.00

Note. n = 172. Based on results of CIRCUM analysis for equally spaced, equal-communality model.

63° occurred between variables 1 and 2, and a relatively
small difference of 19° was obtained between variables 4 and
5. This finding is also evident in the earlier MDS depiction of
the proximities (Figure 16.3).

Turning to the male sample, the results here suggest a still
better overall fit of the circumplex model, with even the
highly constrained equally-spaced model approaching a
“close fit” (based on RMSEA values near .05; Browne,
1992). Allowing for (slight) unequal spacing (again, for vari-
ables 4 and 5), fit is excellent. As further evidence of this,
Tables 16.5 and 16.6 show the actual correlation matrix and
the reproduced matrix, respectively. (The reproduced values
are maximum likelihood estimates provided by CIRCUM
and assume an equally-spaced model.) The close correspon-
dence of the two tables is apparent.

In evaluating the results of model-fit tests, Gurtman and
Pincus (2000) noted that attention should also be directed
toward the issue of whether deviations from model fit also have
practical consequences for individual assessment. In this case,
it can be shown that the slight unequal spacing of the PGI data
(female sample) would have virtually no effect on individual
assessment results. Gurtman and Pincus (2000) concluded the
same was true for the Interpersonal Adjective Scales.

Circular Order Model and the Randomization Test

Tracey, Rounds, and their associates (e.g., Rounds et al.,
1992; Tracey & Rounds, 1993) have offered a less restrictive

confirmatory test based on the work of Hubert and Arabie
(1987). The test is applied to a derivative of the circumplex
model, which they term the circular order model. The
method has now been used in a number of studies, especially
in the literature on structure of vocational interests.

The circular order model involves an essentially ordinal-
level interpretation of the circumplex concept: If variables,
theoretically, are circularly ordered, it follows that variables
closer together on the circle will be more highly correlated
than are variables further apart. This prediction is then tested
for a given theoretical circle by examining all possible pair-
wise comparisons of variable intercorrelations. As Rounds
et al. (1992) and Tracey (2000) have demonstrated, for an
eight-variable circumplex, such as the PGI, this process will
lead to 288 comparisons; for a six-variable circle, such as
hypothesized for the RIASEC model, 72 possible compar-
isons are implied. Perfect fit would require that (a) correla-
tions of variables adjacent on the circle should be greater
than are correlations of variables more than one step apart;
(b) correlations of variables two steps apart on the circle
should be greater than are correlations of variables more
than two steps apart; and so on. The model does not offer
order predictions for correlations based on equidistant pair-
ings of variables.

Generally, the model is evaluated in two ways (see
Hubert & Arabie, 1987). The first is through the calculation
of a correspondence index, or CI (Hubert & Arabie, 1987),
which indicates the proportion of order predictions
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TABLE 16.7 Summary of Randomization Tests for PGI Circular-
Order Model

Model Predictions

Sample Total Confirmed Violated CI p

Female 288 282 6 .958 .0004
Male 288 277 11 .924 .0004

Note. Randomization tests conducted with RANDALL (Tracey, 1997).
CI = correspondence index, P = probability.

confirmed minus the proportion violated. Values can range
from 1.0 (all predictions met) to −1.0 (all predictions vio-
lated), with 0 indicating a random fit of the data to the model.
It is a descriptive index of model-data fit. The second is a sig-
nificance test for CI based on a randomization test strategy
(for details see Hubert & Arabie, 1987, or Tracey, 2000).
Essentially, the test determines the probability of obtaining
the given model fit in comparison to all possible permuta-
tions of the rows and columns of the matrix.

Table 16.7 shows the results of the circular model tests of
the two PGI correlation matrices. (Terence Tracey kindly per-
formed these analyses for us using RANDALL (Tracey,
1997), a program he designed specifically to do these kinds of
tests of the circular order model.) Consistent with the previ-
ous results reported, the analyses provided strong support for
the circular structure of the PGI. As can be seen, CIs were
close to the maximum values of 1 (almost all order predic-
tions confirmed); based on the randomization tests, in both
instances, the chance probabilities for the obtained model fit
were significantly small (ps = .0004).

Circular Order Versus Covariance Modeling

Circular order and covariance modeling are likely to agree
when data are a good fit to the equally-spaced circumplex
ideal. However, we note that research has yet to directly com-
pare the two approaches, especially with respect to how they
handle quasi-circumplex data and data for which the circum-
plex model is misspecified. Tracey (2000) describes some of
the advantages and disadvantages of the two approaches to
confirmatory analysis. The interested reader is referred there.

Distribution Tests

Although not a general test of circumplex structure, nor an
exploratory technique, distribution tests have recently been
used to evaluate a specific criterion for circumplexity in
data—namely, whether variables are uniformly distributed,
or spaced, when projected onto the circle. Earlier it was
noted that this property is often used to distinguish a circum-
plex structure from a simple structure or other clustered
arrangement.

As Upton and Fingleton (1989) note in their authoritative
chapter on circular statistics, numerous tests are available for
researchers interested in testing for this property. As a class,
the least restrictive are generally referred to as gap tests, be-
cause they concern the pattern of gaps (or angular separa-
tions) between adjacent variables on the circle. For example,
if variables are perfectly uniform in circular spacing, then the
gap between adjacent variables will be a constant equal to
360° / n, where n is the number of variables. Gap tests gen-
erally are used to determine the probability that the actual
distribution departs from this ideal of uniform spacing.

As an example of applications, Tracey and Rounds
(1995) examined the distribution of vocational interest items
around a RIASEC circle; using the Neaves-Selkirk gap test
(Upton & Fingleton, 1989), they determined that the
uniform distribution hypothesis could not be rejected,
thereby suggesting that contrary to typology conceptions,
vocational interests are not clustered at particular points on
the circle. In another example, Gurtman (1997) looked at the
distribution of personality items (Q-sort items) in three cir-
cumplexes based on combinations of the major personality
factors (e.g., Hofstee et al., 1992). Using a test attributed to
Rao (Upton & Fingleton, 1989), he found evidence for a
uniform distribution in two of three domains.

Gap tests generally require a relatively large number of
variables (points on the circle) in order to effectively test the
null hypothesis, especially when normal curve approxima-
tions are applied. For this reason, gap tests for six- or eight-
variable circumplex models (such as the PGI) would usually
be severely underpowered, and hence not practical.

HOW DO I USE THE CIRCUMPLEX TO
DESCRIBE INDIVIDUALS?

After it is established that a given measure has a circumplex
structure, the next issue concerns how data obtained from this
measure can be applied in research and assessment contexts.
In the next two sections we explore, respectively, two of the
more common applications—representing individuals within
a circumplex assessment space, then using the circumplex to
describe group tendencies based on the accumulation of
individual data. Both ventures involve the use of circular
statistics (e.g., Batschelet, 1981; Mardia, 1972; Upton &
Fingleton, 1989), a somewhat novel branch of statistical
analysis developed specifically to handle circularly ordered,
periodic data of the kind generated by circumplex-based
measurements.

With respect to individual assessment, nearly all of the
development in this area has been provided by psychologists
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interested in interpersonal assessment, specifically in relation
to the interpersonal circle model of personality (e.g., Kiesler,
1996; Leary, 1957; Wiggins & Trapnell, 1996). Recently,
Gurtman and Balakrishnan (1998) have provided an in-depth
introduction to circular measurement principles in interper-
sonal assessment. The present section draws heavily on that
article. The methods that will be described, however, are
general, and go beyond the purposes of interpersonal
assessment—although, interestingly, they have not (to our
knowledge) been extended yet to other circumplex domains
such as affect and vocational interest. (Perhaps the present
section can help to realize that possibility.)

Circular Profiles

When circumplex-based measures are used to measure indi-
vidual tendencies, the result is generally a profile of scores
that sample around the circular continuum of that measure.
For example, using the PGI to assess vocational interests
would lead to a profile of eight scores, each score sampling a
specific location on that circumplex. The pattern of scores is
appropriately represented by a polar coordinate plot, which
has been termed a circular profile (Gurtman, 1994; Gurtman
& Balakrishnan, 1998). Figure 16.5 shows a circular profile
for an individual case example. (We thank Terence Tracey for
supplying us with this case data.) Although raw scores can be
plotted, generally it makes sense (as we have done in the fig-
ure) to standardize (or center) scores against the group mean;
sometimes, it is also useful to double-center scores by also
expressing scores as deviations from the individual mean
(i.e., the profile elevation or level). (This was not done here.)
Note that in the circular plot of Figure 16.5, the scales are

ordered not by name but by their location—specifically, an-
gular displacement—on the circle. (Following the interper-
sonal tradition, numbering proceeds in a counterclockwise
direction from the 3:00 position.)

Dimensional and Polar Coordinate Summaries
of Profiles

Circular plots, like other psychological profiles, can be
interpreted conventionally—for example, by noting the
individual’s high-point scores in the configuration and per-
haps categorizing individuals on that basis (e.g., Holland,
1973). However, given that the scores are circularly ordered,
it becomes possible to use vector arithmetic (e.g., Mardia,
1972) to derive a concise, yet highly effective summary of
the score pattern. Applied to the circular profile, this method
of analysis yields a resultant vector indicating both the cen-
tral tendency (i.e., vector angle) and variability (vector
length) of the individual’s tendencies (e.g., Wiggins et al.,
1989). The Kaiser Research Group (e.g., Leary, 1957) is
credited with introducing this general approach for summa-
rizing circular profile data; it was routinely used in their in-
terpersonal assessments. The formulas, rather than being
arcane, involve standard trigonometric conversions.

As a demonstration of the calculations involved, Table 16.8
applies this method of circular analysis to the case shown in
Figure 16.5. The profile, again, consists of the individual’s cir-
cularly ordered set of standard scores on the PGI. The first step
is to weight each scale score (Si) according to either the cosine
(X) or sine (Y) of the scale’s angular location (�i ) on the circle,
and take their sums. Specifically,

X =
∑

(Si × cos �i ) (16.3)

Y =
∑

(Si × sin �i ) (16.4)

These weighted sums yield the person’s resultant X and Y
coordinates. To correct for scale, the results are multiplied by
a constant factor, c, where c is equal to 2 / n and n equal to
the number of scores comprising the circular profile (gener-
ally 8, hence c = .25). As shown in the table, the dimensional
coordinates are computed to be .02 and 1.58, respectively.
For the last step, these rectangular coordinates are converted
to their equivalent polar coordinates, thus defining a resultant
vector having an angular direction, �, and a length, VL. The
vector angle (expressed in degrees) can be obtained through
the arctangent function, specifically

� = tan−1(Y/X) × 180/� (16.5)

Note, however, that due to the periodicity of the sine, cosine,
and tangent functions, a correction to this result may need to

Figure 16.5 Circular profile plot for case analysis (Personal Globe Inven-
tory scores).
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TABLE 16.8 Sample Work Sheet for Calculating Vector Angle and Length: PGI Case Study

Scale � Score (s) X = s × cos(�) Y = s × sin(�)

Social Facilitating 112.5 0.80 −0.31 0.74
Managing 157.5 −0.10 0.09 −0.04
Business Detail 202.5 −1.30 1.20 0.50
Data Processing 247.5 −1.60 0.61 1.48
Mechanical 292.5 −1.60 −0.61 1.48
Nature/Outdoors 337.5 −2.00 −1.85 0.77
Artistic 22.5 0.50 0.46 0.19
Helping 67.5 1.30 0.50 1.20

.25 × Sum 0.02 1.58

Note. Angle = tan−1 (1.58/.02) = 89°. VL = sqrt (.022 + 1.582) = 1.58.

be applied depending on the respective signs of the X and Y
values.

Using the Pythagorean theorem, vector length, VL, is eas-
ily obtained as

VL = sqrt (X2 + Y 2) (16.6)

Thus, for the profile data presented in the table, � = 89◦ and
VL = 1.58.

The interpretive significance of vector angle and vector
length for profile description has been explored extensively in
the interpersonal literature (e.g., Gurtman & Balakrishnan,
1998; Leary, 1957; Wiggins et al., 1989), but not more gener-
ally. Computationally, the angle is the circular mean of the
profile (Mardia, 1972), indicating what may be construed as
the center of gravity (Gurtman & Balakrishnan, 1998) of the
profile distribution. It thus points to the predominant theme of
the profile (Gurtman & Balakrishnan, 1998), the blend of the
two dimensions that underlie the particular circumplex
domain. For example, when based on the interpersonal cir-
cumplex, the person’s vector angle may be interpreted in terms
of the individual’s standing on two major dimensions of the in-
terpersonal domain (generally Dominance and Nurturance;
e.g., see Wiggins & Trapnell, 1996). For vocational interests,
as in the present example, the circumplex is anchored by two
RIASEC dimensions (Prediger, 1982): interests in People ver-
sus Things (vertical axis) and Data versus Ideas (horizontal
axis). The case’s obtained angle of 89° (between Helping and
Social Facilitating on the circle) suggests a relatively pure in-
terest theme of People as a summary of the overall pattern.

Turning to vector length, this summary feature is some-
times thought of as a measure of profile extremity or intensity
(e.g., Kiesler, 1996). We regard vector length as more a
measure of profile definition, or, as is stated later, structured
patterning (Gurtman & Balakrishnan, 1998). High vector
length indicates a well-articulated profile, with a clear central
tendency or directional trend (as in the present case); low
vector length suggests poor definition, generally due to low

variability in the profile scores (Wiggins et al., 1989). Thus,
for a profile with low vector length, little interpretive signifi-
cance can be attached to the angle parameter.

An Alternative Approach to Profile Analysis:
Cosine Curve Model

Recently, Gurtman (1994; Gurtman & Balakrishnan, 1998)
suggested an alternative approach for analyzing circular pro-
file data, using curve modeling. Although developed with
respect to the interpersonal circumplex and the goals of inter-
personal assessment, this method is general enough so that it
could be effectively applied to any circular profile data. 

The curve modeling approach is predicated on the fact that
circumplex measures tend to produce profile patterns that are
sinusoidal in form, and hence can be modeled against the pro-
totype of a cosine function. Thus, it is possible to rewrite
a given profile of scores as the sum of a structured part (a
cosine function) plus a deviation, or more specifically:

Si = e + a × cos(�i − �) + di (16.7)

where Si is the person’s score on scale, i, of a circumplex
measure; e is the elevation, or mean level, of the profile; a is
the amplitude of the cosine curve model (the distance from
its mean level to its peak value); �i is the angle of scale, i; �

is the angular displacement, or peak shift, of the cosine
curve; and di is the deviation, generally assumed to be ran-
dom and pairwise independent. This model then has three
parameters—e, a, and �. The actual profile can be modeled
by solving for these three parameters. Finally, a goodness-of-
fit index, R2, can be calculated to indicate how well the cosine
model fits the actual profile data, in a sense, quantifying the
extent to which the profile can be reduced to its summary
features. In an earlier work, Gurtman (1994) noted that ele-
vation, amplitude, angular displacement, and goodness-of-fit
constitute what amounts to a structural summary of the indi-
vidual’s circular profile. Figure 16.6 provides an illustration
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of the cosine curve model, and Figure 16.7 shows the model
applied to the PGI scores of the earlier case study.

Solving for the curve parameters is relatively easy.
Gurtman (1994) noted that amplitude will equal vector
length, VL, as computed by the earlier vector method; and
angular displacement will equal the vector’s mean direction,
or angle. This enables amplitude and angular displacement to
be solved for directly, using Equations 16.3 through 16.6 pre-
sented previously. Because elevation is simply the profile’s
mean level, it is also directly obtained. Goodness-of-fit is cal-
culated conventionally as R2, or SSpredicted / SSactual.

Gurtman and Balakrishnan (1998) have provided a
detailed discussion of the interpretive implications of the
summary parameters. The cosine curve method of analysis
extends as well as solidifies understandings based on the vec-
tor approach. Here we focus specifically on interpretation in
the context of the case study (see again Figure 16.7). The

elevation parameter indicates the mean level of the curve,
which in this example (e = −0.5) denotes a profile level
slightly (i.e., 0.5 standard deviations) below the group mean
(of 0). Elevation is somewhat ambiguous in interpretation. It
may reflect, for example, a nonsubstantive response style
(e.g., the individual’s idiosyncratic usage of test items) or, de-
pending on the circumplex measure, may have substantive
import. In the latter case, if the circumplex includes a general
factor (i.e., a factor on which all scales are positively corre-
lated), then elevation may reflect the person’s standing on
that dimension. The earlier factor analysis (PCA) of the PGI
indeed revealed a general factor, but the test is too new for
substantive interpretations to be offered.

Turning to amplitude, this indicates the degree of struc-
tured patterning of the profile; hence, its meaning is identical
to that of vector length, as would be expected. A high value
suggests a profile that is highly differentiated to the cosine
prototype. In the present example, a = 1.58, which thus
quantifies the difference between the profile’s mean level and
its predicted peak value. Angular displacement, like vector
angle, indicates the predominant theme of the profile. As the
peak-shift of the curve, it shows the point on the circular dis-
tribution where the profile is predicted to have its highest
value (i.e., the apex of the modeled curve). In this case,
� = 89◦, which reveals that the model of the profile peaks at
a point on the circular continuum midway between Social
Facilitating and Helping. Dimensionally, as noted before,
this identifies a vocational interest in People (vs. Things).
Finally, the goodness-of-fit parameter provides a kind of
metasummary of the model, indicating how well the cosine
curve fits the actual profile. A high value (here R2 = .87,

close to the maximum of 1) shows that the model accounts for
a high proportion of the profile’s variability; thus, the profile
can be effectively reduced to its summary features (e, a, �)
with little loss of information. A low value is ambiguous, but,
as suggested elsewhere (Gurtman & Balakrishnan, 1998),
may sometimes reflect complex trends within the profile (see
also Haslam & Gurtman, 1999).

HOW DO I USE THE CIRCUMPLEX TO
DESCRIBE AND COMPARE GROUPS?

After individuals have been assessed and summarized with
respect to a circumplex measure, it becomes possible to cu-
mulate these individual data in order to now summarize
group characteristics. Groups may consist of individuals who
fall into discrete categories—for example, women, pharma-
cists, or adults meeting diagnostic criteria for social anxiety
disorder. Groups may also be created, somewhat arbitrarily,

Figure 16.6 Illustration of the cosine curve model.

Figure 16.7 Modeled curve for case study data (Personal Globe Inventory
scores).
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based on a decision applied to a continuous indicator—
for example, identifying individuals as depressed or
nondepressed according to a cutoff score on certain depres-
sion inventory.

Describing Group Tendencies

When cumulating individual data—or more specifically, the
circular profiles—there are essentially two approaches that
can be taken. Both lend themselves to graphical representa-
tion, and fortunately, the two tend to be convergent.

The first method, which we refer to as profile averaging, is
based on common practice in the psychodiagnostic test litera-
ture. Here the circular profiles of group members are averaged
on each of the scales to obtain an average or composite group
profile. The next step would be to apply the formulas of the
vector method described earlier (Equations 16.3 through
16.6) to derive a vector angle and a vector length for the group
composite. Alternatively, a cosine curve model can be fit to
the group profile, yielding the structural summary parameters
also presented earlier. As before, the vector angle (equiva-
lently angular displacement) of the group profile would sug-
gest its predominant substantive theme within the context of
the relevant circumplex domain; vector length (equivalently
amplitude) would indicate its degree of differentiation. The
interpretive implications thus are the same as with individual
data, but applied simply at the level of the group.

Although the profile averaging method is serviceable
(e.g., Gurtman, 1992b, for an example), its principal short-
coming is that it obscures individual variations. Said another
way, the group profile cannot necessarily be generalized to
the individual profiles that comprise the group average. For
example, the vector length (amplitude) of the group profile
may be low because the individuals who make up the group
are heterogeneous in their profiles, or because the average
(individual) profile is of low amplitude.

Consequently, we prefer a second approach for analyzing
group data, one based firmly on established methods of cir-
cular data analysis (e.g., Mardia, 1972; Upton & Fingleton,
1989). In this approach, each individual profile is represented
by its summary projection (point) on the circle (e.g., Leary,
1957). The projection is simply based on the vector angle
(described earlier), and ignores the variable of vector length
(i.e., each vector is of unit length). This then leads to repre-
senting the group as a circular distribution, or circular plot,
as illustrated in Figure 16.8.

The most relevant descriptive features of the circular
distribution are its mean and variance. The circular mean
indicates the average or “preferred direction” (Upton &
Fingleton, 1989) of the data points. It is calculated using

unweighted versions of Equations 16.3 and 16.4 to obtain the
relevant coordinates, or

X =
∑

(cos �i ) (16.8)

Y =
∑

(sin �i ) (16.9)

where �i is the angle of individual, i, on the circular contin-
uum. The result is then expressed as an angle (Equa-
tion 16.5). In this example, the circular mean for the group of
individuals is equal to 120◦. It can be shown (see Gurtman,
1997) that the circular mean (�M ) is also the angle that max-
imizes the sum of the cosine deviations, or

∑
cos (�M − �i ) (16.10)

This implies that the sum of the sine deviations from the cir-
cular mean will equal 0, a property analogous to that of the
familiar, linear mean.

The circular variance indicates the dispersion of the data
points about this preferred direction, and therefore is an in-
verse measure of concentration. Following Mardia (1972; see
also Gurtman, 1997), and using Equation 16.10 the circular
variance can be written as

V = 1 −
∑

cos (�M − �i )/n (16.11)

where n is equal to the number of data points (i.e., the
group n). By taking the arccosine of 

∑
cos (�M − �i )/n, the

variance can be expressed in degrees, which is generally
more easily interpreted. In our example, the circular variance
is equal to .19, or, in degrees, a dispersion of ±36◦. Finally,

Figure 16.8 Illustration of a circular plot of group data (with insert of
iconic representation).
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Gurtman (1997) suggested iconic representations of circular
plots; these provide concise, readily understood, depictions
of the group’s central tendency and variability in the respec-
tive circular domain. The relevant iconic representation for
this example is presented as an insert to the Figure 16.8 plot.

Comparing Group Tendencies

In research contexts, it is often necessary to compare group
tendencies, usually means, to determine whether observed dif-
ferences are statistically meaningful. Here we briefly consider
this kind of hypothesis testing applied to grouped circular-
profile data.

The profile averaging method, discussed earlier, suggests
profile analysis as an appropriate statistical tool. Relevant to
this is that, Tabachnick and Fidell (1989) offered multivariate
profile analysis (MPA) as a test of group profile differences.
MPA is not specific to circular profile data, and indeed is not
optimized for such data. Nevertheless, it can be applied with
suggestive results (e.g., see Gurtman, 1992b). The value of
MPA is that it allows for comparison of two important
features of the group profile data—their mean levels and pat-
terns (or shapes). The test for differences in mean level con-
cerns group profile elevation. The test for differences in
profile pattern—or parallelism of profiles (Tabachnick &
Fidell, 1989)—is generally more important. The hypothesis
of profile parallelism can be rejected, however, on the basis
of any profile pattern factor (shape, scatter) that varies reli-
ably between groups; hence, for circular profile data, the test
is not sufficiently specific to determine which of the previ-
ously discussed profile components contribute to the ob-
served group difference.

When circular profiles are represented as distributions
(points) on the circle, then a variety of circular statistics can
be used to evaluate group differences. Generally at issue is
whether the differences in the mean directions of the respec-
tive group distributions are greater than would be expected
by chance. Upton and Fingleton (1989) provide a compre-
hensive survey of statistical tests appropriate for circular data
(see pp. 276–295), some quite arcane and complex. For tests
of mean differences, these generally fall into one of two cate-
gories: (a) nonparametric tests that make no assumptions
about underlying (i.e., population) distributions; and (b) more
powerful parametric tests that assume the respective group
populations follow a von Mises distribution (a circular ap-
proximation to the normal distribution; e.g., Mardia, 1972).
For grouped individuals, it would seem reasonable generally
to assume a von Mises distribution, and hence the class of
parametric tests would be appropriate. Stephens A-test (see
Upton & Fingleton, 1989, p. 289) is a relatively simple,

logical, and straightforward parametric test that is acceptable
in many cases, and can be extended beyond the two-group
situation; in cases that are not appropriate, corrective modifi-
cations have been proposed. Alden and Phillips (1990) used a
modified version of the A-statistic to compare the interper-
sonal circle placements of four groups of students character-
ized on the basis of level of depression and anxiety.

An alternative approach to formal hypothesis testing is
to use confidence intervals as a way of identifying reliable
differences in group means. Mardia (1972) and Upton and
Fingleton (1989) give relevant formulas for computing confi-
dence intervals for circular data. These formulas assume a
von Mises distribution for the respective population. We have
found that a close approximation to these confidence inter-
vals can often be obtained by using the circular variance (see
Equation 16.11) to estimate the standard error of the mean.
The 95% confidence interval (ci) would thus equal

95% ci = �M ± 1.96 × cos−1 (1 − V )/sqrt (n) (16.12)

where 1.96 is the multiplier factor based on a two-tailed nor-
mal curve probability, and the remaining parameters are as
defined previously. For the sample data (Figure 16.8), the
confidence interval by this method computes to ±12.00◦,
which compares favorably to that provided by a canned
program (12.31◦).

HOW DO I USE THE CIRCUMPLEX TO
EVALUATE CONSTRUCTS AND THEIR
MEASURES?

As a research tool, particularly in the areas of clinical, per-
sonality, and social psychology, the circumplex model can
aid investigators in their efforts to better understand their
measures, and, by extension, the constructs that those mea-
sures address. This is partly because, as noted earlier,
circumplex models often serve to define and represent partic-
ular domains of interest to researchers. Thus, by relating a
measure (and, indirectly, a construct) to a given circumplex,
researchers can gain important insights into that measure’s
substantive content and underlying structure.

The basic work in refining this method—and perhaps,
more important, illustrating its potential—was done by
Wiggins and Broughton (1985, 1991). In their research, they
used the interpersonal circumplex to develop a “geometric
taxonomy” of personality test measures by projecting those
measures onto the circle. For a given measure, the scale’s
location on the circular continuum, and its loading in that di-
mensional space, served to define the scale’s “interpersonal-
ness.” Their work has been succeeded by a large number of
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other studies that have applied similar methods to objectify
the interpersonal meaning of different measures and con-
structs (e.g., Bartholomew & Horowitz, 1991; Gifford, 1991;
Gurtman, 1991, 1999; Pincus & Gurtman, 1995; Pincus et al.,
1998; Soldz, Budman, Demby, & Merry, 1993). It is interest-
ing that almost all of the research applying the circumplex in
this way has been conducted in the interpersonal domain,
using various interpersonal circumplex models and mea-
sures. Nevertheless, the methods are (once again) general,
and could easily be extended to other circumplex domains.

In this section, we discuss and illustrate three general ap-
proaches for using the circumplex to evaluate measures and
their implied constructs. In actuality, the methods are simple
adaptations of those presented earlier.

Vector Method

Wiggins and Broughton (1985, 1991) suggested that a test
variable’s coordinates in a circumplex space could be estab-
lished by correlating the variable with dimensional scores
derived from the circumplex measure. This approach starts
by creating dimensional scores for each individual, using ei-
ther the formulas of Equations 16.3 and 16.4 or factor score
estimates of these based on a principal components analysis
of the circumplex measure (see Wiggins et al., 1989). The
variable’s correlations (rX , rY ) with the dimensional scores
yield the X, Y coordinates for the variable’s projection in
the circumplex space. For interpretive purposes, the rectan-
gular coordinates are converted to their polar equivalents, so
that the variable’s projection is now expressed as a vector
with a given direction (or angle, �) and length (VL). The di-
rection identifies the variable’s substantive content—its
blend of the two dimensions that define that space—and the
length indicates the degree of its loading in that space, or
how much it has in common with that domain. In an exam-
ple, Wiggins and Broughton (1991) used this technique to
categorize the interpersonal quality and loading of a large
number of personality test scales that were administered to
samples along with a standard circumplex measure of inter-
personal traits.

Cosine Curve Modeling

As an alternative, Gurtman (1992a) used the cosine modeling
method, described in detail earlier, to assess the structural
features of different personality construct measures. In this
application, the cosine function is used to model not an
individual’s pattern of scores, but a given measure’s pattern
of correlations with the (generally) eight octants of a circum-
plex. The result, essentially, is a kind of structural summary

of the measure, in relation to that circumplex domain. The
earlier Figure 16.6 illustrates the nature of the curve (see also
Gurtman, 1992a); however, in this adaptation of the method,
the dependent variables are a set of correlation coefficients
rather than individual scores.

As shown in Gurtman (1992a), there are three parameters
in the model, each relevant to understanding the nature of the
measure. Angular displacement is the peak-shift of the curve,
indicating the point on the distribution where the measure
achieves its highest predicted correlation in the circumplex
continuum. Amplitude indicates the degree to which the mea-
sure correlates differentially with the scales comprising that
circumplex, and so assesses a measure’s “discriminant valid-
ity” (Campbell & Fiske, 1959). Elevation is the measure’s
average correlation with the circumplex domain, and is re-
lated then to the measure’s correlation with the general factor
(if any) that characterizes that domain. Elevation plus ampli-
tude predicts the highest correlation (generally positive), and
elevation minus amplitude, the lowest correlation (generally
negative) of the measure with the circumplex domain.
Table 16.9, adapted from Gurtman (1992a), shows the results
of this kind of analysis conducted on a variety of putatively
interpersonal measures of adjustment, and in relation to a cir-
cumplex of interpersonal problems. For additional informa-
tion on this method, the interested reader should consult
Gurtman (1992a) or Gurtman (1999).

Item-Centric Analyses

Item-centric analysis is a third approach to the circumplex-
based study of measures and their constructs. (The term item-
centric originates here and has not been used previously to
describe the approach.) The method is covered in detail by
Pincus and Gurtman (1995), who used the approach to ana-
lyze the measurement characteristics of different personality
tests designed to assess dependency. The basic concepts are
discussed in Gurtman (1997).

In an item-centric analysis, a measure’s features are eval-
uated by examining the circular distribution of its items on a
given circumplex, as well as the items’ loadings in that do-
main. The first step is to perform a vector analysis (see previ-
ous section) on each of the items, which yields, for each item,
its angular location (�) on the circle and its vector length
(VL). To illustrate, Figure 16.9, taken from Pincus and
Gurtman (1995), shows the circular distribution (projections)
for 112 dependency items compiled from a variety of popular
measures of that trait.

Using this approach, it is possible to derive three descrip-
tive features of the measure relevant to understanding and
characterizing that scale. Following Gurtman (1997), we
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Figure 16.9 Circular plot of 112 dependency items on interpersonal
circumplex. Source: Adapted from “The Three Faces of Interpersonal
Dependency: Structural Analyses of Self-Report Dependency Measures”
by A. L. Pincus and M. B. Gurtman, Journal of Personality and Social
Psychology, 69, p. 749. Copyright 1995 by the American Psychological
Association. Adapted by permission.

TABLE 16.9 Illustration of Cosine Curve Analysis of Interpersonal Characteristics of Measures of Adjustment

Angular Positive Negative
Scale M SD Displacement Amplitude Elevation Correlation Correlation R2 Fit

Dependency
Emotional Reliance 43.02 8.45 16.4 .144 .292 .436 .148 .866
Lack of Self-Confidence 30.94 6.69 269.1 .252 .450 .701 .198 .976
Assertion of Autonomy 26.79 5.30 160.7 .160 .102 .262 −.058 .812

Empathy
Perspective-Taking 24.17 5.07 321.3 .192 −.078 .114 −.270 .848
Fantasy 24.65 5.83 0.7 .087 .108 .196 .021 .943
Empathic Concern 27.90 4.47 328.9 .290 −.085 .205 −.376 .966
Personal Distress 19.47 4.80 286.5 .180 .242 .423 .062 .970

Narcissism
Authority 3.84 2.28 86.1 .345 −.188 .157 −.533 .977
Exhibitionism 2.37 1.81 72.1 .265 −.043 .222 −.308 .932
Superiority 1.94 1.32 81.1 .179 −.164 .015 −.343 .943
Entitlement 1.71 1.50 105.2 .268 .086 .354 −.182 .946
Exploitativeness 1.60 1.36 93.3 .264 −.046 .218 −.310 .982
Self-Sufficiency 2.20 1.48 105.0 .177 −.128 .049 −.305 .954
Vanity 0.99 1.05 92.1 .120 −.067 .054 −.187 .929

Leadership-Authority 3.69 2.43 83.6 .364 −.179 .185 −.543 .971
Self-Absorption–Self-Admiration 2.98 2.03 87.2 .183 −.160 .023 −.343 .948
Superiority-Arrogance 2.29 1.80 84.5 .281 −.089 .192 −.370 .987
Exploitativeness-Entitlement 1.77 1.63 108.6 .302 .128 .430 −.174 .955

Note. Adapted from “Construct Validity of Interpersonal Personality Measures: The Interpersonal Circumplex as a Nomological Net” by M. B. Gurtman,
Journal of Personality and Social Psychology, 63, p. 111. Copyright 1992 by the American Psychological Association.

refer to these as the measure’s thematic quality, breadth of
coverage, and factorial saturation. Thematic quality, as be-
fore, concerns the trait’s predominant descriptive content, in
relation to the domain of the circumplex being used. It is
indicated by the circular mean (mean angular direction) of
the set of its items. In calculating the circular mean, each
item’s contribution may be weighted by the item’s vector

length (e.g., Pincus & Gurtman, 1995) or each item may be
weighted equally (unit weighting) as in Gurtman, 1997.
Breadth of coverage concerns how narrowly or broadly the
measure samples from that particular circumplex domain.
Narrow coverage suggests a cohesive test with “fidelity” of
measurement, whereas broad coverage suggests a test that is
less cohesive but that has greater “bandwidth.” (Cronbach,
1990). Breadth of coverage is indexed by the dispersion of
the items around the mean—that is, by its circular variance.
Finally, factorial saturation indicates the amount of variance
that the measure shares with that particular circumplex
domain—for example, how “interpersonal” it is when refer-
enced to an interpersonal circumplex (e.g., Gurtman, 1991).
It is calculated as the average vector length (VL) of the
measure’s items.

Figure 16.10, reproduced from Pincus and Gurtman
(1995), shows the results of this kind of analysis conducted
on eight popular measures of interpersonal dependency. As
can be seen, the measures’ circular means vary considerably,
although most are in the lower right quadrant of the interper-
sonal circumplex, indicating that the measures generally tap
friendly forms of submissiveness. The iconic representations,
which are based on the circular variances, suggest that mea-
sures also differ in their breadth of coverage. (The circular
variances, though not given directly, are related to the values
listed in the last two columns.) Finally, each measure’s
factorial saturation, shown by the mean item vector length,
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also varies, with some dependency measures more interper-
sonal (e.g., Social Self-Confidence) than others (e.g., Emo-
tional Reliance).

CONCLUSIONS, FUTURE DIRECTIONS, AND
ADDITIONAL RESOURCES

This purpose of this chapter has been to introduce and
demonstrate the various methods of analysis associated with
circumplex models. For the most part, we have covered
the standard ways in which researchers have tested and ap-
plied the model in pursuing their research goals. Before
closing, however, we would like to briefly suggest two di-
rections for future development of the circumplex model
and its methods.

Theory Testing

As was stated early in this chapter, the circumplex correlation
model is a relatively nonrestrictive model, in that many cor-
relation patterns ultimately satisfy the requirements of the
model (Table 16.2; e.g., Fabrigar et al., 1997). Moreover, in
its geometric version, there is no preferred orientation of
axes, because variables, by definition, are equally distributed
(Hofstee et al., 1992; Tracey, 2000). These unfixed properties
of the circumplex put special impetus on investigators to

provide appropriate theoretical foundations to support the
choice of axes (latent dimensions) and to explain the covari-
ation among variables in the domain of interest.

In a previous article (Gurtman & Pincus, 2000), we have
suggested that a necessary next step in circumplex-based re-
search programs is the testing of theories that give rise to al-
ternative circumplex models for a given domain. Within the
interpersonal domain, compelling arguments in favor of
the dominance-nurturance circumplex system (Wiggins,
1991) and a theoretical account of covariation in traits that
proposes a specific correlational pattern (Wiggins, 1979;
Wiggins & Trapnell, 1996) have been articulated. However,
even with agreement regarding the axes and their orientation,
alternative correlational patterns exist for the IPC (Gaines et
al., 1997; Gurtman, 1994; Leary, 1957; Wiggins, 1979). 

Likewise, investigators interested in the structure of af-
fect (e.g., Carroll et al., 1999; Yik et al., 1999), and of voca-
tional interests (e.g., Tracey & Rounds, 1996a, 1996b), are
addressing similar issues with regard to their circumplex
models. We suggest that directions for future research should
include evaluation of the theoretical bases of alternative cir-
cumplex models in any domain in which they are derived
and applied.

The Relational Circumplex

We use the term relational circumplex to highlight an im-
portant potential application of the circumplex model—as a

Figure 16.10 Circular analysis conducted on eight dependency scales. Source: From “The Three Faces of Interpersonal
Dependency: Structural Analyses of Self-Report Dependency Measures” by A. L. Pincus and M. B. Gurtman, Journal of Personal-
ity and Social Psychology, 69, p. 751. Copyright 1995 by the American Psychological Association. Adapted by permission.
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framework for assessing individual relations (i.e., lawful
correspondences or interdependencies) between people. For
example, in interpersonal psychology, an important theoret-
ical principle is complementarity (Benjamin, 1996; Kiesler,
1996; Leary, 1957)—interpersonal behaviors tend to elicit
or “invite” certain kinds of consequent behaviors from oth-
ers (generally, dominance elicits submissiveness and vice
versa, love and hate elicit corresponding behaviors). Com-
plementarity thus suggests a kind of fit between the behav-
iors of the interactants in the dyad. When tied to the
circumplex model (e.g., Kiesler, 1996), tests of complemen-
tarity theory would require that the circumplex model be
used relationally—that is, to chart and compare the posi-
tions of the two interactants in the common space of the in-
terpersonal circle, and generally across the span of their
interaction. A number of studies have now used the circum-
plex in this way (see Kiesler, 1996, for a review), although
until recently (Gurtman, 2001; Tracey, 1994), quantitative
methods for indexing relational fit have been relatively
crude.

Outside the interpersonal domain, the relational circum-
plex also has relevance to important research questions and
practical applications. Two quick examples are provided
here. In the affect domain, an extensive literature exists on
the phenomenon of emotional contagion, the tendency of in-
dividuals to transmit their positive and negative moods to
others in their social environment (for a review, see Hatfield,
Cacioppo, & Rapson, 1994; for a recent study, see Strack &
Neumann, 2000). Application of an affect circumplex (e.g.,
Russell, 1980) can help bring greater specificity and preci-
sion to the assessment of contagion effects. In the vocational
interests literature, it is generally assumed that the fit be-
tween an individual’s vocational interest pattern and the
affordances of the work environment is an important deter-
minant of occupational satisfaction (e.g., Holland, 1973). If
such assessments are done within the context of the respec-
tive RIASEC circles (interests, work environment), then re-
lational fit measures based on the circumplex are both
relevant and optimal.

Additional Resources

To further explore the circumplex, its applications, and its
methods, the interested reader may consult a number of use-
ful chapters, books, and articles. We especially recommend
Kiesler (1996), Tracey (2000), Wiggins and Trapnell (1996),
Wiggins and Trobst (1999), as well as a recent volume edited
by Plutchik and Conte (1997) and dedicated solely to the cir-
cumplex model.
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CLASSICAL TEST THEORY

True Score Model

The classical test theory (CTT) approach to measurement is
founded on the true score model (see Gulliksen, 1950;
McDonald, 1999, for discussions). The true score model is
based on the observed measurement of a person. This obser-
vation is considered a random variable, composed of two
other random variables, a true score and an error score, as
follows:

X = T + E, (17.1)

where X = observed score, with a mean �X and a variance
�2

X ; T = true score, with a mean �T and a variance �2
T ; and

E = error score, with a mean �E and a variance �2
E . The

expected value for the error score E is zero, which is the
mean, �E = 0; hence, the expected value of X equals the ex-
pected value of T:

E(�X ) = E(�T ) (17.2)

As with Equation 17.1, the variance of the observed score is
the sum of the true score variance and the error score vari-
ance, as follows:

�2
X = �2

T + �2
E . (17.3)

While true score theory acknowledges measurement error, in
most approaches it does not generally allow for different lev-
els of measurement error for different levels of ability (but
see Feldt & Brennan, 1989, and Lee, Brennan, & Kolen,
2000, for exceptions).

Assumptions

Applying the true and error score model of CTT requires
assuming that errors are random and therefore uncorrelated
with each other and uncorrelated with true scores. If such
errors are a combination of several factors, then a normal dis-
tribution of errors can be expected, with a mean of zero and a
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Collam and would like to thank John McArdle, John Nesselroade,
Ryan Bowles, Tracy Kline, and Wayne Velicer for helpful comments
during the writing of this chapter. She would also like to thank Bill
Stell for assistance in editing and writing style. The writing of this
chapter was partially funded by grants from the College Board and
a sesquicentennial associateship from the University of Virginia to
Karen M. Schmidt.
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variance of �2
E . Random error further implies that error

scores are not correlated with other variables. These assump-
tions about error are necessary to interpret the various indices
of reliability.

Notice that the CTT model does not include a test item’s
characteristics or content, but makes reference to item rela-
tionships with other variables. Thus, if the trait or attribute is
measured or measurable by more than one test, then equiva-
lent parallel forms (e.g., Gulliksen, 1950) or special test-
equating methods (Holland & Rubin, 1982) are necessary for
making score comparisons. Some characteristics of strictly
parallel forms include equal means, variances, and correla-
tions with other variables. To achieve this condition, item
properties (discussed later) must be matched across forms. 

Score Meaning: Norm-Referenced

In CTT, test scores derive meaning from comparisons to a
norm or standard. The normative standard is a large-scale
sampling of individuals to which the presently measured
person or group is compared. The Wechsler Adult Intelli-
gence Scales–Revised (WAIS-III; Wechsler, 1997), the Beck
Depression Inventory (BDI; Beck, Steer, & Brown, 1996),
and the Minnesota Multiphasic Personality Inventory–2
(MMPI-2; Butcher, Dahlstrom, Graham, Tellegen, &
Kaemmer, 1989) are among the most widely used tests
generating the greatest number of references for large-scale,
norm-referenced scales (see Murphy, Impara, & Blake, 1999,
for a list of tests).

Standard scores are often used in CTT references to norms
to indicate the position of test scores in a norm group. Stan-
dard scores are based on unit-normal z scores, computed
from raw scores for a particular norm group. However, nega-
tive scores are generally unacceptable to examinees, so
z scores are converted into another metric, for example, a
mean of 500 and standard deviation of 100 (e.g., SAT scores),
or a mean of 100 and standard deviation of 15 (e.g., WAIS-III
scores). A standard score, Xi, involves a target mean, �s , and
standard deviation, �s , which may be computed from a
person’s z score as follows:

Xi = �s + zi �s (17.4)

While norm-referenced assessment has dominated the
field of psychometrics for many years, the modern test theory
approach—IRT—can confer meaning to scores by reference
to items as well as to norms. That is, IRT allows person-to-
item comparisons because they are on the same measurement
scale (e.g., Embretson & Reise, 2000; Wright & Stone,
1979). A norm-referenced score relates, for example, to an

age-appropriate group but does not indicate which items a
person has successfully mastered. IRT scores also may be ref-
erenced to norms, thus allowing for two sources of meaning.

Item Properties

Although the CTT model does not include item characteris-
tics in the basic model, a set of indices and procedures for test
development are associated with CTT.

Item Difficulty: p Values

In CTT, p values, defined as the proportion of persons cor-
rectly responding to or agreeing with an item, are used to de-
termine an item’s difficulty. Values of pi range from .00 to
1.00. Table 17.1 illustrates common item analysis statistics.
In columns 2 and 3 of Table 17.1, the p values and standard
deviations are given for 30 dichotomously scored, multiple-
choice spatial ability items [SLAT (Spatial Learning Ability
Test); Embretson, 1989] for a sample of 178 adults aged 18 to
84 (McCollam, 1997). Note that Item 10 is a relatively easy

TABLE 17.1 Summary Statistics for 30 Spatial Ability Items,
N � 178

Point-Biserial Biserial
SLAT Item p-Value SD Correlation Correlation

1 .567 .497 .463 .583
2 .332 .472 .319 .414
3 .506 .501 .252 .316
4 .371 .484 .274 .350
5 .365 .483 .420 .537
6 .500 .501 .406 .509
7 .253 .436 .300 .408
8 .590 .493 .366 .463
9 .438 .498 .574 .723

10 .725 .448 .431 .576
11 .348 .478 .441 .568
12 .697 .461 .467 .614
13 .365 .483 .405 .519
14 .270 .445 .211 .284
15 .242 .429 .158 .217
16 .258 .439 .243 .329
17 .714 .453 .425 .564
18 .573 .496 .324 .409
19 .444 .498 .386 .486
20 .348 .478 .427 .550
21 .399 .491 .278 .353
22 .449 .499 .392 .492
23 .365 .483 .231 .296
24 .534 .500 .418 .525
25 .781 .415 .335 .469
26 .449 .499 .378 .475
27 .438 .498 .496 .624
28 .371 .484 .336 .429
29 .500 .501 .377 .473
30 .584 .494 .344 .435

Note. K-R 20 = .848.
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item and Item 7 is a relatively difficult item. Sometimes, ob-
served p values are adjusted for guessing factors in multiple-
choice contexts, where the adjusted proportion of people
passing the item is not the proportion of persons who know
the answer (see Crocker & Algina, 1986).

Item Discrimination: Item to Total Score Correlations

Item discrimination is the correlation between a test item
and the total score. Conceptually, good discrimination is
evidenced when passing an item positively correlates with in-
dividual overall scores. Negative discriminations indicate
faulty item design, and items should be eliminated, modified,
or examined for possible response strategy differences (e.g.,
Schmidt McCollam, 1998). With CTT, for a dichotomously
scored set of responses to a unidimensionally designed test,
an item’s effectiveness at discriminating among persons is
often indicated by biserial and point-biserial correlations.

Biserial correlations are computed under the assumption
that a continuous and normally distributed latent variable un-
derlies the item response. Column 4 of Table 17.1 gives bise-
rial correlations. Note that Item 9 demonstrates relatively
good discrimination, and Item 15 relatively poor discrimina-
tion. Among the reasons underlying item differences in effi-
ciency are poorly worded items, weak experimental item
design, response strategy differences, item multidimension-
ality, and bias.

The point-biserial correlation is a direct, Pearson product-
moment correlation of the item response with total score and
hence is readily available in standard statistical program
packages (e.g., SPSS, SAS). However, the point-biserial cor-
relation is influenced by item difficulty such that items that
are very easy or very hard will appear less discriminating.
The point-biserial correlation is slightly lower than the biser-
ial correlation for items of moderate difficulty (i.e., .20 to .80)
but becomes increasingly smaller as item difficulty becomes
more extreme. On Table 17.1, for example, Item 18 and Item
25 have about the same point-biserial correlation, but Item 25
is much easier than Item 18. Notice that the biserial correla-
tion for Item 25 is .469 while the biserial correlation for Item
18 is .409.

Several other CTT indices of discrimination are available
for the special case of criterion classification, where individ-
uals are placed into categories from cut scores on test totals.
These indices include the index of discrimination, phi corre-
lations, and tetrachoric correlations. The index of discrimina-
tion computes p-value differences by groups defined from cut
scores. Large differences in p values between groups indicate
high item discrimination. Phi correlations are product-
moment correlations between dichotomized total scores and

items. However, like point-biserial correlations, the phi cor-
relation is influenced by item difficulty such that the maxi-
mum possible correlation is often substantially less than 1.0.
Tetrachoric correlations are estimates of the product-
moment correlation if both criterion and item were continu-
ous variables. Like the biserial correlation, they can be much
higher than the direct product-moment correlation (i.e., phi)
for items with extreme difficulties or in small samples. 

Both phi and tetrachoric correlations can be computed to
intercorrelate items. Such correlations may be used for factor
analysis to determine the number of dimensions that are mea-
sured by an item set. Tetrachorics usually are preferred over
phi correlations because they are not as biased by extreme
p values. However, factor analysis using tetrachoric correla-
tions can result in statistical violations such as negative factor
variance estimates.

There are generalizations of the biserial correlation and
the tetrachoric correlation for polytomously scored items.
Polytomously scored items have multiple categories, such as
appear in rating scale items. In the ability measurement con-
text, these item responses reflect the relative degree of en-
dorsement, or partial correctness relative to the construct,
rather than absolute endorsement or correctness in dichoto-
mous items. Polyserials are correlations of continuous vari-
ables (such as total scores) with categorical variables (i.e., the
items). Polychoric correlations correlate two continuous
variables that have been divided into at least three categories.
For discussions, see McDonald (1999).

Note that adjustments can be made to the item-total corre-
lations by eliminating the item’s score from the total score in
calculation. This correction is called the corrected item-total
correlation (see Crocker & Algina, 1986). The need for such
adjustment diminishes when considering a relatively large
number of items and equally discriminating items.

Test Development With CTT

Item Selection

Earlier, an item’s discrimination was described as being indi-
cated by its biserial correlation, and item difficulty as being
indicated by its p value. Both of these CTT indices allow for
item selection for testing. In general, the goal is to select item
difficulties that are appropriate for a target population. If the
population is normally distributed and the empirical tryout of
items is based on a representative sample, a common rule of
thumb is to select most items with p values falling in the
range of .40 to .60. Item discriminations should be high. For
a test of a single ability (e.g., spatial ability for SLAT) and di-
chotomous item responses, biserial correlations should be
particularly high. 
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In Table 17.1, no negative or zero biserial correlations were
observed, thus indicating at least minimal discrimination for
all items. Overall, the set of 30 items shows a good range of
difficulty and discrimination and generally appears to be a re-
liable set. However, if only a subset of the items is needed,
then item selection could be applied to yield a set with high
psychometric quality. Considering p value and the biserial
correlation jointly, Item 9 is the best item overall, with moder-
ate difficulty and high discrimination. Biserial correlations for
three items (Item 14, Item 15, and Item 23) fall below .30,
which is relatively low for a unidimensional test of ability.
One could consider omitting these items. For item difficulty,
Table 17.1 shows that 13 items have p values below .40, while
only three have p values above .60. A total of 14 items fall in
the moderate range. Thus, to better match the population, sev-
eral hard items should be eliminated. Considering both crite-
ria, Items 14, 15, and 23 are candidates for deletion.

Norms

Since test scores mainly derive meaning from comparisons to
norms (reference to a criterion is an alternative approach), it is
very important in CTT to have reasonable normative samples
available. For example, if SLAT were to be used for selection
to military service, then a representative sample of military
applicants or young adults should be available. Most tests
have multiple norm groups so that scores can be given mean-
ing depending on test use. SLAT may also have high school
norms, college norms, engineering student norms, and more.

Test Evaluation With CTT

Reliability and validity are central to evaluating the psycho-
metric quality of a test (e.g., Anastasi & Urbina, 1997; Traub,
1994). Both reliability and validity are theoretical measure-
ment concepts that are not defined by any one study or index. 

Reliability

Conceptually, reliability is defined as the proportion of true
variance to total variance. Practically, reliability is defined as
the consistency of measurement over the conditions of test-
ing. Such conditions include time sampling, content sam-
pling, content heterogeneity, and scorer/rater differences
(Anastasi & Urbina, 1997). Since there are many testing con-
ditions, several different types of evidence are needed to sup-
port reliability. Further, reliability is also dependent on the
population being tested, so multiple studies on a single type
of reliability are often needed.

Reliability coefficients are computed for two uses. First, a
particular reliability coefficient indicates the proportion of
test variance that is due to true variance (see Equation 17.3).
Second, the reliability coefficient can be used to compute a
standard error of measurement, which thus permits a confi-
dence interval to be set around each score. Some popular re-
liability indices include the following: split-half (Rulon,
1939); Kuder-Richardson (K-R 20; Kuder & Richardson,
1937); alpha (Cronbach, 1951), which is related to K-R 20;
test-retest; alternate or parallel form; and scorer (see Gullik-
sen, 1950). Index preferences depend on the individual needs
of the researcher, available resources, and the test-scoring
method.

To estimate the impact of item heterogeneity on reliability,
two different indices of internal consistency reliability are
often applied. K-R 20 coefficients can be computed on di-
chotomous items while the Cronbach’s alpha coefficients (for
which K-R 20 is a special case) can be computed on either di-
chotomous or polytomous items. The coefficient for K-R 20
is given as follows:

rtt =
(

n

n − 1

)
SD2

t − ∑
pq

SD2
t

(17.5)

where rtt is the reliability coefficient, n is the number of
items, SD2

t is the total score variance, and ∑pq is the sum of
the proportion of those passing (p) times those failing (q)
each item (and also known as the sum of item variances). At
the bottom of Table 17.1 the K-R 20 coefficient is given for
the 30-item set, which is a moderately high .848.

Test length and population heterogeneity each affect the
size of reliability coefficients. Longer tests and hetero-
geneous populations, in general, will have higher internal
consistency (Anastasi & Urbina, 1997; Traub, 1994). The
Spearman-Brown prophecy formula (Gulliksen, 1950)
demonstrates and estimates the effect of test length on relia-
bility indices:

rSB = nrtt

1 + (n − 1)rtt
(17.6)

where rSB is the reliability estimate for the increased test
length, n is the test length change multiplier (e.g., if the test is
to be doubled in length, n is 2), and rtt is the reliability coeffi-
cient for the original test length. In the present example, the
effect of increasing the test’s length by 15 items results in a
new reliability estimate of .893. This value is close to .90,
and, by strict standards, is often regarded as a minimum for
an operational test. Decreasing the test length by 15 items
gives a new reliability estimate of .736. 

Standard errors of measurement are computed by using a
specific reliability coefficient. The general formula for the
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standard error of measurement is the following:

SEmsmt = ��(1 − rtt ), (17.7)

where rtt is the reliability coefficient and � is the population
standard deviation of the test (which is typically from stan-
dard scores). Thus, if a test has a standard deviation of 100
and a reliability coefficient of .848, the standard error of mea-
surement is 38.98.

Generalizability Theory. Generalizability theory (G-
theory) addresses the separation of different variance sources
into components, usually using a linear model (see, e.g.,
Cronbach, Glaser, Nanda, & Rajaratnam, 1972; Shavelson &
Webb, 1991). Typically, one assumes that a unidimensional
model underlies the items in the behavior domain, or the set
of all items (see McDonald, 1999, for a discussion). Ade-
quate item sampling of the item domain is essential, and in-
adequate sampling is assumed to be responsible for errors of
measurement.

A typical G-study involves determining the Guttman-
Cronbach alpha (McDonald, 1999), which assesses the score
correlation between the item sampling mean and the item do-
main mean in a given population. This correlation indicates
the relationship strength of the item sample with the entire
item domain. Next, a decision study (D-study) is made in an-
other population, based on the G-study results. If the new
population’s alpha is lower than desired, one can use the
Spearman-Brown equation in Equation 17.6 to determine the
test’s more ideal length and increase the number of items
sampled, thus reducing measurement error.

Validity

Validity refers to the extent to which theory and evidence sup-
port the test as a measure of the construct or attribute that it was
designed to measure. This general definition is usually associ-
ated with the definition of construct validity. The construct
may be a latent variable or simply a concept or characteristic
of individuals that is inferred from test scores. For example,
verbal ability may be considered a construct, defined opera-
tionally as facility with language. Construct validation begins
with a detailed conceptual framework about what the test mea-
sures to describe its scope, extent, and what is represented by
the test. It is important to note that this conceptualization of the
construct should distinguish it from other constructs (i.e., dis-
criminant validity) and how it is related to other constructs
(i.e., convergent validity). Cronbach and Meehl (1955), who
first conceptualized construct validity, outlined several rele-
vant types of evidence to support a proposed inference made

from test scores. The current Standards for Educational and
Psychological Tests (American Psychological Association,
American Educational Research Association, National Coun-
cil on Measurement in Education, 1999) list the following
types of evidence: (a) evidence based on test content, which is
usually based on expert opinion about the relationship of the
construct and the test content domain, item formats, tasks, and
so forth; (b) evidence based on response processes, the fit of
the construct definition to the processes individuals employ to
respond to the task; (c) evidence based on internal structure,
the degree to which test component and item interrelation-
ships fit the proposed construct; (d) evidence based on rela-
tions to other variables, including the relationship of test
scores to performance criteria, measures of other constructs,
and group membership; and (e) evidence based on the conse-
quences of test use, such that any discrimination between
identifiable groups has its roots only in the intended construct
and not in other unintended and irrelevant constructs.

Empirically, construct validity is assessed using a variety
of methods. For example, construct validity is assessed using
factor analysis, experimental studies, cognitive process stud-
ies (Embretson, 1983), experimental studies (Cronbach &
Meehl, 1955), structural equation models, and validity gener-
alization (Hunter, 1986). For some discussions of validity
and its methodological treatments, see Cook and Campbell
(1979), Campell and Fiske (1959), Cronbach and Meehl
(1955), Embretson (1983), and Messick (1995).

Prior to the current Standards for Educational and Psy-
chological Tests, several subvarieties of validity were distin-
guished (see Anastasi & Urbina, 1997): predictive validity,
concurrent validity, content validity, and construct validity
(defined earlier). The current interpretation in the Standards
for Educational and Psychological Tests, representing the
collective wisdom of many measurement experts, considers
them all as types of evidence for construct validity, but with
an expanded definition of the term construct. For complete-
ness, however, we will define these types of validity. Predic-
tive validity focuses on the relationship of the test with some
outcome measure occurring later in time. Concurrent validity
examines the correlation between the test and current scores
on some test or performance in some specific domain. Con-
tent validity assesses whether the sampled items represent a
content domain adequately. Construct validity, in the narrow
sense, refers to the appropriateness of inferring standing on a
latent construct from the test scores. It can be seen that the
first three types of validity are now included as types of
evidence (i.e., Examples a and b), and that construct validity
has been generalized to include the other types.

Two other validity distinctions, convergent validity and dis-
criminant validity, are included in evidence from relationships
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with other variables. Convergent validity is reflected when
tests measuring the same construct are highly correlated, and
discriminant validity is indicated by low correlations of the test
with tests of unrelated constructs.

Summary

Classical test theory has dominated the field of psychomet-
rics for most of the last century. It has provided a foundation
for psychological measurement by including (a) an empirical
basis for item evaluation and selection, (b) an objective refer-
ent for score comparisons (i.e., norms), and (c) the concep-
tual rationale and empirical basis for evaluating test quality
(i.e., reliability and validity).

The CTT model is limited in several ways. First, since the
CTT model has no allowance for possibly varying item para-
meters, item parameters must be regarded as fixed on a par-
ticular test. Thus, the generality of true score is limited to
tests with parallel or very similar collections of items. Al-
though this limitation is somewhat circumvented by sam-
pling approaches to items (i.e., in generalizability theory and
similar approaches), in a practical sense most tests cannot be
built as random samples from an item domain. Second, the
estimates for item properties and reliability are population-
specific; that is, these indices are meaningful only in refer-
ence to a particular group of individuals. In reference to
another group of individuals, the indices lose meaning. The
true and error score model is used to justify estimates of pop-
ulation statistics that require variance estimates. Third, item
properties are not directly linked to behavior. That is, know-
ing a person’s score refers to an overall level relative to a
group of persons. Nothing is known about which items the
person has likely passed or likely failed. Thus, using item dif-
ficulty and discrimination to select items is justified by their
impact on various population statistics, such as variances and
reliabilities.

However, more modern techniques developed since the
1960s have changed measurement methods in several ways.
Although item response theory (IRT) methods enhance some
CTT methods, perhaps more important is the impact of IRT
for a new basis of score meaning, item selection, and design,
as well as new methods of testing. 

ITEM RESPONSE THEORY

Item response theory methods have two distinct traditions.
In the United States, IRT is usually traced to Lord and
Novick’s (1968) classic book on measurement. Preceding
this volume was Lord’s (1953) monograph on test theory
models and Birnbaum’s (see Lord & Novick, 1968, for

references) development of estimation methods. In Europe,
IRT methods (known as latent trait theory) were first intro-
duced in 1960 by Georg Rasch, a Danish mathematician who
developed what is known as the Rasch model. For a histori-
cal account of IRT, see Bock (1997).

Since their introduction, IRT models, test procedures, and
estimation procedures have developed rapidly. Although IRT
can include CTT as a special case, it is based on qualitatively
different principles. To provide the reader some insights into
IRT, this section begins with a consideration of IRT as model-
based measurement, followed by a review of three basic mod-
els and their parameters. More complex models, appropriate
for a wide range of applications, are also reviewed briefly.

Model-Based Measurement of Ability 

Measurements of psychological constructs are usually indi-
rect; latent variables are measured by observing behavior on
relevant tasks or items. The properties of both persons and
items on a psychological dimension are inferred from behav-
ior. Thus, a measurement theory in psychology must provide
a rationale for relating behaviors to the psychological con-
struct. Typically, a measurement theory rationale includes a
model of behavior.

In IRT, like CTT, a person’s trait level is estimated from
responses to test items. However, an IRT model specifies
how both trait level(s), as well as item properties, are related
to a person’s item responses. Since trait level is estimated in
the context of an IRT model, IRT is thus a model-based
measurement.

IRT is a powerful modeling method because strong as-
sumptions must be met. The following sections describe
these assumptions and then present three unidimensional IRT
models that are appropriate for tests that measure a single la-
tent trait.

Three Basic IRT Models 

The Most Basic Model

In the simplest model, the Rasch model, a person’s item re-
sponses are modeled from a simple difference between their
ability and the item’s difficulty in the context of a logistic
model. Expressed in the form of conditional probability, giv-
ing item-characteristic curves (ICCs), the Rasch model (also
known as the one-parameter logistic model, or 1PL) is given
as follows:

P(Xi j = 1 | �j ) = exp(�j − �i )

1 + exp(�j − �i )
(17.8)
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where P(Xi j = 1 | �j ) is the probability that person j with
ability of �j answers item i correctly, �j is the ability for per-
son j, �i is the difficulty for item i, and exp is the exponent of
the constant, e (2.7181).

Three ICCs are shown in Figure 17.1. Note the differences
among the three items along the theta scale, marked in log-
odds units on the abscissa. Items 1 and 2 are centered over
values of −1.5 and −1.0, respectively. Item 3 is centered
higher on the scale, over 2.0. For the one-parameter dichoto-
mous Rasch model, the location, threshold, and difficulty of
the item refer to the same information: the point along the
scale where the probability of endorsing an item is .50. From
left to right, the scale ranges from relatively easy to relatively
hard items. Similarly, ability values range from low to high
trait levels, from left to right. Thus, for most of the ability
range, Item 3 requires a higher trait level for correct item en-
dorsement than do Items 1 and 2 and is therefore relatively
more difficult than are Items 1 and 2. 

Another feature of the ICC is that the probability of cor-
rectly endorsing an item, given theta level, never perfectly
reaches 1, and never reaches 0. Practically speaking, the pos-
sibility of error is specified even for the highest ability, and the
possibility of success is specified for even the lowest ability.

More Complex Models

The 1PL model for dichotomous responses, just described, is
based on the notion that after ability is considered, the only
parameter governing item responses is the difficulty of the
item. Item difficulty is symbolized by B, or �. More complex
IRT models incorporate more item or person parameters to
model the item response data. In this section, we describe two
more basic models—the two- and three-parameter (2PL and

3PL) logistic models—that incorporate one more item para-
meter each. However, much more complex models are avail-
able, such as multidimensional IRT models, polytomous IRT
models, and IRT models that include mathematical models of
item processes (see Andrich, 1978; Masters, 1982, for exam-
ples; see Embretson & Reise, 2000, for a survey).

The 2PL model for dichotomous responses incorporates a
� parameter, which represents item discrimination. The slope
of the logistic ICC varies as a function of �i , and each item
has its own � parameter. The 2PL model is written as follows:

P(Xi j = 1 | �j , �i , �i ) = exp �i(�j − �i )

1 + exp �i(�j − �i )
(17.9)

where P(Xi j = 1|�j , �i , �i ) is the probability that person j
with ability of �j answers item I correctly, �j is the ability es-
timate for person j, �i is the difficulty for item i, �i is the dis-
crimination (slope) for item i, and exp is the exponent of the
constant e. Figure 17.2 shows ICCs for three items estimated
from the 2PL model. Notice that � is relatively low for Item
3, indicating that the probability for solving this item is less
related to trait level differences than for the other two items.
In the Rasch model in Equation 17.8, no � parameter is in-
cluded because not only are all items assumed to be equally
discriminating, but the value is set to 1.0 for all items as well.

The 3PL model for dichotomous responses adds a lower
asymptote or guessing parameter, �, to the terms in the 2PL
model as follows:

P(Xi j = 1|�j , �i , �i , �) = � + (1 − �)
exp �i(�j − �i )

1 + exp �i(�j − �i )
(17.10)

The lower asymptote represents the probability of solving
an item at the very lowest trait levels and so is thought to
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represent guessing. Thus the ICCs would not fall below � in
the 3PL model, while for Figure 17.2 the ICCs fall very close
to zero for low ability levels.

Assumptions

Two basic assumptions must be made for applying IRT mod-
els to a test: (a) The ICCs have a specified form, and (b) local
independence has been obtained. The form of an ICC
describes how changes in trait level relate to changes in the
probability of a specified response category. The ICC
regresses the probability of item success on trait level. For
dichotomously scored items, success is “correct” or “agree-
ment” with an item. The form specified in the 1PL, 2PL, and
3PL models is logistic, which gives the S-shaped curves
shown on the figures. The case of multicategory or polyto-
mous items is considered later.

Local independence concerns the sufficiency of an IRT
model to characterize the data. Local independence is ob-
tained when the relationships among items (or persons) are
adequately reproduced by the IRT model. That is, the princi-
ple of local independence states that no further relationships
remain between items when the model parameters are con-
trolled. The pattern of correlations among test items is ex-
pected to be fully explained by their parameter differences
and by the person parameters. Achieving local independence
also implies that the number of different person variables
(traits) in the model is sufficient to reproduce the data. Thus,
if a model with only one person parameter is sufficient, then
the data are unidimensional.

Score Meaning: Item or Norm-Referenced 

Trait-level scores, �, are scaled as log-odds ratios, and they
are often set so that the mean is zero. Thus, trait level scores
are often comparable to z scores in magnitude. However,
trait-level scores differ in several ways from z scores, which
are CTT-based. First, unlike z scores, � is not linearly related
to the raw score. The intervals between scores differ because
the IRT scale generally produces greater distances between
extreme scores. Second, for more complex models, such as
2PL and 3PL, � is not monotonically related to raw score.
That is, the item discriminations weight the value of item re-
sponses. Individuals at the same raw score will have higher
�s if they pass more discriminating items. Third, the standard
error of measurement varies over levels of �, rather than hav-
ing a constant value as for typical CTT scores. The standard
error of measurement is lower for moderate abilities when the
test has mostly items of moderate difficulty. The standard
error of measurement for a particular � depends on the

appropriateness of the items and on other properties, such as
item discrimination. Fourth, trait-level scores need not be de-
rived from equivalent forms. In fact, in the case of adaptive
testing (discussed later), greater precision is obtained when
test forms vary widely in difficulty between examinees (also
see Embretson & Reise, 2000). Fifth, the trait-level score has
direct meaning for item performance. 

Table 17.2 shows raw scores, trait levels (abilities), and
standard errors of measurement for the first 15 examinees on
SLAT from the 2PL model. Several features of this table
illustrate the points just mentioned. Notice that trait-level
scores appear similar to z scores. However, note that individ-
uals with the same raw score, such as Person 2 and Person 3,
do not have the same estimated trait level. With the 2PL
model, ability estimates also depend on which items are
passed. Highly discriminating items receive more weight in
trait levels. Also notice that the standard errors of measure-
ment differ across examinees and even among examinees
with the same total score. Person 9 and Person 10, for exam-
ple, at a raw score of 12, have slightly different trait levels
and standard errors. 

Figure 17.3 presents the standard error of measurement
corresponding to various SLAT trait levels for the Rasch
model. The typical U-shaped curve, with greater measure-
ment error at the extremes, is observed. In general, fewer ap-
propriate items for the extreme scores leads to greater
measurement errors.

The last difference from z scores, a direct meaning for
item performance, merits further discussion because it
provides another basis for interpreting IRT trait levels.
Figure 17.4 shows a person-characteristic curve (PCC) for
one person. PCCs give the probability that a person with a
particular � level solves items. In the case of the Rasch

TABLE 17.2 Raw Scores, Trait Levels, and Standard Errors of
Measurement for SLAT Examinees

Person Raw Score Trait Level Standard Error

1 14.00 −.6086 .33
2 5.00 −1.6614 .35
3 5.00 −1.5669 .35
4 16.00 .0526 .30
5 4.00 −1.6787 .36
6 5.00 −1.6746 .36
7 16.00 −.0349 .36
8 3.00 −2.0214 .48
9 12.00 −.6194 .32

10 12.00 −.6513 .29
11 6.00 −1.4610 .38
12 9.00 −.7710 .26
13 16.00 .1572 .26
14 7.00 −1.4588 .38
15 7.00 −1.0268 .42

Note. First 15 persons are given.
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model, the only item parameter for the PCC is item difficulty.
Notice how a probability can be given for any item for which
difficulty is known.

Since trait level and item difficulty are on the same scale,
it is also possible to make joint distributions of trait-level fre-
quencies in some group and item difficulties. Figure 17.5
shows the joint distribution of persons and items for SLAT.
On the person side, the frequency of each trait level in the
sample is indicated. On the item side, each item is plotted by
its difficulty. The notation for each item indicates its position
on the test and two variables to represent the mental folding
process—number of surfaces carried and the degrees of rota-
tion. In this plot each trait level can be matched with the
items that are at the level (i.e., with a .50 probability). Items

Figure 17.5 Person-to-item map of adults with SLAT items.

falling below the trait level are easy, while items above the
trait level are hard. 

Like CTT scores, IRT trait levels may be linearly trans-
formed to standard score systems. However, as noted earlier,
the standard scores from IRT trait levels will not be linearly
related to CTT standard scores. The IRT score intervals are
preferable not only because they are optimal for modeling
item performance, but also, as in the case of the Rasch model,
because justifications for interval-level scale properties can
be made (discussed later).

Item Properties

The IRT models just presented are increasingly more com-
plex. In the most complex model, the 3PL, item parameters
include item difficulty (�), item discrimination (�), and lower
asymptote (guessing, �).

Table 17.3 presents item parameters from the 1PL (Rasch
model) and the 2PL model for the SLAT data. For the 1PL
model, all item discrimination parameters are equal and set to
1.0. The mean item difficulty is set to 0, but the individual
item difficulties vary substantially, with a standard deviation
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of .75. Items with negative values are relatively easy, while
items with positive values are relatively difficult. Also in-
cluded are the standard errors for each item difficulty. The
precision of the item difficulty estimates varies, which indi-
cates the appropriateness of the item difficulties for the ob-
served abilities in the sample. For the 2PL model, both item
difficulties and item discriminations vary. Low � parameters
are observed for three items, Item 3, 14, and 15. In a direct
sense, the value indicates that item-solving probabilities
change relatively more slowly with increased trait level of
these items. Stated in another way, these items are less dis-
criminating. Item difficulties for the 2PL model, �, differ
somewhat from the estimates in the 1PL due to the varying
item discriminations. However, the item difficulties have
generally the same pattern in the 2PL as in the 1PL model.
The 3PL model was not estimated for SLAT because the
sample size is too small. Adequately estimating for the 3PL
model requires large samples, such as 1,000 persons if a
unique lower asymptote is estimated for each item.

Measurement Scale Properties

Two measurement properties that result from applying IRT
models are person-free item calibration and item-free person
measurement (see Hambleton, Swaminathan, & Rogers,
1991, for a discussion). Person-free item calibration means
that the distribution of persons used to obtain item indices
does not bias the indices. For CTT, item indices, such as p
values, are directly influenced by the population. For exam-
ple, if a lower-ability population were used to estimate SLAT
p values, all values on Table 17.1 would be lower. However,
for IRT, comparable estimates for item difficulty can be ob-
tained from the lowest scoring and the highest scoring sub-
populations. Whitely and Dawis (1974) show how highly
similar item difficulties are obtained when the Rasch model
estimates are anchored to the item set (i.e., item mean is fixed
to zero).

Other indices, such as the biserial correlation, are influ-
enced by population heterogeneity. More homogeneous pop-
ulations will have lower estimates. For IRT, however, item
parameters are estimated in the context of person ability
estimates. That is, a full model of item responses includes
abilities and the item parameters. Hence, item parameter esti-
mates are controlled for trait level. 

It should be noted, however, that the standard error associ-
ated with item parameter estimates is indeed influenced by
the population distribution. Higher standard errors will be
given for difficult items, for example, when the population’s
average trait level is low.

TABLE 17.3 IRT Item Parameters for SLAT

1PL 2PL

� � � �

ITEM S.E. S.E. S.E. S.E.

1 1.000 −.530 1.410 −.582
.040 .169 .272 .190

2 1.000 .636 .819 .672
.040 .168 .177 .270

3 1.000 −.232 .670 −.341
.040 .152 .148 .154

4 1.000 .430 .754 .482
.040 .160 .172 .240

5 1.000 .459 1.094 .315
.040 .171 .220 .214

6 1.000 −.205 1.114 −.314
.040 .162 .203 .168

7 1.000 1.088 .806 1.219
.040 .187 .174 .376

8 1.000 −.639 1.003 −.746
.040 .163 .201 .191

9 1.000 .093 1.833 −.116
.040 .177 .341 .201

10 1.000 −1.349 1.575 −1.184
.040 .190 .317 .300

11 1.000 .546 1.189 .359
.040 .174 .226 .222

12 1.000 −1.190 1.64 −1.051
.040 .186 .335 .278

13 1.000 .459 1.113 .307
.040 .170 .220 .213

14 1.000 .985 .630 1.414
.040 .176 .151 .444

15 1.000 1.159 .553 1.904
.040 .182 .136 .569

16 1.000 1.053 .727 1.306
.040 .178 .180 .439

17 1.000 −1.285 1.385 −1.194
.040 .187 .288 .282

18 1.000 −.557 .880 −.697
.040 .158 .191 .186

19 1.000 .066 .977 −.034
.040 .162 .195 .173

20 1.000 .546 1.213 .351
.040 .174 .238 .223

23 1.000 .459 .634 .647
.040 .158 .148 .271

24 1.000 −.367 1.15 −.462
.040 .163 .214 .174

25 1.000 −1.696 1.188 .236
.040 .201 −.641 .349

26 1.000 .039 .942 −.054
.040 .161 .187 .170

27 1.000 .093 1.368 −.073
.040 .170 .260 .184

28 1.000 .430 .971 .341
.040 .165 .197 .213

29 1.000 −.205 .992 −.311
.040 .160 .197 .163

30 1.000 −.612 .901 −.750
.040 .160 .191 .191
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and

ln
P(Xi2)

1 − P(Xi2)
= �2 − �i , (17.11)

where �1 and �2 are ability trait level scores for person 1 and
2, �i is the difficulty of an item, and the left-hand sides of the
equations indicate the natural log odds of the item responses,
Xi1 and Xi2 for persons 1 and 2, respectively. Taking the dif-
ference between the two equations results in �1 − �2. Note
that the item drops from the comparison (see Embretson &
Reise, 2000). Restated, for any item the expected difference
in log-odds performance is given by the simple difference be-
tween their abilities. In this sense, ability differences have
justifiable interval-level scale properties.

Person-free item calibration also has a special meaning in
the Rasch model. That is, the comparison of items does not
depend on the persons used to calibrate them. This concept is
illustrated in the following:

ln
P(X1s)

1 − P(X1s)
= �s − �1

and

ln
P(X2s)

1 − P(X2s)
= �s − �2, (17.12)

where �s is person s, �1 is the difficulty of item 1, �2 is the dif-
ficulty of item 2, and the left-hand side of the equation indicates
the natural log odds of the item responses, X1s and X2s for per-
son s on items 1 and 2, respectively. Taking the difference be-
tween the two equations results in �1 − �2. Note that the
person drops from the comparison (see Embretson & Reise,
2000). Hence, for any person the difference in performance on
two items is due to their difference in item difficulty.

Estimation

Estimating Trait Level

The relationship between item responses and trait level is
fundamentally different in IRT compared with CTT. In IRT,
determining the person’s trait level is not a question of how to
add up the item responses. Instead, a somewhat different
question is asked. That is, given the observed item responses,
what is the most plausible ability? Stated in another way,
given the properties of the items and knowledge of how item
properties influence behavior (i.e., an IRT model), what is the
most likely trait level to explain the person’s responses? 

Some examples help clarify this notion. Consider the re-
sponse pattern in which a person succeeds on most items in
a very difficult test. This response pattern is not very likely if

Item-free person measurement means that the estimated
trait levels for persons are not biased by the characteristics of
the items. For CTT, raw scores are directly dependent on item
difficulty and other item properties. For example, raw scores
on an easy test are much higher than are raw scores on a hard
test. Even special equating does not fully handle difficulties
arising from differing test difficulties (see Holland & Rubin,
1982). In IRT, item properties such as item difficulty are di-
rectly included in the model. Thus, ability is estimated in the
context of item parameters. For example, a score of 5 on a
test of 10 easy items will receive a much lower trait-level es-
timate than would the same score on a test of 10 hard items.
But as for item parameter calibrations, the standard errors of
the person estimates are influenced by item parameters. That
is, much larger standard errors will be found when the items
are either much too hard or too easy for the person or when
the items are not very discriminating.

Item-free person measurement is a central measurement
property that makes adaptive testing feasible. In adaptive test-
ing, items are selected for each person to provide the most pre-
cise measurement. If the item bank is large, few persons receive
the same combination of items. IRT can provide equated trait
levels in this situation because the item-parameter estimates
are controlled for in the estimation of the persons. For adaptive
testing, however, measurement error is minimized for every-
one because of the optimal selection of items.

Special Properties of the Rasch Model

Wright and colleagues (e.g., Wright & Stone, 1979) have
given much attention to conjoint measurement, a term first
used by Luce and Tukey (1964). Conjoint measurement
allows the scores of persons and items to be measured on the
same scale (see Linacre & Wright, 2001). Originally, this
scale used a logistic function, and the logistic is still the most
often used. No other mathematical formulation for the item
ogives (ICCs) allows for independent estimation of item dif-
ficulty (�i ) and person trait level (�j ; Rasch, 1961). Other
theoretical developments of the Rasch model’s measurement
properties stem from the European measurement tradition
(see Fischer & Molenaar, 1995). 

Item-free person calibration for the Rasch model refers to
a special relationship for this model and not the other IRT
models. Stated simply, the expected difference in perfor-
mance between two persons on any item is given by the dif-
ference in their trait levels. Specifically, its meaning can be
readily shown by the following:

ln
P(Xi1)

1 − P(Xi1)
= �1 − �i
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a person has a low trait level. The likelihood that a person
with a moderate trait level could pass all the items is higher,
but the response pattern is most likely for a person with a
high trait level. 

Finding the IRT trait level for a response pattern requires
a search process instead of a scoring procedure. Trait levels
typically are estimated by a maximum likelihood method;
specifically, the estimated trait level for person s maximizes
the likelihood of his or her response pattern given the item
properties. Finding maximum likelihood estimates of trait
levels requires a computer program that (a) computes the
likelihoods of response patterns under various trait levels and
(b) conducts a search process for the trait level that gives the
highest likelihood.

To illustrate the concept of searching for a trait estimate that
yields the highest likelihood, consider Figure 17.6. This figure
shows the likelihoods for four response patterns under various
hypothetical abilities. Each likelihood shown is computed by
multiplying the probabilities for the five items. In turn, each
item probability is computed using a particular IRT model (in
this case, the Rasch model in Equation 17.8) with known item
parameters and a hypothetical ability. In Figure 17.6, likeli-
hoods are computed for 13 different hypothetical abilities for
each response pattern. The ability that gives the highest likeli-
hood would be the maximum likelihood estimate. For re-
sponse pattern 1, for example, the estimate would be 2.0.

It should be noted that computer programs like BILOG
(Mislevy & Bock, 1990), PARSCALE (Muraki & Bock,
1997), and RUMM (Sheridan, Andrich, & Luo, 1996) apply
complex numerical procedures to find maximum likelihood
estimates. Also, estimation can be conducted using prior in-
formation, such as a population ability distribution.

Estimating Item Parameters

Item parameters for IRT models are usually estimated by a
maximum likelihood (ML) method. For ML estimation, error
is defined as unlikely observed data, and a search process
yields estimates that maximize the total data likelihood. Data
likelihoods are defined somewhat differently in the various
IRT estimation methods, but in general data likelihoods
involve multiplying the response pattern probabilities over
persons.

The most frequently used ML estimation methods are
(a) joint maximum likelihood (JML), (b) marginal maximum
likelihood (MML), and (c) conditional maximum likelihood
(CML). In typical IRT applications, both item parameters and
trait levels are unknown and must be estimated from the same
data. The three ML methods handle the problem of unknown
trait levels differently. Many researchers consider MML to
be the most statistically adequate and flexible method of the
three (Holland, 1990).

Practically speaking, few differences between the esti-
mates will be observed from these different methods for
many tests. Perhaps more salient are scale differences, which
result from decisions about how to anchor the solution in the
case where both person and item parameters are unknown
(see Embretson & Reise, 2000). 

Test Development With IRT

Model Selection

Test development with IRT models begins with the selection of
an appropriate IRT model. Since SLAT is dichotomously
scored, the standard models (Rasch, 2PL, and 3PL) are gener-
ally appropriate. Selection of an appropriate model depends
not only on model fit, but on other considerations as well, such
as parsimony and test-scoring philosophy. For example, be-
cause of its simplicity and the direct relationship of raw total
scores to trait level, the Rasch model may be favored even if it
does not fit adequately. In contrast, the 2PLand 3PLmodels not
only contain more parameters but also weight the items by
their discrimination in the estimation of trait level.

Several methods exist to evaluate model fit (see Embretson
& Reise, 2000). One strategy is to compare the overall fit of
alternative IRT models by goodness-of-fit tests and by log-
likelihood comparisons. Both of these fit indices, for example,
are provided in BILOG. For the goodness-of-fit test, the
expected and observed frequencies of passing each item for
score groups are compared. The expected frequency is based
on predictions from the estimated model parameters. The
observed frequency is obtained by dividing the sample into
homogeneous groups, based on trait level, and then tabulating
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Figure 17.6 Likelihoods for four response patterns.
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the number of persons passing each item. These small calibra-
tion samples result in more heterogeneous groups, and
maintain a sufficient number of cases for stable estimates of
observed frequencies. The fit for each item and for the overall
model is indicated by a statistic that is distributed as 
2. For
SLAT, the 1PL model did not fit overall (
2

131 = 172.70,
p = .0086), and three items did not fit, as indicated by 
2s
with probabilities less than .01. In contrast, the 2PL model did
fit (
2

129 = 113.00, p = .8406), and only one item failed to fit
the model (Item 15). The log-likelihood goodness-of-fit test,
which compares the data likelihood between the two models
directly, was also statistically significant (
2

30 = 66.03,
p < .01), indicating a significant difference between models.
Therefore, on the basis of model fit, the 2PL model is
preferred over the 1PL model.

Person Fit

Another strategy to improve model fit is to exclude persons
who do not fit the standard IRT model probabilities. Person-fit
statistics are available to assess the relative likelihood of a per-
son’s response pattern (see Reise & Flannery, 1996). A person
whose responses are well predicted from the IRT model para-
meters—passing items below their trait level and failing items
above their trait level—will fit the model. However, some per-
sons fail relatively easy items but then answer correctly much
harder items. These persons do not fit the model. The reasons
for person misfit are many, including motivational problems,
unusual test-taking strategies, language problems, specialized
knowledge, and so forth. Eliminating a few poorly fitting
persons can improve model fit so that a simpler model fits
adequately. Person-fit statistics also may provide useful diag-
nostic information to accompany test scores in operational
tests (see Daniel, 1999). For example, a low score accompa-
nied with poor fit may indicate an invalid test score.

Item Selection

After selecting the most appropriate model, the item fit statis-
tics and parameter estimates can be examined. Item 15 was
the only item that failed to fit the 2PL model. Hence, it
could be eliminated. The item parameter estimates shown in
Table 17.2 indicate that some items have lower discrimina-
tions. Whether these should be eliminated depends on the
intended use of the items.

Two separate types of tests should be distinguished. A test
can be administered as a fixed content test or as an adaptive
test. In the fixed content test the same items are administered
to everyone. Therefore, both the expected population distribu-
tion and the goals of measurement are important to consider in
item selection. If the goal is to measure the whole population

adequately (vs., say, measuring well near a cut score), then the
goal is to minimize the average standard error of measurement
in the target population. Or, inversely, the items should be
maximally informative; thus, selecting items to be maximally
informative for the most frequent trait levels is an appropriate
strategy. 

The person-to-item map of Figure 17.5 shows how items
could be selected for SLAT using the Rasch model. Since
items and persons are located on the same scale, their distrib-
utions can be compared directly. It can be seen directly, for
example, that the many difficult items are not well matched
by persons at that level. Thus, one could consider deleting
some difficult items and developing items appropriate for
lower trait levels that have high frequencies but few appro-
priate items. Although beyond the scope of this overview,
IRT permits a very precise targeting of items to a population
through test and item information curves (see Hambleton,
Swaminathan, & Rogers, 1991), which are applicable to 2PL
and 3PL models, as well as the Rasch model.

In an adaptive test items are selected from an item bank
to provide the smallest standard errors possible for each ex-
aminee. To achieve optimal measurement, large numbers of
items should be available for most trait levels, including rel-
atively extreme trait levels. Obviously, 30 SLAT items do
not constitute an item bank. However, deciding whether to
add SLAT items to an existing item bank depends not only
on the quality of the SLAT item but also on the need for
items at certain difficulty levels in the item bank. Thus, un-
like CTT, extreme items may be readily selected because
they are needed to provide optimal measurement for extreme
trait levels.

Test Evaluation With IRT

Both reliability and validity are relevant and similarly evalu-
ated as for CTT, so an extended discussion is not needed.
However, one major difference concerns the evaluation
of one type of reliability and its associated standard error of
measurement. That is, since IRT provides individual standard
errors of measurement for each trait level, the most informa-
tive presentation of test quality is a chart showing the
standard error at different levels, such as shown in Figure
17.3 for SLAT. Notice that the measurement error is lowest
for the more moderate scores.

Composite standard errors for a particular population,
�pop, may still be estimated using the individual measure-
ment standard errors, �j . The following formula shows the
composite standard errors

�msmt =
√(∑

�2
j /N

)
(17.13)

schi_ch17.qxd  8/7/02  12:27 PM  Page 441



442 Item Response Theory and Measuring Abilities

For SLAT with the 2PL model, the average standard error of
measurement was .3724. 

Reliability may also be estimated from this composite as
follows:

rtt = 1 − �2
msmt/�2, (17.14)

where �2 is the trait-level variance. For SLAT trait levels, the
variance is .823. Applying Equation 17.14 with measurement
variance (.37242 = .1387), the composite reliability is
.8315. As for CTT, lengthening the test will improve reliabil-
ity. However, improving the suitability of the items for the
persons will also improve reliability.

Advanced IRT Models

The models just presented have been useful for unidimen-
sional tests with dichotomous item-response variables.
However, many measurement problems in psychology are
more complex and require complex models to characterize the
data (see Embretson & Reise, 2000, for a review). Although
space does not permit a full review of these models, the reader
may be interested in the following models: (a) those with re-
strictions on parameters, which are used to relate item diffi-
culty to substantive sources (Fischer, 1973); (b) those for
rating scales (e.g., Samejima, 1969); (c) those for partial credit
(Masters, 1982); (d) those for multidimensional data (Bock,
Gibbons, & Muraki, 1988); (e) those for component processes
(Whitely, 1980); (f) those for measuring changes in trait
levels (Embretson, 1997; Wang, Wilson, & Adams, 1997);
and (g) those for identifying latent classes that differ qualita-
tively in the nature of test responses (Rost, 1990).

In this section we discuss two of these models: models for
rating scales and models with restrictions on parameters.

Models for Rating Scales

Models for rating scales are usually described as models for
polytomous data, which means that multiple response cate-
gories are scored. Rating scales are important in psychological
measurement, and the models for dichotomous data cannot be
applied directly to these data.

It is useful to think of polytomous IRT models as exten-
sions of standard IRT models for the multiple response cate-
gories. The class of models for rating scales is quite broad. In
fact, polytomous IRT models have been developed for many
more complex models that were originally available only for
dichotomous data, to handle restricted item parameters, mul-
tidimensionality, latent classes and much more.

In general, the polytomous model parameters relate the
various response categories to a location on the latent trait.

The polytomous models vary in specifying how the parame-
ters relate to response probabilities. For example, the graded
response model (GRM; Samejima, 1969) was proposed to re-
late the probability of responding in category x or above to
category thresholds. Thus, the model requires the categories
to be ordered for difficulty, as in typical rating scales. The
model looks like the 2PL model presented earlier for di-
chotomous data, but the item difficulty parameter is defined
differently: 

P(Xi j = 1 | �j ) = exp �i(�j − �ik)

1 + exp �i(�j − �ik)
(17.15)

where �ik is the difficulty or location of category threshold k
for item i, �i is item discrimination, and �j is trait level. No-
tice that item difficulty now refers to a response category. In
the GRM, Equation 17.15 directly models the probability that
a response falls in category k or higher. Figure 17.7 shows the
operating-characteristic curves for a rating item with five or-
dered categories. These curves appear to be ICCs for four
items. Instead, they represent the transition between adjacent
categories for one rating-scale item. Since the probability of
responding in category 1 or higher is 1.0, given no missing
data, only four curves are needed to represent the five cate-
gories in the item. The four curves model the following
response probabilities: category 2 or higher (x > 1), cate-
gory 3 or higher (x > 2), category 4 or higher (x > 3), and
category 5. In Figure 17.7 the intervals between the category
thresholds happen to be uniformly ordered on the latent trait,
but more often they are not. 

Figure 17.8 shows the category response probabilities,
which are the probabilities of responding in a particular
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Figure 17.7 Operating-characteristic curves for an item from the graded
response model.
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category on an item at various trait levels. These may
be computed in the GRM by subtracting adjacent operating
characteristic curves. Notice that five curves are given in this
case. The lowest category, x = 1, has a decreasing probabil-
ity as trait level increases. The probabilities for the middle
categories (x = 2, x = 3, and x = 4) peak at successively
higher trait levels and then decrease. For example, a response
in category 2 first increases but then decreases with trait lev-
els as responses in the higher categories gain in likelihood.
Last, the highest category probability increases steadily with
trait level.

Beyond the adaptation to a polytomous item format, the
rating scale models have the same advantages and potential
as do the binary IRT models described earlier. Item banking,
adaptive testing, population-invariance of parameter esti-
mates, and so forth are all applicable to tests built with poly-
tomous IRT models and will not be elaborated further here.

Models With Restricted Parameters:
Linear Logistic Test Model

The linear logistic test model (LLTM) was developed by
Fischer (1973) to predict item difficulty (b values) from item-
complexity design features. These complexity design features
can represent stimuli that determine the difficulty of underly-
ing cognitive processes (see Embretson, 1998). Currently,
conditional maximum likelihood is used to estimate the
LLTM weights, using software such as LPCMWin (Fischer &
Pocony-Seliger, 1998) or LINLOG (Whitely & Nieh, 1981).
LLTM also has been extended to the polytomous case.

The LLTM contains a model of item difficulty, rather than
parameters for item difficulty. The LLTM models item

difficulty as follows:

�∗
i = akqik + · · · + d (17.16)

Where �∗
i is the predicted item difficulty, �k is the LLTM

weight on the complexity factor qik, qik is the design com-
plexity score for an item i provided by the researcher, and d is
a normalization constant, given by LLTM. For example, a
test design of four complexity factors has four akqik products.

An illustration for SLAT items is given in Table 17.4. The
LLTM weights and their standard errors, as well as signifi-
cance in the model, are shown. Notice that these weights
are very similar to multiple linear regression in which the
dependent variable is item difficulty. The weights applied are
the design factor scores for Degrees and Surfaces design fac-
tors, supplied by the researcher. The predicted b value is a
sum of these four products and the normalization constant,
using Equation 17.16.

In test analysis the researcher can evaluate a set of design
factors by comparing the LLTM to a simple 1PL model using
chi-square fit statistics. A fit statistic similar to a multiple
correlation coefficient may also be applied (Embretson,
1997). In the example given in Table 17.4, the model com-
parison indicated a significantly better fit to the data by using
the LLTM (see Embretson & Schmidt McCollam, 2000).
After discovering a relatively superior LLTM fit to the data,
the researcher can use predicted b values to anticipate the dif-
ficulty of new items generated by the same design principles. 

Summary

IRT differs qualitatively from CTT because it includes a full
model of test behavior in terms of person attributes and item
properties. Three basic IRT models were introduced, as well
as some more complex models that are able to handle the di-
verse data of psychological research and testing. It was
shown that the common scale measurement of persons and
items in IRT models allows for an item-referenced basis for
score meaning, as well as the more traditional norm-refer-
enced meaning. The item properties for the basic model were
described and illustrated with an example. Some major
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Figure 17.8 Category response curves for an item from the graded re-
sponse model.

TABLE 17.4 LLTM Weights and Standard Errors for SLAT Items

Complexity Factor Weight ak Standard Error Significance, t

Degrees, linear .350 .038 9.211**

Degrees, quadratic −.029 .020 −.145
Surfaces, linear .715 .039 18.333**

Surfaces, quadratic .098 .020 4.900**

Constant .084

Note. ** p < .01.
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advantages of IRT stem from its measurement scale
properties—specifically, invariance of estimates over popula-
tions and items. For example, the capability to equate scores
over widely different item subsets results from the item in-
variance property. 

Estimation was shown to differ qualitatively from CTT; it
involves a search process to maximize data likelihood rather
than a direct calculation on the data. Specialized computer
programs are available to obtain IRT estimates. Test develop-
ment with IRT was elaborated, including the issues of model
selection, person fit, and item selection. Test evaluation was
discussed and, except for internal consistency reliability, was
comparable to CTT. Last, two IRT models for complex data
were briefly introduced: rating scales and item parameters
linked to substantive sources.

IRT differs from CTT in several ways but has three pri-
mary advantages. First, IRT measurements need not be based
on parallel or equated forms. Trait levels are estimated in the
context of an IRT model that includes the properties of the
items that were administered. Scores may be estimated on
comparable bases. Second, the estimates of reliability for
trait-level estimates are individualized, not population-
specific. Measurement error depends simply on the appropri-
ateness and quality of the items for individual trait levels.
Third, item properties are linked directly to test behavior.
Items may be selected to maximize measurement precision
for each individual, rather than a population as a whole.
These various capabilities allow for adaptive testing, where
items are selected individually to minimize measurement
error. This results in shorter and more precise measurements.
Fourth, special IRT models have capabilities to link substan-
tive aspects of test design to measurement. The LLTM was
introduced and illustrated with a spatial ability test for which
high levels of prediction of item difficulty were obtained.

OVERALL SUMMARY OF IRT AND
ABILITY MEASUREMENT

This chapter overviews two major methods involved in the
development and evaluation of psychological measures: CTT
and IRT. The former was developed at the beginning of the
last century and guided measurement practices for most of the
century, whereas the latter was developed in the last part of
the century. IRT has many advantages over CTT and is rapidly
becoming the method of choice for new or revised tests.
Although it was not possible to give extended coverage to
IRT, and although the method is admittedly complex, a brief
review of major features and some advantages was given. As
the specialized computer programs for IRT become more

user-friendly and accessible, psychologists will find IRT to be
an increasingly valuable basis for their measures.

REFERENCES

American Psychological Association, American Educational Re-
search Association, National Council on Measurement in Educa-
tion. (1999). Standards for educational and psychological tests.
Washington, DC: American Psychological Association.

Anastasi, A., & Urbina, S. (1997). Psychological testing (7th ed.).
Upper Saddle River, NJ: Prentice Hall.

Andrich, D. (1978). A rating formulation for ordered response cate-
gories. Psychometrika, 43, 561–573.

Beck, A. T., & Steer, R. A., & Brown, G. K. (1996). The Beck
Depression Inventory-II: Manual. San Antonio, TX: The Psy-
chological Corporation.

Bock, R. D. (1997). A brief history of item response theory. Educa-
tional Measurement: Issues and Practices, (Winter), 21–33.

Bock, R. D., Gibbons, R., & Muraki, E. J. (1988). Full information
item factor analysis. Applied Psychological Measurement, 12,
261–280.

Butcher, J. N., Dahlstrom, W. G., Graham, J. R., Tellegen, A., &
Kaemmer, B. (1989). MMPI-2: Manual for administration and
scoring. Minneapolis: University of Minnesota.

Campbell, D. T., & Fiske, D. W. (1959). Convergent and discrimi-
nant validity by the multitrait-multimethod matrix. Psychologi-
cal Bulletin, 56, 81–105.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: De-
sign & field analysis for field settings. Boston: Houghton Mifflin.

Crocker, L. M., & Algina, J. (1986). Introduction to classical and
modern test theory. Orlando, FL: Harcourt-Brace.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure
of tests. Psychometrika, 16, 297–334.

Cronbach, L. J., & Meehl, P. (1955). Construct validity in psycho-
logical tests. Psychological Bulletin, 52, 281–302.

Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972).
The dependability of behavioral measurements: Theory of gen-
eralizability for scores and profiles. New York: Wiley.

Daniel, M. H. (1999). Behind the scenes: Using new measurement
methods on the DAS and KAIT. In S. E. Embretson & S. L.
Hershberger (Eds.), The new rules of measurement: What every
psychologist and educator should know (pp. 37–63). Mahwah,
NJ: Erlbaum.

Embretson, S. E. (1983). Construct validity: Construct representa-
tion versus nomothetic span. Psychological Bulletin, 93,
179–197.

Embretson, S. E. (1989). Spatial Learning Ability Test (SLAT).
Lawrence, KS: University of Kansas.

Embretson, S. E. (1997). Multicomponent response models. In W. J.
van der Linden & R. K. Hambleton (Eds.), Handbook of modern
item response theory (pp. 305–322). New York: Springer.

schi_ch17.qxd  8/7/02  12:27 PM  Page 444



References 445

Embretson, S. E. (1998). A cognitive design system approach to
generating valid tests: Application to abstract reasoning. Psycho-
logical Methods, 3, 300–396.

Embretson, S. E., & Schmidt McCollam, K. M. (2000). A multi-
component Rasch model for measuring covert processes: Appli-
cation to lifespan ability changes. In M. Wilson & G. Engelhard
(Eds.), Objective measurement: Theory into practice (Vol. 5,
pp. 203–218). Upper Saddle River, NJ: Ablex.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for
psychologists. Mahwah, NJ: Erlbaum.

Feldt, L.S., & Brennan, R. (1989). Reliability. In R. L. Linn (Ed.),
Educational measurement (3rd ed., pp. 105–146). New York:
Macmillan.

Fischer, G. (1973). The linear logistic test model as an instrument in
educational research. Acta Psychologica, 37, 359–374.

Fischer, G., & Molenaar, I. (1995). Rasch models: Foundations,
recent developments and applications. New York: Springer-
Verlag.

Fischer, G., & Pocony-Seliger, E. (1998). LPCMWin manual.
Groningen: Netherlands: ProGAMMA.

Gulliksen, H. (1950). Theory of mental tests. New York: Wiley.

Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fun-
damentals of item response theory. Newbury Park, CA: Sage.

Holland, P. W. (1990). On the sampling theory foundations of item
response theory models. Psychometrika, 55, 577–601.

Holland, P., & Rubin, D. (1982). Test equating. New York:
Academic Press.

Hunter, J. E. (1986). Cognitive ability, cognitive aptitude, job
knowledge, and job performance. Journal of Vocational Behav-
ior, 29, 340–362.

Kuder, G. W., & Richardson, M. W. (1937). The theory of estima-
tion of test reliability. Psychometrika, 2, 151–160.

Lee, W. C., Brennan, R. L., & Kolen, M. J. (2000). Estimators of
conditional scale-score standard errors of measurement: A simu-
lation study. Journal of Educational Measurement, 37, 1–20.

Linacre, J. M., & Wright, B. D. (2001). A user’s guide to Winsteps.
Chicago: MESA Press.

Lord, F. (1953). The relation of test score to the trait underlying the
test. Educational and Psychological Measurement, 13, 517–548.

Lord, F. N., & Novick, M. R. (1968). Statistical theories of mental
test scores. Reading, MA: Addison-Wesley.

Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint mea-
surement. Journal of Mathematical Psychology, 1, 1–27.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psy-
chometrika, 47, 149–174.

McCollam, K. M. (1997). The modifiability of age differences in
spatial visualization. Unpublished doctoral dissertation,
Lawrence, KS: University of Kansas.

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah,
NJ: Erlbaum.

Messick, S. (1995). Validity of psychological assessment: Valida-
tion of inferences from persons’ responses and performances as
scientific inquiry into score meaning. American Psychologist,
50, 741–749.

Mislevy, R. J., & Bock, R. D. (1990). BILOG 3: Item analysis and
test scoring with binary logistic models. Chicago: Scientific
Software International.

Muraki, E., & Bock, R. D. (1997). PARSCALE: IRT Item analysis
and test scoring for rating-scale data. Chicago: Scientific Soft-
ware International.

Murphy, L. L., Impara, J. C., & Blake, B.S. (1999). Tests in print V
(vols. 1–2). Lincoln, NE: Buros Mental Measurements Institute.

Rasch, G. (1961). On general laws and the meaning of measurement
in psychology. Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, 4, 321–333.

Reise, S. P,. & Flannery, W. P. (1996). Assessing person-fit on
measures of typical performance. Applied Measurement in
Education, 9, 9–26.

Rost, J. (1990). Rasch models in latent classes: An integration of
two approaches to item analysis. Applied Psychological Mea-
surement, 14, 271–282.

Rulon, P. J. (1939). A simplified procedure for determining the reli-
ability of a test with split halves. Harvard Educational Review, 9,
99–103.

Samejima, F. (1969). Estimation of latent ability using a response
pattern of graded scores. Psychometrika Monograph, No. 17.

Schmidt McCollam, K. M. (1998). Latent trait and latent class the-
ory models. In G. M. Marcoulides (Ed.), Modern methods for
business research (pp. 23–46). Mahwah, NJ: Erlbaum.

Shavelson, R. J., & Webb, N. M. (1991). Generalizability theory: A
primer. Newbury Park, CA: Sage.

Sheridan, B., Andrich, D., & Luo, G. (1996). RUMM: Rasch unidi-
mensional measurement models. Duncraig, Western Australia:
Rasch Analyst.

Traub, R. E. (1994). Reliability for the social sciences: Theory and
applications (Vol. 3). Newbury Park, CA: Sage.

Wang, W.-C., Wilson, M., & Adams, R. J. (1997). Rasch models for
multidimensionality between and within items. In M. Wilson &
G. Engelhard (Eds.), Objective measurement: Theory into prac-
tice, 4, 139–156.

Wechsler, D. (1997). The Wechsler Adult Intelligence Scale-III. San
Antonio, TX: The Psychological Corporation.

Whitely, S. E. (1980). Multicomponent latent trait models for ability
tests. Psychometrika, 45, 479–494.

Whitely, S. E., & Dawis, R. V. (1974). The nature of the objectivity
with the Rasch model. Journal of Educational Measurement, 11,
163–178.

Whitely, S. E., & Nieh, K. (1981). Program LINLOG (National
Institute of Education Technical Report No. NIE-81-3).
Lawrence: University of Kansas.

Wright, B. D., & Stone, M. H. (1979). Best test design. Chicago:
MESA Press.

schi_ch17.qxd  8/7/02  12:27 PM  Page 445



schi_ch17.qxd  8/7/02  12:27 PM  Page 446



CHAPTER 18

Growth Curve Analysis in Contemporary
Psychological Research

JOHN J. MCARDLE AND JOHN R. NESSELROADE

447

PREFACE 447
INTRODUCTION 448

Classical Growth Curve Applications 448
Classical Growth Curve Analyses 451
Contemporary Issues in Statistical Data Analysis 452
The Bradway-McArdle Longitudinal Growth Data 453

THE BASIC STRUCTURE OF GROWTH MODELS 455
Growth Models of Within-Person Changes 455
Considering Alternative Growth Models 456
Expectations and Estimation in Linear

Growth Models 457
Initial Results From Fitting Linear Growth Models 458

ADDING GROUP INFORMATION TO GROWTH 
CURVE ANALYSES 459
Latent Path and Mixed-Effects Models 459
Group Differences in Growth Using 

Multiple Group Models 460
Latent Groups Based on Growth-Mixture Models 462
Results From Fitting Group Growth Models 463

GROWTH CURVE MODELS FROM A
DYNAMIC PERSPECTIVE 464

Growth Models Based on Dynamic Theory 464
Growth Curve Models Using Connected Segments 465
Growth Models Based on Latent Difference Scores 466
Results From Fitting Dynamic Growth Models 467

MULTIPLE VARIABLES IN LATENT GROWTH
CURVE MODELS 468
Including Measurement Models Within 

Latent Growth Analyses 468
Modeling Interrelationships Among 

Growth Curves 470
Multivariate Dynamic Models of Determinants

of Changes 471
Results From Fitting Multiple Variable 

Growth Models 473
FUTURE RESEARCH USING GROWTH 

CURVE ANALYSES 475
Future Bases of Growth Curve Analyses 475
The Mathematical Basis of Growth Curve Analyses 475
The Statistical Basis of Growth Curve Analyses 476
The Substantive Basis of Growth Curve Analyses 476

REFERENCES 477

PREFACE

The term growth curve was originally used to describe a
graphic display of the physical stature (e.g., the height or
weight) of an individual over consecutive ages. Growth
curves have unique features: (a) The same entities are repeat-
edly observed, (b) the same procedures of measurement and
scaling of observations are used, and (c) the timing of the
observations is known. The term growth curve analysis

denotes the processes of describing, testing hypotheses, and
making scientific inferences about the growth and change
patterns in a wide range of time-related phenomena. In this
sense, growth curve analyses are a specific form of the larger
set of developmental and longitudinal research methods, but
the unique features of growth data permit unique kinds of
analyses.

Contemporary methods of growth curve analysis are con-
sidered here. Of course, the techniques to analyze growth data
are among the most widely studied and well-developed math-
ematical and statistical techniques in all scientific research—
growth curve analyses have roots in the seventeenth- and
eighteenth-century calculus of Newton and probability of
Pascal—but this chapter is concerned with more recent his-
torical developments. Techniques for the analysis of growth
curves were initiated in the physical sciences and were more

The work described here has been supported since 1980 by the
National Institute on Aging (Grant #AG-07137). This research was
made possible by the support of our many friends and colleagues,
including Steve Aggen, Dick Bell, Steve Boker, Aki Hamagami,
Earl Hishinuma, John Horn, Bill Meredith, Carol Prescott, and Dick
Woodcock.
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fully developed in the biological sciences, where they were
used in studies of the size and health of plants, animals, and
humans. In the behavioral sciences, growth curve analyses
have routinely been applied to a wide range of phenomena—
from experimental learning curves, to the growth and decline
of intellectual abilities and academic achievements, to
changes in other psychological traits over the full life span.

These formal models for the analysis of growth curves have
been developed in many different substantive domains, but all
share a common goal—to examine and uncover a fundamental
set of regularity conditions, or basic functions, responsible for
the manifest growth and change. The goals of these models
were organized in terms of five “objectives of longitudinal
research” and described by Baltes and Nesselroade (1979,
pp. 21–27) using the following enumeration:

1. The direct identification of intra- (within-) individual
change

2. The direct identification of inter- (between-) individual
differences in intra-individual change

3. The analysis of interrelationships in change

4. The analysis of causes (determinants) of intra-individual
change

5. The analysis of causes (determinants) of interindividual
differences in intra-individual change

In this chapter, growth curve analyses are related to these
objectives of longitudinal research. In current statistical
methodology, intra-individual is termed within-person and
interindividual is termed between-person, but these remain
the essential goals of most longitudinal data analyses (e.g.,
Campbell, 1988; McArdle & Bell, 2000).

This chapter is organized into the following sections:
(a) an introduction to growth curves, (b) linear models of
growth, (c) multiple groups in growth curve models, (d) as-
pects of dynamic theory for growth models, and (e) multiple
variables in growth curve analyses. The chapter then con-
cludes with a discussion of future issues raised by the current
growth models. In all sections we try to present historical
perspective to illustrate different kinds of mathematical and
statistical issues for the analyses of these data. 

The growth curve models are presented in basic algebraic
detail, but this presentation is not intended to be overly techni-
cal. Instead, we focus on the mathematical formulation, statis-
tical estimation, and substantive interpretation of latent growth
curve analyses. This focus allows us to show a range of new
models and examine why some classical data analysis prob-
lems, such as the calculation of difference scores or the unreli-
ability of errors of measurements, are no longer impediments

to development research. Other related techniques such as
time-series and dynamical systems analyses are briefly
discussed in the later sections of this chapter. All numerical
results are based on a single set of data (the longitudinal data of
Figure 18.6), and available computer software for these
analyses is described. We use these illustrations to highlight
both the benefits and limitations of contemporary growth
curve analyses.

INTRODUCTION

Classical Growth Curve Applications

The collection of growth curve data is not a new topic. The first
measurements classified as growth curve data appear to have
been collected by the French Count de Montbeillard (~1759)
and consist of semiannual measurements on the growth of the
height of his son over the course of nearly 18 years; these data
are plotted as the upper curve of Figure 18.1. As Scammon
(1927) reported, “It will be noted that the curve shows the
typical four phases which most modern students have
observed in the postnatal growth in stature of man, and which
are characteristic of the growth of so many parts of the body”
(p. 331). The first analysis of these data, by the naturalist
Buffon (~1799), “should be given full credit for the discovery
of seasonal differences in growth a full hundred years before
the modern investigation of this work” (p. 334). The lower
growth curve in Figure 18.1 is based on group averages of
physical growth obtained by Variot (~1908). As Scammon
(1927) suggests, “it is interesting to note that, while the ab-
solute values of the two series are quite different, the general

Data of Mantbeillard
on the lineal growth of a

French boy born on April 11, 1759
(record kept to November 11, 1776)

Data of Variot and Chaumet
(1906) on the mean height of male

Parisian children measured in public
schools dispensaries and outpatient
departments (based on 100 to 150

measurements for each year)
Data of Variot (1906) on the

mean height of male newborn
infants (based on 120 observations

from lying-in hospitals in Paris)
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Figure 18.1 The initial growth curves of human height data from
Scammon (1927, p. 334); the vertical (y) axis represents the height in cm and
the horizontal (x) axis represents the age in years from birth. 
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form of the curve is essentially the same in both instances”
(p. 335).

These early growth curves were precursors to the collec-
tion of an enormous body of biological data on growth and
change. More recent illustrations come from the important
work of Tanner and his colleagues (1955, 1960). In the indi-
vidual plots of height in Figure 18.2, (a) the velocity of
change is plotted at each age, and (b) these curves are plotted
against their own highest peak velocity. This display demon-
strated two interesting features of physical growth: (a) Per-
sons who start growth at the earliest ages also attain the
greatest height, but (b) all individuals share a remarkably
similar shape in the “adolescent growth spurt.” This relation-
ship between chronological time and what has been called
biological time remains an important substantive issue.

Experimental psychologists have routinely collected dif-
ferent kinds of growth curves. Among the first here were the
classical forgetting curves collected by Ebbinghaus (~1880),
and this introduced the use of quantitative methods in the
study of learning and memory and stimulated many experi-
mental data collections. Other classic examples are found in
the animal learning curve experiments of Thorndike (~1911),
in which trial-and-error learning was defined by decreasing
response time, and the lack of smooth function over trials was
considered error. Thorndike used these growth (or decline)
curves to illustrate several classical principles of learning,
including the law of exercise and the law of effect (for review,
see Garrett, 1951; Estes, 1959). Other classic examples are
found in the acquisition curves presented by Estes (1959) and
reproduced here in Figure 18.3. The data collected here (i.e.,
the dots) were measured over the same animals (rats) working

for consistent reward in a free operant Skinner box (a T-maze
learning experiment), and the four plots show different as-
pects of the behaviors (i.e., responses, reinforcements, trials,
time). These figures also show how the average probabilities
and changes in probabilities were well predicted using
mathematical models from statistical learning theory (Estes,
1959). The current emphasis on formal models for growth
and change has obvious roots in this kind of experimental
research.

Differential psychologists have also contributed growth
data in many different substantive areas. One good example
of this tradition is given in the plots of Figure 18.4 (from
work of Bayley, 1956). Individual growth curves of mental
abilities from birth to age 25 are plotted for a selected set of
boys and girls from the well-known Berkeley Growth Study.
Because mental ability was not easily measured in exactly the
same way at each age, these individual curves were created
by adjusting the means and standard deviations of different
mental ability tests (i.e., Stanford-Binet, Terman-McNemar)
at different ages into a common metric. As Bayley says,

They are not in “absolute” units, but they do give a general
picture of growth relative to the status of this group at 16 years.
These curves, too, are less regular than the height curves, but
perhaps no less regular than the weight curves. One gets the
impression both of differences in rates of maturing and of differ-
ences in inherent capacity.” (p. 66)

This application of “linked” measurement scales created a
novel set of growth data, raised many issues about the com-
parability of measurement over time, and permitted the use of
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Figure 18.2 Alternative velocity curves of physical stature from Tanner (1960, p. 22); (a) The change in height as a function of the change in time (y)
versus the age in years (x); (b) the same curves (y) plotted around the time of maximum change in scores (x) for each individual.
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Figure 18.4 Growth curves of intellectual abilities in selected boys and girls from the Berkeley Growth Studies of Bayley (1956, p. 67);
age 16 D scores (y) plotted as a function of age at measurement (x) for (a) five boys and (b) five girls.
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growth curve analyses initially derived in other scientific
areas.

Early work in biological research was directed at charac-
terizing the parallel properties of different growth variables.
Models were originally developed to deal with the size of
two different organs, and early nineteenth-century work was
used by Huxley (~1924, 1932) to form a classical alometric

model—two variables having a constant ratio of growth rates
throughout the growth period—and many physical processes
were found to grow in parallel, or in an ordered time-
sequence. A good example is found in the multivariate re-
search of Tanner (1955): Figure 18.5 is a plot of growth and
change in four physical variables that were found to follow a
fundamental pattern over time (i.e., a relatively invariant

Figure 18.3 Selected acquisition curves of memory from statistical learning theory by Estes (1959).
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Figure 18.5 Growth curves of tissues and different parts of the body from
Tanner (1955).
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time-based sequence within an individual). As a result, these
physical variables were thought to be indicators of some
fundamental time-based dynamic processes. These basic
multivariate findings, and questions about the underlying dy-
namics of multiple growth processes, are still key features of
current research.

Classical Growth Curve Analyses

Techniques for the analysis of growth curve analyses are not
novel. A classical paper by Wishart (1938) was one of the first
to deal with these growth curve analysis problems in an ex-
ploratory and empirical fashion. Here, Wishart extended the
classical analysis of variance (ANOVA) models to form a lin-
ear growth model with group and individual differences.
Wishart also showed how power polynomials could be used
to better fit the curvature apparent in growth data. The indi-
vidual growth curve (consisting of t = 1, T occasions) is
summarized into a small set of linear orthogonal polynomial
coefficients based on a power-series of time (t, t2, t3, . . . t p)

describing the general nonlinear shape of the growth curve.
In Wishart’s models, the basic shape of each individual’s
curve could be captured with a small number of fixed para-
meters and random variance components, and the average of
the individual parameters could represent the group growth
curve (see Cohen & Cohen, 1983; Joosens & Brems-Heynes,
1975).

More complex forms of mathematical and statistical
analyses were developed to deal with growth curve data.

In his initial growth curve analyses, Ebbinghaus (~1880)
described his forgetting curves using a form of the classic ex-
ponential growth model (see Figure 18.3) in which the rate of
change is defined as a linear function of the percentage of ini-
tial size (e.g., compound interest). The Velhurst (~1839)
curve of population growth, an S-shaped logistic curve, was
used by Pearl (~1925) for many forms of cognitive growth. In
related work, Thurstone (~1919) found that a hyperbolic
curve of learning best fit the norms of many different tests;
Peters (~1930) advocated an ogival curve of growth in
ideational learning; and Ettlinger (~1926) and Valentine
(~1930) demonstrated the relationships among these func-
tions (see Bock & Thissen, 1980; Seber & Wild, 1989).

A popular model for physical growth was initially pre-
sented by Gompertz (~1825), who described the derivative
(instantaneous rate of change) of the growth curve in terms of
two exponential accumulations of different rates toward dif-
ferent asymptotes. This flexible model was studied by Winsor
(~1932), used by Medwar (~1940) to study the growth of
chicken hearts, and used by Deming (~1957) for human
physical growth. Another popular growth model was intro-
duced by von Bertalanffy (1938, 1957) and proposed that the
individual’s change in a physical variable (e.g., weight) was
the direct result of the difference in opposing forces of an-
abolism and catabolism. Although the exact relationship
among these forces was not known, von Bertalanffy used a
fixed alliometric value (of � = 2/3) based on prior research. 

In related work on nonlinear growth models, Richards
(1959) criticized and expanded the original von Bertalanffy
model by demonstrating how all prior models can be seen as
specific solutions of a “family” of deterministic differential
equations (i.e., specific restrictions led to the exponential,
logistic, Gompertz, and von Bertalanffy equations). This
work was extended by Nelder (1961) and Sandland and
McGhilcrest (1978; for reviews, see Sieber & Wild, 1989;
Zeger & Harlow, 1987). Attempts to fit a single growth model
to observations over a wide range of ages with a minimal set
of parameters led researchers to combine aspects of other
models. A more recent expansion based on the logistic model
was developed by Preece and Baines (1978), who suggested
that all previous models could be written as a derivative
based on some predefined function of time and some asymp-
totic value. This kind of model is related to the partial ad-
justment model used in sociometrics (e.g., Coleman, 1968;
Tuma & Hannan, 1984), and has proven useful in recent stud-
ies of physical growth (see Hauspie, Lindgren, Tanner, &
Chrzastek-Spruch, 1991).

More complex linear (and nonlinear) models have been
used to represent growth. Some of these share the common
feature of a piecewise model applied to different age or time
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segments. These kinds of segmented or composite models
have also been a mainstay of nonlinear modeling. One of the
first truly nonlinear composite forms was the Jenss curve (or
normal exponential), in which a linear part (to fit the early
rapid-growth phase) was added at a particular age to an
exponential part (to fit negative acceleration of the later
slowing-down phase) by Jenss and Bayley (~1937). A more
complex composite model, the sum of multiple logistic
curves, was suggested by Robertson (~1908) and Burt
(~1937), and fully developed by the work of Bock and his
colleagues (see Bock, 1991; Bock & Thissen, 1980; Bock
et al., 1973). These composite models allowed for different
dynamics at different ages and represent a practically impor-
tant innovation.

The logic of fitting model segments was also apparent in
more recent extensions of Wishart’s (1938) polynomial
model. One model, based on the summations of latent curves,
was proposed simultaneously by both Rao (1958) and Tucker
(1958, 1966). In the early descriptions of this model, princi-
pal components analysis of the raw growth data led to the
sum of a small number of unspecified linear functions. In the
interpretation of these components, the shapes of the latent
curves are determined by the component loadings, and the in-
dividual curve parameters are the component scores. The
summation of latent curves has roots in the classical work of
Fourier (~1822), but the principal components representation
included individual differences. These kinds of linear growth
models can offer a relatively parsimonious organization of
individual differences, and we highlight these models in later
applications.

This brief historical perspective demonstrates that there
are many different approaches to the analysis of growth curve
data. We find a tendency to introduce more general and flexi-
ble forms of growth models, but these models are often com-
plex and each model has slightly different theoretical and
practical features. One common feature that does emerge is
that most growth models can be written explicitly as a set of
dynamic change equations, and we return to this issue later in
the chapter. Also, we consistently find efforts made to relate
the growth parameters to biologically or psychologically
meaningful concepts—this is a difficult but most useful goal
for any growth curve analysis.

Contemporary Issues in Statistical Data Analysis

Additional kinds of growth curve analyses are presented in
the next few sections. These models include classical linear
and nonlinear models as well as some newer models adapted
from multivariate analyses. Most of these growth models are

designed to deal with the practical issues involving (a) alter-
native models of change, (b) unequal intervals, (c) unequal
numbers of persons in different groups, (d) nonrandom attri-
tion, (e) the altering of measures over time, and (f) multiple
outcomes.

This contemporary, model-based description of change
can be used to clarify some problems inherent in observed
rates of change. The potential confounds in difference scores
have been a key concern of previous methods using observed
change scores or rate-of-change scores (e.g., Bereiter, 1963;
Burr & Nesselroade, 1990; Cronbach & Furby, 1970; Rogosa
& Willett, 1985; Willett, 1990). This research has shown
that when observed rates are used as outcomes in standard
regression analyses, the results can be biased by several fac-
tors, including residual error, measurement error, regression
to the mean, and egression from the mean (e.g., Allison,
1990; Nesselroade & Bartsch, 1977; Nesselroade & Cable,
1974; Nesselroade, Stiegler, & Baltes, 1980; Raykov, 1999;
Williams & Zimmerman, 1996). These problems can be
severe when using standard linear regression with time-
dependent variables (e.g., Boker & McArdle, 1995; Ham-
agami & McArdle, 2000).

One of the key reasons we present the contemporary mod-
eling approach is to move beyond these classical problems.
Modern statistical procedures have been developed to mini-
mize some of these problems by fitting the model of an
implied trajectory over time directly to the observed scores.
Alternative mathematical forms of growth can be considered
using different statistical restrictions. From such formal as-
sumptions we can write the set of expectations for the means,
variances, and covariances for all observed scores, and
use these expectations to identify, estimate, and examine the
goodness-of-fit of latent variable models representing change
over time. Most of these models discussed here are based on
fitting observed raw-score longitudinal growth data to a theo-
retical model using likelihood-based techniques (as in Little &
Rubin, 1987; McArdle & Bell, 2000). In general, we find it
convenient to describe the data using the observed change
scores (defined as �Yn/�t), but we make inferences about the
underlying growth processes by directly estimating parame-
ters of the latent change scores (defined as �yn/�t).

In a recent and important innovation, Meredith and Tisak
(1990) showed how the Tuckerized curve models (so named in
recognition of Tucker’s seminal contributions) could be rep-
resented and fitted using structural equation modeling of com-
mon factors. These growth modeling results were important
because this made it possible to represent a wide range of
alternative growth models. This work also led to interest in
methodological and substantive studies of growth processes
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using structural equation modeling techniques (McArdle,
1986, 1997; McArdle & Anderson, 1990; McArdle & Bell,
1980; McArdle & Epstein, 1987; McArdle & Hamagami,
1991, 1992). These latent growth models have since been ex-
panded upon and used by many others (Duncan & Duncan,
1995; McArdle & Woodcock, 1997; Metha & West, 2000; B.
O. Muthen & Curran, 1997; Willett & Sayer, 1994). The con-
temporary basis of latent growth curve analyses can also be
found in the recent developments of multilevel models (Bryk
& Raudenbush, 1987, 1992; Goldstein, 1995) or mixed-effects
models (Littell, Miliken, Stoup, & Wolfinger, 1996; Singer,
1999). Perhaps most important is that the work by Browne and
du Toit (1991) showed how the nonlinear dynamic models
could be part of this same framework (see Cudeck & du Toit,
2001; McArdle & Hamagami, 1996, 2001; Pinherio & Bates,
2000). For these reasons, the term latent growth models seems
appropriate for any technique that describes the underlying
growth in terms of latent changes using the classical assump-
tions (e.g., independence of residual errors).

The model-based fitting of structural assumptions about
the group and individual differences holds the key to later
substantive interpretations. These theoretical restrictions may
not hold exactly in the examination of real data, and this leads
to the general issues of model testing and goodness-of-fit.
Recent research has also produced a variety of new statistical
and computational procedures for the analysis of latent
growth curves, and their unique features are somewhat diffi-
cult to isolate. This means that the likelihood-based approach
to the estimation and fitting of growth curve analyses can be
accomplished using several widely available computer pack-
ages (e.g., SAS: Littell et al., 1996, Singer, 1998, and
Verneke & Molenberghs, 2000; SPlus: Pinherio & Bates,
2000; MIXREG: Hedecker & Gibbons, 1996, 1997). A few
available computer programs (e.g., Mx: Neale, Boker, Xie, &
Maes, 1998; AMOS: Arbuckle & Wotke, 1999, and Mplus:
L. K. Muthen & Muthen, 1998), can be used to estimate the
parameters of all analyses described herein.

The Bradway-McArdle Longitudinal Growth Data

To illustrate many of the issues and models in this chapter, we
use some longitudinal growth data in Figure 18.6. These are
age-plots of data from a recent study of intellectual abilities—
the Bradway-McArdle Longitudinal study (see McArdle &
Hamagami, 1996; McArdle, Hamagami, Meredith, &
Bradway, 2000). The persons in this study were first mea-
sured in 1931, when they were aged 2 to 7 years, as part of the
larger standardization sample of the Stanford-Binet test
(N = 212). They were measured again about 10 years later

by Katherine P. Bradway as part of her doctoral dissertation in
1944 (N = 138). Many of these same persons were measured
twice more by Bradway as adults at average ages of 30 and 42
using the Wechsler Adult Intelligence Scales (WAIS,
N = 111; for further details, see Bradway & Thompson,
1962; Kangas & Bradway, 1971). About half (n = 55) of the
adolescents tested in 1944 were measured again in 1984 (at
ages 55 to 57), and between 1993 and 1997 at ages ranging
from 64 to 72; 34 were tested in 1993 through 1997 on the
WAIS (McArdle, Hamagami, et al., 2001).

These plots illustrate further complexity that needs to be
dealt with in longitudinal growth curve analyses. The first
plot (Panel A of Figure 18.6) gives individual growth curve
data for verbal ability (Rasch scaled) at each age at testing for
n = 29 individuals who were measured at each time of test-
ing, and for the n = 82 persons who were measured at some
(but not all) ages of testing. The second plot of Figure 18.6
(Panel B) is a similar plot for data from nonverbal measure-
ments. The comparison of Panels A and B is informative, and
leads to important practical issues in subject recruitment and
attrition in longitudinal studies. Although not depicted here,
multiple variables from the Stanford-Binet and the WAIS
have been repeatedly measured, including separate measures
of verbal (or knowledge) ability, and of nonverbal (or reason-
ing) ability (for details, see McArdle, Hamagami, Horn, &
Bradway, 2002). 

Table 18.1 is a listing of numerical information from this
study to be used in subsequent examples of growth curve
analyses. The overall subject participation is listed in Panel A
of Table 18.1, and here we can see the nearly continual loss of
participants over time. The means and standard deviations for
two composite variables are listed in Panel B, and here we
find early increases followed by less change in the later years.
The correlations of these measures over six occasions are
listed in Panel C, and here we find a complex pattern of
results, with some correlations suggesting high stability of in-
dividual differences (e.g., r > .9) and others suggesting low
stability (r < .1). The summary information presented in
Panels B and C is limited to those n = 29 participants with
complete data at all six time points of measurement, but in-
formation on N = 111 available through adulthood is used in
the growth curve examples to follow.

As with any data-oriented study, the information in this
data set has some clear limitations (e.g., Pinneau, 1961).
Among these, the participants are all from one birth cohort
(~1928), in the same geographical area (San Francisco), of
one ethnicity (Caucasian), and come from volunteer families
with above-average socioeconomic status; moreover, most of
them score above average on most cognitive tasks. Whereas
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TABLE 18.1 Description of the Bradway-McArdle Longitudinal Study Data

A. Subject Ascertainment History

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6
Age 2–7 Age 12–17 Age 28–32 Age 40–43 Age 55–58 Age 63–66

Category N (%) N (%) N (%) N (%) N (%) N (%)

Tested 212 (100.) 138 (65.) 111 (80.) 48 (43.) 53 (48.) 51 (46.)
Inaccessible 0 (0.) 0 (0.) 0 (0.) 7 (6.) 5 (5.) 6 (5.)
Deceased 0 (0.) 0 (0.) 0 (0.) 2 (2.) 9 (8.) 19 (17)
Refused testing 0 (0.) 0 (0.) 0 (0.) 7 (6.) 1 (1.) 12 (11.)
Not located 0 (0.) 74 (35.) 27 (20.) 47 (42.) 43 (39.) 23 (21.)

B. Means and Standard Deviations (N = 29)

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6
Variables Age 4 Age 14 Age 30 Age 42 Age 57 Age 65

Nonverbal mean 25.55 70.40 80.06 82.99 80.60 78.64
(nonverbal S.D.) (12.61) (5.89) (7.87) (7.84) (7.53) (7.80)
Verbal means 22.22 65.84 75.65 78.76 80.70 77.97
(verbal S.D.) (8.80) (7.37) (9.20) (8.23) (7.86) (7.59)

C. Correlations of Nonverbal and Verbal Scores (N = 29)

NV4 NV14 NV30 NV42 NV57 NV65 V4 V14 V30 V42 V57 V65

NV4 1.00
NV14 .12 1.00
NV30 −.10 .37 1.00
NV42 −.04 .19 .81 1.00
NV57 −.02 .20 .85 .82 1.00
NV65 .02 .25 .78 .85 .83 1.00

V4 .92 .16 −.03 −.08 .03 .02 1.00
V14 .28 .68 .18 .05 .03 .16 .36 1.00
V30 −.02 .25 .56 .45 .41 .57 .09 .43 1.00
V42 .07 .26 .53 .37 .42 .50 .24 .27 .83 1.00
V57 −.01 .21 .50 .37 .36 .44 .15 .38 .91 .89 1.00
V65 .02 .24 .52 .46 .41 .56 .10 .35 .85 .77 .90 1.00

Figure 18.6 Growth curves of verbal (Gc) and nonverbal (Gf) abilities in complete and incomplete data from the Bradway Longitudinal
Growth Study (see McArdle, Hamagami, Bradway & Meredith, 2001); Rasch scaled scores (y) plotted as a function of age at measure-
ment (x) for (a) N = 29 participants with complete data and (b) N = 82 participants with incomplete data.
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Figure 18.7 The basic latent growth structural model as a path diagram
from McArdle & Epstein (1987) and McArdle & Hamagami (1992).
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the longitudinal age span and the number of measures taken
are large, the number of occasions of measurement was lim-
ited by practical concerns (e.g., cooperation, fatigue, and
practice effects). The benefits and limitations of these classic
longitudinal data make it possible to examine both the bene-
fits and limitations of the new models for the growth and
change discussed in this chapter.

THE BASIC STRUCTURE OF GROWTH MODELS

Growth Models of Within-Person Changes

Growth curve data are characterized as having multiple
observations based on longitudinal or repeated measures.
Assume we observe variable Y at multiple occasions (in
brackets, t = 1 to T) on some persons (in subscripts, n = 1 to
N), and we write

Y[t]n = y0,n + A[t] ys,n + e[t]n (18.1)

where the y0 are scores representing an individual’s initial
level (e.g., intercept); the ys are scores representing the indi-
vidual linear change over time (e.g., slopes); the set of coef-
ficients A[t] are termed basis weights, used to define the
timing or shape of the change over time for the group (e.g., age
at testing); and the e[t] are error scores at each measurement.

The latent-change model is constant within an individual
but it is not assumed to be the same between individuals (with
subscripts n). The unobserved variables that presumably do
not change over time are written in lowercase ( y0, ys) are
similar to the predicted (i.e., nonerror) scores in a standard
regression equation. We can write

y0,n = �0 + e0,n and ys,n = �s + es,n, (18.2)

where the group means (�0, �s) are fixed effects for the in-
tercept and the slopes and the new scores are deviations
(e0, es) around these means. We can define additional fea-
tures of these scores using standard expected value (E{y})
notation. First we presume the means of all deviations scores
are zero (i.e., E{e} = 0). Next, we define the nonzero vari-
ance and covariance terms as

E{e0, e0} = �2
0 , E{es, es} = �2

s , E{e0, es} = �0s, and

E{e[t], e[t]} = �2
e , (18.3)

so these individual differences around the means are termed
random effects (�2

0, �2
s , �0s). In many applications we as-

sume only one random error variance (�2
e) at all occasions of

measurement. As in classical regression analyses, the validity
of the interpretations is are limited by the most basic model
assumptions—for example, linearity, additivity, indepen-
dence of residuals, independence of other effects, no interac-
tions, and so on.

In order to clarify growth models, we can use a path
diagram such as the one displayed as Figure 18.7. These
kinds of diagrams were originally only used with regression
models, but more recently have been used in the context of
growth and change (e.g., see McArdle, 1986; McArdle &
Aber, 1990; Wright, 1934). In this representation the ob-
served variables are drawn as squares, the unobserved vari-
ables are drawn as circles, and the implied unit constant (i.e.,
scores of 1 before the intercept parameter in Equation 18.1) is
included as a triangle. Model parameters representing fixed
or group coefficients are drawn as one-headed arrows, while
random or individual features are drawn as two-headed ar-
rows. The observed variables (Y[t]) are seen to be produced
by latent intercepts ( y0 ) with unit weights, by the latent
slopes ( ys) with weights (A[t] = [�[1], �[2], . . . �[T]]), and
by an individual error term (e[t]).

Following Equations 18.2 and 18.3, the initial level and
slopes are often assumed to be random variables with fixed
means (�0, �s) but random variances (�2

0, �2
s ) and covari-

ances (�0,s). The standard deviations (�0, �s) are sometimes
drawn in the picture to permit the direct representation of the
covariances as scaled correlations (�0,s). The error terms are
assumed to be distributed with a mean of zero, a single vari-
ance (�2

e), and no correlation with any of the other latent
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scores (further statistical tests may assume these errors
follow a normal distribution as well). These formal structural
assumptions distinguish these latent growth models from the
other kinds of analyses of growth data.

Considering Alternative Growth Models

As in any form of data analysis, a growth model can be eval-
uated only in relation to other possibilities. A first set of
alternative models might be based on simplifications of
the previous model parameters. In this kind of trajectory
equation, the Y[t] is formed for each group and individual
from the A[t] basis coefficients. These coefficients also deter-
mine the metric or scaling and interpretation of these scores,
so alterations of A[t] can lead to many different models.

As a simple example, suppose we require all coeffecients
A[t] = 0, and effectively eliminate all slope parameters. This
leads to a simple additive model

Y[t]n = y0,n + e[t]n, (18.4)

where only the intercept y0 and the e[t] error terms are
included. As later shown, this model is termed a baseline or
no-growth alternative because it is consistent with observa-
tions only where there is no change over time in the means,
variances, or correlations. 

Other simple growth curve analyses are based on simple
mathematical functions, and the fitting of a straight line to a
set of measures is a standard procedure in scientific research.
So, as a next example, let us assume there are T = 4 time
points and we have set the basis A[t] = [0, 1, 2, 3]. Follow-
ing Equation 18.1, this leads to a set of linear equations
where

Y[1]n = y0,n + 0ys,n + e[1]n,

Y[2]n = y0,n + 1ys,n + e[2]n,

Y[3]n = y0,n + 2ys,n + e[3]n, and
(18.5)

Y[4]n = y0,n + 3ys,n + e[4]n.

At the first time point the specific coefficient a[1] = 0, so the
slope term drops out of the expression and the score at
the first time point is composed of only the intercept plus an
error. At the second time point, a[2] = 1, so the score is the
sum of the intercept ( y0) plus a change over time ( ys) plus a
new error score (e[2]). At the third time point, a[3] = 2, so
the score is the sum of the intercept ( y0) plus 2 times the prior
change over time (2ys) plus a new error (e[3]). At the fourth
time point, a[4] = 3, so the score is the sum of the intercept

( y0) plus three times the prior change over time (3ys) plus a
new error (e[4]). Each additional score would add another
weighted change and a new error term. The basic interpreta-
tion would change only slightly if we altered the linear
basis to be A[t] = [1, 2, 3, 4], because now the intercept
(where t = 0) is presumably prior to the first time point. A
different change of the linear basis to be A[t] = [0.00, 0.33,
0.67, 1.00], would have the effect of shifting the units of the
slope to units to be a proportion of the entire range of time but
we would still be considering straight-line change.

In contrast, other alterations of the basis coefficients can
alter the interpretation of the shape of the changes. For exam-
ple, if we redefine A[t] = [1, 2, 2, 1], then the model does not
represent straight-line change—instead, the basis represents
a curve that starts up (1 to 2), flattens out (2 to 2), and then
goes back down (2 to 1). Other, more complex alterations of
the basis will lead to more complex trajectory models.

As in all linear models, the set of loadings (A[t]) defines
the shape of the group curve over time. In a latent basis
model approach (Meredith & Tisak, 1990), we allow the
curve basis to take on a shape based on the empirical data. We
fit a factor model based on the standard linear model (Equa-
tion 18.1) as before, with two common factor scores, an
intercept ( y0) with unit loadings, a linear slope ( ys), and in-
dependent unique factor scores (e[t]); but the factor loadings
(A[t]) are now estimated from the data. The two common
factor scores account for the means and covariances, and the
estimated factor loadings each describe a weight or satura-
tion of the slope at a specific time of measurement. The A[t]
are estimated as factor loadings and have the usual mathe-
matical and statistical identification problems of any factor
analysis. This means we fit the latent basis model as

Y[1]n = y0,n + 0ys,n + e[1]n,

Y[2]n = y0,n + 1ys,n + e[2]n,

Y[3]n = y0,n + �[3]ys,n + e[3]n, and
(18.6)

Y[4]n = y0,n + �[4]ys,n + e[4]n.

In the typical case, at least one entry of the A[t] will be
fixed as, say, a[1] = 1, to provide a reference point for the
other model parameters. If a nonzero covariance (�0s)

among common factors is allowed, then two fixed values
(e.g., a[1] = 0 and a[2] = 1), can be used to distinguish the
factor scores and assure overall model identification (as in
McArdle & Cattell, 1994). The other parameters are allowed
to be freely estimated (e.g., Greek notation for the estimated
parameters α[3] and α[4]), so we obtain what should be an
optimal shape for the group curve. Change from any one time
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to another (�yn/�t) is a function of the slope score ( ys) and
the change in the factor loadings (�A[t]).

We may now consider a variety of more complex models.
One simple version of a quadratic polynomial growth model
can be written as

Y[t]n = y0n + A[t]y1n + 1
2

A[t]2y2n + e[t]n, (18.7)

where the A[t] are fixed at known values, and a new com-
ponent ( y2) is introduced to represent the change in the
change (i.e., the acceleration). This implies the expected
growth curve may turn direction at least once in a nonlinear
(i.e., parabolic) fashion. The additional latent score ( y2) is
allowed to have a mean (�2) and a variance (�2

2) and to be
correlated with the other latent scores (�0,2, �1,2). Any set
of growth data might require a second-order (quadratic),
third-order (cubic), or even higher order polynomial model.
In each of these alternatives, however, more complexity is
added because any pth-order model includes p latent
means, p + 1 latent variances and p(p − 1)/2 covariance
terms for the group and individual differences across all
observations.

A variety of other growth models can now be studied
using this general linear framework. For example, the linear
polynomial model (Equation 18.7) could be fitted with or-
thogonal polynomial constraints, or in an alternative form
(e.g., Stimpson, Carmines, & Zeller, 1978), or even with a
latent basis (i.e., �[t] and 1

2 �[t]2). Also, in each model listed
previously, it is possible to add assumptions about the struc-
ture of the relationships among the residual terms (e[t]). We
can consider specific-factor terms and consider alternative
mechanisms for their construction (e.g., autoregressive, in-
creasing over time, etc.). These structured residual models
are valuable in statistical efforts to improve the precision, fit,
and forecasts of the model, but they do not provide the sub-
stantive information we use here (but see Cnaan, Laird, &
Slasor, 1997; Littell et al., 1996).

Expectations and Estimation in Linear
Growth Models

The parameters of any growth model lead to a set of expecta-
tions for the observed data, and these expectations will be
used in subsequent model fitting. The previous assumptions
can be combined to form the expected trajectories over time.
This can be calculated from the algebra of expectations (with
sums of average cross-products symbolized as E{YX′}) or
from the tracing rules of path analysis (see McArdle & Aber,
1990; Wright, 1934). Using either approach, the observed
mean at any occasion can be written in terms of the linear

model parameters as

�Y[t] = E{Y[t]1′} = �0 + A[t]�s, (18.8)

(where the constant vector 1 is again used). This implies the
mean at any time (�Y[t]) is the initial-level mean (�0) plus
the slope mean (�s) weighted by the specific basis coefficient
(A[t]) that is either fixed or estimated. This also implies that
changes in the basis weights determine all changes in the
mean trajectory.

The expectation of the observed score variance at any
occasion can be written as

�2
Y[t] = E{(Y[t] − �Y[t])

2} = �2
0 + �2

y[t] + �2
e

= σ2
0 + (

A[t]σ2
s A[t] + A[t]σ0s + σ0sA[t]

) + σ2
e .

(18.9)

This implies the observed variance at any time (σ2
Y[t]) is the

sum of the initial-level variance (�2
0) plus the variance of the

latent changes (�2
y[t]; with lowercase y) plus the error vari-

ance (�2
e). Again we find changes in the basis weights ac-

count for all the changes in the variance over time. Following
this same logic, we can write the expected values for the
covariances among the same variable at two occasions, Y[i]
and Y[ j], as

�Y[i, j] = E{(Y[i] − �Y[i])(Y[ j] − �Y[ j])} = �2
0 + �y[i,j]

= �2
0 + (

A[i]�2
s A[ j] + A[i]�0s + �0sA[ j]

)
.

(18.10)

This implies the observed covariance at any time (�Y[i,j])

is the sum of the initial-level variance (�2
0) plus the covari-

ance of the latent changes (�y[i,j]); changes in the basis
weights account for all changes in the covariances over time.
Each of these Equations 18.8 through 18.10 can be traced in
the diagram (e.g., Equation 18.9 is from any Y[t] back to
itself).

These growth model expectations are useful because they
can be compared to the observed growth statistics for the es-
timation of model parameters and the evaluation of goodness-
of-fit. Whereas the summary statistics form the basis of the
expectations, recent computational techniques can be used to
estimate the model parameters directly from the entire collec-
tion of raw data. Following standard theory in this area (e.g.,
Lange,Westlake, & Spence, 1976; Lindsey, 1993), the multi-
variate normal model for an observed vector Y[t] is used
to define the maximum likelihood estimates (MLEs) of the
parameters, and a single numerical value termed the model
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likelihood (L) can be calculated to index the misfit of the
model expectations to the observed data.

Assuming we have one or more alternative models (see
next section), we can compare these models using the differ-
ences in log-likelihood (�L = L1 − L2) and the difference
in the numbers of parameters estimated (�NP = NP1 −
NP2). Under standard normal theory assumptions about the
distribution of the errors, we can compare model differences
to a chi-square distribution (�L ∼ �2, �NP ∼ df ) and
determine the accuracy (i.e., significance) of our comparison.
To index the multivariate effect sizes, we can calculate a
noncentrality index and provide the statistical power
(P = 1 − 	) for all likelihood-based comparisons (e.g.,
based on � = .01 test size). These likelihood-based calcula-
tions can answer basic questions phrased as To what degree
do the data conform to the model expectations? We can also
use this same likelihood approach to answer more complex
questions, such as Which is the best model for our data and
Do the fit statistics indicate that the same dynamic patterns
exist in different sub-groups? Although we do not need to
make a rigorous use of probability tests, we do provide infor-
mation to calculate alternative indices of fit, including test
statistics for perfect or close fit (e.g., Browne & Cudeck,
1993; Burnham & Anderson, 1998; McArdle, Prescott,
Hamagami, & Horn, 1998).

The resulting parameter estimates allow us to form ex-
pected group growth curves for both the observed and true
scores (for details, see McArdle, 1986, 2001; McArdle &
Woodcock, 1997). We can also characterize the relative size
of these parameters by calculating time-specific ratios of the
estimated variances

�2
[t] = (

�2
Y[t] − �2

e

)
/�2

Y[t] = �2
y[t]/�2

Y[t], and

��2
[i−j] = �2

[ i] − �2
[ j]. (18.11)

These growth-reliability ratios can be useful in investigat-
ing the changes in the true score variance (�2

y[t]) and changes
in the reliability of the variable at different points in time (for
examples, see McArdle, 1986; McArdle & Woodcock, 1997;
Tisak & Tisak, 1996). These simple formulas also suggest
that the parameters of the changes are difficult to consider in
isolation—that is, the variance of the changes is not equal to
the changes in the variance. In the same way, the expecta-
tions of the observed correlations over time (�Y[i, j]) can be
calculated from the basic expressions (the ratio of Equation
18.10 to a function of Equation 18.9), but the resulting ex-
pected correlations are usually a complex ratio of the more
fundamental parameters. In many growth models, it is com-
plicated to express patterns of change using only correlations.

In general, the growth pattern depends on basic model para-
meters that may have no isolated interpretation.

Initial Results From Fitting Linear Growth Models

The complete and incomplete data from the six-occasion
Bradway-McArdle longitudinal study (Figure 18.6) have
been fitted and reported in McArdle & Hamagami (1996) and
McArdle et al. (McArdle, Hamagami, et al., in press, 2002).
A selected set of these results is presented for illustration
here. On a computational note, the standard HLM, MLn,
VARCL, MX, and SAS PROC MIXED programs produced
similar results for all models with a fixed basis. The models
with estimated factor loadings (A[t]) were fitted using the
general Mx unbalanced raw data option (e.g., the variable
length approach) and with SAS PROC NLMIXED and
the results are similar. All of these programs follow the same
general procedures, so we will consider these as equivalent
procedures unless otherwise stated.

The first model (labeled M0) was a no-growth model
(Equation 18.4) fitted to the nonverbal scores of the Bradway-
McArdle data. This simple model was fitted estimated with
only three parameters, and we obtained a baseline for fit
(L = 4440). The parameters estimated include an initial-level
mean (�0 = 46.4), a small initial-level standard deviation
(�0 = 0.01), and a large error deviation (�e = 49.8).

The second model fitted was a linear growth model (M1)
with a fixed basis (Equation 18.5) and six free parameters.
This basis was first formed by using the actual age of the per-
sons at the time of measurement A[t] = [4, 14, 30, 42, 56,
64]. Estimates were obtained yielded a fit (L = 4,169) that
represented a clear improvement over the baseline (�2 = 271
on df = 3) model, and the error variance has been reduced
substantially (to �e{M1} = 18.1). The resulting parameters
lead to a straight line of expected means that increases
rapidly over age; �[t] = [45.4, 52.9, 64.7, 74.1, 84.7, 90.6].
The variance estimates of the intercept and slope parameters
were small, so we refit the model with a simpler basis: That
is, A[t] = [(Age[t] − 4)/56] = [0.00, 0.19, 0.49, 0.73, 1.00,
1.15], so the weights are proportional to the range of data be-
tween the early age of 4 and the middle age of 56. This re-
sulted in identical mean expectations, but the latent variances
were still too small to interpret.

This latent basis model (M2) was fitted next. For the pur-
poses of estimation, the A[1] = 0 (at Age = 4) and A[5] = 1
(at Age = 56) were fixed (as proportions) but the four other
coefficients were estimated from the data. This resulted in a
likelihood (L = 3,346) which is substantially better than
the baseline model (�2 = 1,094 on df = 7) and the linear
model (�2 = 823 on df = 4), and the error variance has been
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Figure 18.8 Alternative latent growth curve model expectations for the av-
erage growth curve of nonverbal abilities fitted to the complete and incom-
plete data from the Bradway-McArdle data (see Figure 18.7; see McArdle &
Hamagami, 1996).

substantially reduced (from �e{M1} = 18.1 to �e{M2} =
5.1). The estimated basis coefficients were A[t] = [= 0, 0.93,
1.01, 1.06, = 1, .97], and the estimated latent means were
�1 = 23.8 and �s = 52.8. This leads to a group trajectory
�[t] = [23.8, 69.2, 76.6, 80.8, 76.6, 75.0] that rises quickly
between ages 4 and 14, peaks at age 42, and starts a small de-
cline at ages 56 to 65. This group curve is plotted as a dashed
line in Figure 18.8 and it is very similar to the general fea-
tures of the raw data in Figure 18.6. The individual differ-
ences in this model are not seen in the means but in the large
variances for the level (�0 = 10.1) and the slope
(�s = 12.3) parameters, and the latent level and slope scores
have a high correlation (�1s = −0.82).

The improved fit of this latent basis compared to the linear
basis model suggests the need for some form of a nonlinear
curve. To explore the addition of fixed higher-order growth
components, the quadratic polynomial model (M3, Equa-
tion 18.10) was fitted to these data using the same pro-
cedures. The goodness-of-fit was slightly improved over the
linear (�2 = 7 on df = 4, �e{M3} = 18.0). Although the
latent basis (M2) and quadratic basis (M3) models are not
nested, the quadratic model did not seem as useful as the la-
tent basis model did. Also, problems arose in the estimation
of all variance terms, so the polynomial approach was not
considered further.

ADDING GROUP INFORMATION TO GROWTH
CURVE ANALYSES

Latent Path and Mixed-Effects Models

We next consider analyses which include more detailed in-
formation about group differences. In the basic growth model
(Equations 18.1–18.4), the latent variance terms in the model
tell us about the size of the between group differences at each
age (Equation 18.11), but this does not tell us the sources of
this variation. To further explore the differences between per-
sons, we can expand the basic growth model. Let us assume
a variable termed X indicates some measurable characteristic
of the person (e.g., sex, educational level, etc.). If we measure
this variable at one occasion we might like to examine its
influence in the context of a growth model for Y[t]. One pop-
ular model is written

Y[t]n = y0:x,n + A[t]ys:x,n + � Xn + e[t]n (18.12)

where the � are fixed (group) coefficients with the same-
sized effect on the measured Y[t] scores at all occasions, and
the X is an independent observed (or assigned) predictor
variable. It is useful to recognize that this model implies the
latent score change over time is independent of the X vari-
able(s). That is, the other growth parameters (�0:x, �s:x, �0:x,

�s:x, �0,s:x) are conditional on the expected values of the
measured X variable. This use of adjusted growth parameters
is popularly represented in the techniques of the analysis of
covariance, and the reduction of error variance from one
model to the next (�2

e − �2
ex) is often considered as a way to

understand the impact (see Snyders & Boskers, 1995).
An alternative but increasingly popular way to add another

variable to a growth model is to write expressions in which
the X variable has a direct effect on the individual differences
scores of the growth curve. This can be stated as

Y[t]n = y0n + A[t]ysn + e[t]n with

y0n = v00 + v0x Xn + e0n, and (18.13)

ysn = vs0 + vsx Xn + esn,

where the regression of the latent variables (y0, ys) on X in-
cludes intercepts (v00, vs0) and slopes (v0x, vsx). We can
rewrite this model into a compact reduced form,

Y[t]n = [v00 + v0x Xn + e0n] + A[t][vs0 + vsx Xn + esn]
+ e[t]n

= v00 + v0x Xn + e0n + A[t]vs0 + A[t]vsxs Xn

+ A[t]esn + e[t]n
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Figure 18.9 Latent growth as a path diagram with mixed-effects or multi-
level predictors (from McArdle & Epstein, 1987; McArdle, 1989).
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= [v00 + A[t]vs0 + v0x Xn + A[t]vsx Xn]

+ [e0n + A[t]esn + e[t]n], (18.14)

and this separates the fixed-effects (first four terms) from the
random components (last three terms). This model is drawn
as a path diagram in Figure 18.9. This diagram is the same as
Figure 18.7, except here we have included the X as a predic-
tor of the levels and slope components. This diagram gives
the basic idea of external variable models, and other more
complex alternatives are considered in later sections.

In this simple latent growth model, as in more complex
models to follow, we can always add other predictors X for
the intercepts and the slopes because these models are
simply latent growth models with “extension variables”
(e.g., McArdle & Epstein, 1987). This kind of model
(Equation 18.13 or 18.14) can also be seen as having two
levels—a first-level equation for the observed scores, and a
second-level equation for the intercepts and slopes. For
these reasons, such models have been termed random-
coefficients or multilevel models, slopes as outcomes, or
mixed-effects models (Bryk & Raudenbush, 1987, 1992;
Littell et al., 1996). Variations on these models can be com-
pared for goodness-of-fit indices, and we can examine
changes in the model variance explained at both the first
and second levels (see Snyders & Boskers, 1995). In any
terminology, the between-group differences in the within-
group changes can be represented by the parameters in the
model of Figure 18.9.

Group Differences in Growth Using Multiple 
Group Models

The previous models used the idea of having a measured
variable X characterizing the group differences and then ex-
amining the effect of X on the model parameters. However,
this method is limiting in a number of important ways. For
example, some of the classical forms of growth processes,
such as examining different amplitudes and phase shifts (e.g.,
Figure 18.2) are not easy to account for within the single-
group latent growth framework. A more advanced treatment
of the group problem model uses concepts derived from
multiple-group factor analysis (e.g., Jöreskog & Sörbom,
1999; Honr & McArdle, 1992; McArdle & Cattell, 1994). In
these kinds of models, each group, g = 1 to G, is assumed to
follow some kind of latent growth model, such as

Y[t](g)
n = y(g)

0,n + A[t](g)y(g)

1,n + e[t](g)
n

for g = 1 to G, (18.15)

with basis parameters A[t](g) defined by the application.
Figure 18.10 gives a path diagram representing several kinds
of multiple-group growth models (McArdle, 1991; McArdle
& Epstein, 1987; McArdle & Hamagami, 1992). The per-
sons in the groups are assumed to be independent, so this
kind of grouping can only be done for observed categorical
variables (i.e., sex). The first two groups in Figure 18.10 can
be considered as data separated into males or females (or
experimentals and controls). Although not necessary, in
Figure 18.10 we assume some of the Y[t] occasions were
considered incomplete, possibly to represent a collection
gathered at unequal intervals of time. In structural modeling
diagrams (and programs), the unbalanced data for Y[3] and
Y[5] are simply included as latent variables (see McArdle &
Aber, 1990). In any case, this multiple-group model now
allows us the opportunity to examine a variety of invariance
hypotheses.

The multiple-group growth model permits the examina-
tion of the presumed invariance of the latent basis functions,

A[t](1) = A[t](2) = . . . A[t](g) = . . . A[t](G). (18.16)

The rejection of these constraints (based on � 2/df ) implies
that some independent groups have a different basic shape
of the growth curve. This is one kind of model that is not easy
to represent using standard mixed-effects or multilevel mod-
els (Equation 18.13). If a reasonable level of invariance is
found, we can further examine a sequence of other group
differences. For example, we may examine the equality of the
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Figure 18.10 A path diagram of a multiple-group latent growth model (Groups 1 and 2) and the inclusion of with patterns of incomplete data (Groups 3
and 4; from McArdle & Hamagami, 1991, 1992).
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variances of the latent levels and slopes by writing

�(1)

0 = �(2)

0 = . . . �
(g)

0 = . . . �(G)

0 and

�(1)
s = �(2)

s = . . . �(g)
s = . . . �(G)

s .
(18.17)

Other model combinations could include the error devia-
tions (�

(g)
e ), the total slope variance and covariances, and

functions of all the other parameters. We may still consider
the typical mixed-effects group difference parameters when
we examine the invariance of the latent means for initial
levels and slopes. If we assume invariance of latent shapes
(Equation 18.16) and latent variances (Equation 18.17), we

can meaningfully examine

�(1)

0 = �(2)

0 = . . . �
(g)

0 = . . . �(G)

0 and

�(1)
s = �(2)

s = . . . �(g)
s = . . . �(G)

s .
(18.18)

Group differences in the fixed effects can even be coded in
the same way as in the typical mixed-effects analyses. Each
of these multiple-group hypotheses represent a nonlinearity
that may not be possible to examine using a standard mixed-
effects approach.

Multiple-group models can be a useful way to express
problems of incomplete data. Longitudinal data collections
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often include different numbers of data points for different
people and different variables, and one good way to deal with
these kinds of statistical problems is to include multiple-
group models that permit different numbers of data points on
each person (e.g., Little & Rubin, 1987; McArdle, 1994). The
third and fourth groups of Figure 18.10 represent persons
with incomplete data on some occasions. In other cases, the
data from any one age may not overlap very much with those
of another group of another age. In order to uniquely identify
and estimate the model parameters from this collection of
data (all four groups), all parameters are forced to be invari-
ant over all groups. This kind of multiple-group model can
be symbolized as

Y[t]n =
∑

g=1,G

(
F(g){y0,n + y1,nA[t] + e[t]n}

)
, (18.19)

where the F(g) is a binary filter-matrix for each group that de-
fines the pattern of complete (1) and incomplete (0) data en-
tries (for further details, see McArdle & Anderson, 1990;
McArdle & Hamagami, 1992). This multiple-group incom-
plete patterning approach is identical to the statistical models
in which we fit structural models to the raw score information
for each person on each variable at each time. The available
information for any subject on any data point (i.e., data at any
occasion) is used to build up a likelihood function, and the
numerical routine is used to optimize the model parameters
with respect to the available data (Neale et al., 1999;
Hamagami & McArdle, 2001).

This method assumes the invariance of all growth para-
meters across different patterns of data is a rigid form of
“longitudinal convergence” (after Bell, 1954; see McArdle &
Bell, 2000). Although invariance is a reasonable goal in many
studies, it is not necessarily a hypothesis that can be tested
with all incomplete patterns (McArdle & Anderson, 1990;
Miyazaki & Raudenbush, 2000; Willet & Sayer, 1995). One
key assumption in our use of these MLE-based techniques is
that the incomplete data are missing at random (MAR; Little
& Rubin, 1987). This assumption does not require the data to
be missing completely at random (MCAR), but MAR does as-
sume there is some observed information that allows us to ac-
count for and remove the bias in the model estimates created
by the lack of complete data (e.g., Hedecker & Gibbons,
1997; McArdle, 1994; McArdle & Hamagami, 1992). In
many cases, this MAR assumption is a convenient starting
point, and allows us to use all the available information in
one analysis. In other cases, invariance of some parameters
may fail for a number of reasons and it is important to evalu-
ate the adequacy of this helpful MAR assumption whenever
possible (e.g., Hedecker & Gibbons, 1997; McArdle, 1994).

Latent Groups Based on Growth-Mixture Models

Another fundamental problem is the discrimination of
(a) models of multiple curves for a single group of subjects
from (b) models of multiple groups of subjects with different
curves. For example, we could have two clusters of people,
each with a distinct growth curve, but when we summarize
over all the people we end up with poor fit because we need
multiple slope factors. One clue to this separation is based on
the higher-order distribution of the factor scores—groups are
defined by multiple peaked distributions in the latent factor
scores. In standard linear structural modeling, these higher-
order moments are not immediately accessible, so the
multiple-factor versus multiple-group discrimination is not
easy. These and other kinds of problems require an a priori
definition of the groups before we can effectively use the
standard multigroup approach.

These practical problems set the stage for a new and im-
portant variation on this multiple-group model—models that
test hypotheses about growth curves between latent groups.
The recent series of models termed growth mixture models
have been developed for this purpose (L. K. Muthen &
Muthen, 1998; Nagin, 1999). In these kinds of analyses, the
distribution of the latent parameters is assumed to come from
a mixture of two or more overlapping distributions. Current
techniques in mixture models have largely been developed
under the assumption of a small number of discrete or proba-
bilistic “classes of persons” (e.g., two classes), often based
on mixtures of multivariate normal distributions. More
formally, we can write this kind of a model as a weighted
sum of curves

Y[t]n =
∑

c=1,C

(
P{cn} · {y(c)

0,n + A[t](c) y(c)
1,n + e[t](c)

n }),

with
∑

c=1,C

(P{cn}) = 1,
(18.20)

where P{cn} is constrained to sum to unity so that it acts as
a probability of class membership for the person in c = 1 to
C classes.

Using growth-mixture models we can estimate the most
likely threshold parameter for each latent distribution (�p, for
the pth parameter) while simultaneously estimating the sepa-
rate model parameters for the resulting latent groups. The
concept of an unknown or latent grouping can be based on a
succession of invariance hypotheses about the growth para-
meters. We can initially separate latent level means and vari-
ances, then separate latent slope means and variances, then
both the level and slope, then on the basis loadings, and so
on. The resulting maximum likelihood estimates yield a fit
that can be compared to the results obtained from more
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restrictive single class models, so the concept of a mixture
distribution of multiple classes can be treated as a hypothesis
to be investigated.

In essence, this growth-mixture model provides a test of
the invariance of growth model parameters without requiring
exact knowledge of the group membership of each individ-
ual. It follows that, as we do in standard discriminant or
logistic analysis, we can also estimate the probability of as-
signment of individuals to each class in the mixture, and
this estimation of a different kind of latent trait can be a
practically useful device. A variety of new program scripts
(e.g., Nagin, 1999) and computer programs (e.g., Mplus, by
L. K. Muthen & Muthen, 1998) permit this analysis.

Results From Fitting Group Growth Models

We have studied a variety of mixed-effect or multilevel mod-
els of the Bradway data. To allow some flexibility here, we
used the same latent basis curve model (M2) but now we add
a few additional variables as predictors. These variables in-
cluded various aspects of demographic (e.g., gender, educa-
tional attainment by age 56, etc.), self-reported health
behaviors (e.g., smoking, drinking, physical exercise, etc.),
health problems (e.g., general health, illness, medical proce-
dures, etc.), and personality measures (e.g., 16 PF factors).
As one example, in a mixed-effects model (see Figure 18.9),
we added gender as an effect-coded variable (i.e., females =
−0.5 and males = +0.5). The results obtained for nonverbal
scales included the latent basis A[t] = [= 0, 0.93, 1.01,
1.06, = 1, .97] as before. But now, in the same model, we
found the males start at slightly lower initial levels
(v0x = −0.06) but had larger positive changes over time
(vsx = 0.30). The addition of gender does not produce large
changes in fit (� 2 = 10 on df = 4), so all gender mean differ-
ences may be accounted for using the latent variables, but
gender does not account for much the variance of the latent
scores (.03, .05). To account for more of this variance we pro-
ceed using basic principles of multiple regression: In a third
model we added educational attainment, in a fourth model we
added both gender and education, and in a fifth model we
added an interaction of sex and education.

Group differences in the Bradway-McArdle data were
also studied using multiple-group growth curves. In a general
model the latent means, deviations, and basis shape of the
changes were considered different for the males and the fe-
males. The key results for males and females show a lack of
invariance for the initial basis hypothesis (A[t](m) = A[t](f),
� 2 = 40 on df = 5). The separate group results show that the
females have a higher basis function, and this implies more
growth over time (e.g., McArdle & Epstein, 1987). This last

result does not deal only with mean differences, but rather
includes both mean and covariance differences, and it may be
worth pursuing. 

Multiple-group growth models have been used in all
prior analyses described here to fit the complete and
incomplete subsets of the Bradway-McArdle data (Fig-
ure 18.6). We compared the numerical results for the com-
plete data (Figure 18.6, Panel A) versus the complete and
incomplete data together (Figure 18.6, Panel A plus Panel
B), and the parameters remain the same. As a statistical test
for parameter invariance over these groups, we calculated
from the difference in the model likelihoods, and these dif-
ferences were trivial (� 2 < 20 on df = 20). This suggests
that selective dropout or subject attrition can be considered
random with respect to the nonverbal abilities. This last re-
sult allows us to combine the complete and incomplete data
sets in the hopes for a more accurate, powerful, and unbi-
ased analysis.

In our final set of multiple-group models, we used the la-
tent mixture approach to estimate latent groupings of models
results for the verbal scores, and some results are graphed
in Figure 18.11. The latent growth model using all the data
was fitted with free basis coefficients and the same fits as
were reported earlier (M2). In a first latent mixture model, we
allowed the additional possibility of two latent classes
(C = 2) with different parameters for the latent means and
variance but assuming the same growth basis. The two-class
growth model (Figure 18.11, Panel A) assumed the same free
basis coefficients as previously, smaller latent variances, and
an estimated class threshold (z = 2.48) separating (a) Class 1
with 92% of the people with high latent means
(�0 = 25, �s = 58), from (b) Class 2 with 8% of the people
with lower latent means (�0 = 16, �s = 53). This two-class
model yielded an likelihood that (assuming these two models
are nested) represents a substantial change in fit (� 2 = 30 on
df = 3). This result suggests that a small group of the
Bradway persons may have started at a lower average score
with a smaller change. A sequence of parameters were com-
pared under the assumption of two classes, and the final result
is presented in Figure 18.11, Panel B. The two-class growth
model yielded an estimated class threshold (z = −0.72) sep-
arating two classes with 33% and 67% of the people. The first
class seems to have a higher starting point and lower vari-
ability, but the plots of Figure 18.11b seem to show the two
curves converge in adulthood. Although this is an interesting
possibility, this complete two-class growth-mixture model
yielded only a small improvement in fit (L = −1628,

� 2 = 34, on df = 12), so we conclude that only one class of
persons is needed to account for the basic growth curves un-
derlying these data.
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Figure 18.11 Bradway-McArdle verbal score expectations from latent growth-mixture models; Model 1 includes two
classes with free means and covariances, and Model 2 is the same with adds four free basis coefficients.

GROWTH CURVE MODELS FROM A
DYNAMIC PERSPECTIVE

Growth Models Based on Dynamic Theory

The linear models previously presented can be used to de-
scribe a variety of nonlinear shapes, but other models have
explicitly included nonlinear functions of the parameters. The
development of many of these nonlinear models was based on
differential equations as an expression of changes as a func-
tion of time: that is, dynamic changes. For example, we can
write an exponential growth model (see Figure 18.3) as

dy/dt = 	y[t] so y[t] = y[0] + exp(−	t). (18.21)

where the instantaneous derivative (dy/dt) of the score (y) is
a proportional function (	) of the current size of the score
( y[t]). This change model leads to the integral equation with
change over time in the score based on an initial starting
point (y[0], sometimes set to zero) with an exponential accu-
mulation (exp) based directly on the growth rate parameter
(	). In classical forms of this model, the rate of change is de-
fined as a linear function of the percentage of initial size (e.g.,
compound interest).

In contemporary nonlinear model fitting, we can add indi-
vidual differences to this model in several ways. One ap-
proach that is consistent with our previous growth models is
to simply rewrite the derivative and integral equations as

dyn/dt = 	y[t]n so Y[t]n = y0,n + A[t]ys,n + e[t]n

with A[t] = 1 − exp(−	t). (18.22)

In this approach, the classic nonlinear exponential model
(Equation 18.21) is now in the form of a latent growth curve
with structured loadings (as in Browne & duToit, 1991;
McArdle & Hamagami, 1996). Individual trajectories start at
different initial levels, but then rise or fall in exponential
fashion towards some asymptotic values. In this approach,
the group curve is based on the latent means and is not based
on an averaging of exponential functions (cf. Keats, 1983;
Tucker, 1966). This common factor approach allows us to use
current computing techniques to examine the empirical fit of
this nonlinear model.

A related approach has been used with a form of the von
Bertalanffy model,

dyn/dt = (�n g[t]n) − (

n − d[t]�n

)
, so

Y[t]n = y0,n + [exp(−�t) − exp(−
t)]ys,n + e[t]n, (18.23)

where � = the rate of growth, 
 = the rate of decline, and
� = some relationship between the two components. In this
simplified form (i.e., � = 1), there is only one slope (ys) and
one nonlinear set of A[t], but we interpret this as separate
growth and decline phases of an underlying continuous latent
process. The parameters also yield estimated score peaks
(dy/dt = 0) and valleys (d2y/dt2 = 0) with individual differ-
ences (e.g., McArdle, Ferrer-Caja, Hamagami, & Woodcock,
in press; Simonton, 1989).

Several alternative growth curve models have been devel-
oped from dynamic change equations with more parameters.
A logistic curve can be written as

dyn/dt = �n y[t]n(
n − y[t]n) so

Y[t]n = y0,n + �n/[1 + exp{
n − �nt}] + e[t]n (18.24)
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with � = the asymptote, 
 = an influence on the slope (i.e.,
the slope is �
/4), and � = the location of maximum veloc-
ity. The expression allows for three individual differences
terms with structured loadings (see Browne & du Toit, 1991).
A related model is the Gompertz growth curve, written as

dyn/dt = �n y[t]n exp(
n − y[t]n) so

Y[t]n = y0,n + �n exp(−
n exp{[t − 1]�n}) + e[t]n,

(18.25)

with � = the asymptote, 
 = the distance from the asymptote
on the first trial, and � = the rate of change. Browne and duToit
(1991) clearly showed how this model could be rewritten as a
latent growth curve with structured loadings, including inter-
pretations of individual differences in the rates of growth.

The Preece-Baines family of models start with a deriva-
tive based on some predefined function of t ( f{t}) and some
asymptotic value (y[�]). To obtain logistic models (Equa-
tion 18.24), the functional form used a proportional distance
from the starting point ( f {t} = �{y0,n − y[t]}). In other mod-
els, this function was the simple rate parameter f {t} = 	, so

dyn/dt = 	{y[t]n − y[�]n} so

Y[t]n = y0,n + (exp{−(t − 1)	})y[�]n + e[t]n

(18.26)

where the amount of change is a function of the distance from
the asymptote. This approach allows us to obtain a form of
the partial adjustment model of Coleman (1968; McArdle &
Hamagami, 1996). These models seem to have practical
features for the description of individual changes over long
periods of time (see Hauspie et al., 1991; Nesselroade &
Boker, 1994).

Growth Curve Models Using Connected Segments

Complex linear and nonlinear models can be used to repre-
sent growth. Some models share the common feature of
a piecewise analysis applied to different age or time
segments—that is, the model considers the possibility that a
specific dynamic process does not hold over all time periods.
In the simplest cases, we may assume that growth is linear
over specific periods of time, and these times are connected
by a critical knot point—this leads to a conjoined or linear
spline model (e.g., Bryk & Raudenbush, 1992; Smith, 1979).
If we assume one specific cutoff time (t = C), we can write

if (t = C), then Y[t]n = y0,n + e[t]n but

if (t < C), then Y[t]n = y0,n + A1[t] y1,n + e[t]n but

if (t > C), then Y[t]n = y0,n + A2[t] y2,n + e[t]n. (18.27)

where the latent growth basis is different before (A1[t]) and
after (A2[t]) the cut point. This piecewise linear model as-
sumes the first component (y0) is the score at the cutoff, the
second component (y1) is the slope score before the cutoff,
and the third component (y2) is the slope score after the cut
point. As before, the fixed effects (means �0, �1, �2) de-
scribe the group curve, but the random coefficients (y0, y1, y2)
have variances and covariance and account for the individual
differences in curves across all observations.

In some growth data sets, it is possible to estimate optimal
cut points (t = Cn) as an operationally independent random
component (see Cudeck, 1996). Unless the cut points are es-
timated, this model may require a relatively large number of
fixed and random parameters to achieve adequate fit. In a re-
cent mixed-effects analysis, Cudeck & du Toit (2001) fol-
lowed previous work (e.g., Seber & Wild, 1989) and used a
“segmented polynomial” nonlinear mixed model based on an
individual a latent transition point for each individual. This
model can be written in our notation as

Y[t]n = y0,n + y1,n A[t] + y2,n(A[t] − y3,n)2 + e[t]n,

| A[t] ≤ y3,n and

Y[t]n = y0,n + y1,n A[t] + e[t]n, | A[t] > y3,n,

(18.28)

where the parameter y3 is the value of A[t] when the polyno-
mial of the first phase changes to the linear component of the
second phase. Important practical suggestions about fitting
multilevel nonlinear curves were presented by Cudeck and
DuToit (2001).

These segmented or composite models have also been a
mainstay of nonlinear modeling. For example, the segmented
logistic model (see Bock, 1975; Bock & Thissen, 1980) can
be written as a trajectory where

Y[t]n =
∑

k=1,K

[αk,n/(1 + exp{βk,n − γk,n t})] + e[t]n

(18.29)

is the sum of k = 1 to K logistic age-segments. Within each
segment, �k = the asymptote, 
k = an influence on the slope
(i.e., the slope is �k
k/4), �k = the location of maximum ve-
locity, and no intercept is fitted. Within each segment, the rate
of growth exhibits early increases, reaches a maximum (peak
growth velocity), and decreases towards the asymptote; the
final value of one segment is used as the starting value of the
next segment. While each segment has a simple logistic
curve, the overall curve fitted (e.g., over the full life span) has
a particularly complex nonlinear form. These composite
models allow for different dynamics at different ages, and
this represents an important innovation.
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Growth Models Based on Latent Difference Scores

The complexities of fitting and extending the previous dy-
namic models have limited their practical utility. In recent re-
search we have considered some ways to retain the basic
dynamic change interpretations but use conventional analytic
techniques. This has led us to recast the previous growth
models using latent difference scores (see McArdle, 2001).
This approach is not identical to that represented by the dif-
ferential equations considered earlier (e.g., Arminger, 1987;
Coleman, 1968), but it offers a practical approximation that
can add clear dynamic interpretations to traditional linear
growth models. 

In the latent difference approach, we first assume we have
a pair of observed scores Y[t] and Y[t − 1] measured over a
defined interval of time (�t = 1), and we write

Y[t]n = y[t]n + e[t]n, Y[t − 1]n = y[t − 1]n + e[t − 1]n

and y[t]n = y[t − 1]n + �y[t]n (18.30)

with corresponding latent scores y[t] and y[t − 1], and error
of measurements e[t] and e[t − 1]. It follows that by simple
algebraic rearrangement, we can define

y[t]n = y[t − 1]n + �y[t]n so

�y[t]n = (y[t]n − y[t − 1]n)
(18.31)

where the additional latent variable is directly interpreted as
a latent difference score. This simple algebraic device allows
us to generally define the trajectory equation as

Y[t]n = y0,n +
(∑

i=1,t

�y[i]n

)
+ e[t]n (18.32)

where the summation (
∑

i=1,t) or accumulation of the latent
changes (�y[t]) up to time t is included. In this latent differ-
ence score approach, we do not directly define the A[t] coef-
ficients, but instead we directly define changes as an
accumulation of the first differences among latent variables. 

This latent difference score (�y[t]n) of Equation 18.31 is
not the same as an observed difference score (�Y[t]n) be-
cause the latent score is considered after the removal of
the model-based error component. Although this differ-
ence �y[t]n is a theoretical score, it has practical value
because now we can write any structural model for the latent
change scores without immediate concern about the resulting
trajectory (as in McArdle, 2001; McArdle & Hamagami,
2001; McArdle & Nesselroade, 1994). For example, Coleman

(1968) suggests we write a change model for consecutive
time points as

�y[t]n = 	(ya,n − y[t − 1]n), (18.33)

where ya is a latent asymptote score that is constant over time,
and the 	 describes the proportional change based on the cur-
rent distance from the asymptote (i.e., partial adjustment; see
Equation 18.26). A slightly more general change expression
model is written as 

�y[t]n = �ys,n + 
y[t − 1]n (18.34)

where the ys is a latent slope score that is constant over time,
and the � and 
 are coefficients describing the change. This
second expression (Equation 18.34) is more general because
we can add restrictions (� = 	, 
 = −	) and obtain the first
expression (Equation 18.33). We refer to this as a dual
change score (DCS) model because it permits both a system-
atic constant change (�) and a systematic proportional
change (
) over time, and no stochastic residual is added
(i.e., z[t]; see McArdle, 2001). This is an interesting linear
model because the expectations lead to a mixed-effects
model trajectory with a distinct nonlinear form (e.g., A[t] in
Equation 18.22), but the corresponding accumulation of dif-
ferences (Equation 18.32) remains unchanged. 

One advantage of this approach is that this dynamic model
can fitted using standard structural modeling software. The
structural path diagram in Figure 18.12 illustrates how the la-
tent change score model (Equations 18.30–18.34) can be
directly represented using standard longitudinal structural
equation models. This set of equations is drawn in Fig-
ure 18.12 by using (a) unit-valued regression weights among
variables by fixed nonzero constraints (as in McArdle &
Nesselroade, 1994), (b) a constant time lag by using
additional latent variables as placeholders (as in Horn &
McArdle, 1980), (c) each latent change score as the focal
outcome variable, and (d) a repetition (by equality con-
straints) of the � and 
 structural coefficients. Following the
standard linear growth models, we assume the unobserved
initial-level component (y0) has a mean and variance 

(
i.e., �0

and �2
0

)
, while the error of measurement has mean zero, has

constant variance �2
e > 0), and is uncorrelated with every

other component. As in the linear change model of Figure
18.7, the constant change component (ys) has a nonzero mean
(i.e., �s, the average of the latent change scores), a nonzero
variance (i.e., �2

s , the variability of the latent change scores),
and a nonzero correlation with the latent initial levels (i.e.,
�0s). As in other latent growth models, the numerical values
of the parameters � and 
 can now be combined to form
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Figure 18.12 A reinterpretation and extension of the latent growth model as a latent
difference score structural model, including both additive (�) and proportional (	) change
parameters (see McArdle, 2001).

many different kinds of individual and group trajectories over
age or time, including the addition of covariates. All these
features are apparent without directly writing or specifying a
model for the full trajectory over time.

Results From Fitting Dynamic Growth Models

To illustrate some of these dynamic growth models, the
Bradway-McArdle Non-Verbal data were fitted (using Mx
and NLMIXED). A new model (M4) based on the partial ad-
justment model (as described in Equation 18.26) required
four free parameters with individual differences in the initial-
level variance (an asymptote) and in the latent slope (the dis-
tance from asymptote) parameters. This model requires all
loadings to have be an exponential function formed from a
single rate parameter (estimated at 	 = −0.16), and the
resulting expected trajectory is drawn as the solid line in Fig-
ure 18.9. In contrast to the shape of previous latent basis
model, this is an exponential shape that rises rapidly and then
stays fairly constant at the asymptote (or equilibrium point)
from age 42 to age 65.

This model fit was not as good as that of the latent basis
model, but the difference is relatively small compared to
the difference in degrees of freedom (� 2 = 59 on df = 3),
the error variance is similar (from �e{M2} = 5.1 to
�e{M4} = 6.5). Unlike the latent basis model, this negative
exponential model makes explicit predictions at all ages (e.g.,
Equation 18.26 for �[22] = 82.7). A second model was fit
allowing individual stochastic differences (random coeffi-
cients) in the rate parameter (	n). The resulting fitted curves
show only a small change in the average rate (	 = −0.15),

the random variance of these rates is very small (�	 < .01),

and the fit is not much better than that of the simpler partial
adjustment model (� 2 = 14, df = 4, σe{M5} = 5.8).

The comparison of the latent basis (M2) and the partial ad-
justment models (M4 or M5) suggests that the decline in non-
verbal intellectual abilities by age 65 is relatively small. The
expectations from these two models yield only minor depar-
tures of the exploratory latent basis model (M2) from the par-
tial adjustment model (M4). The further comparison of the
stochastic adjustment (M5) and the partial adjustment (M4)
model suggests that the same shape of change in nonverbal
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intellectual abilities call be applied to all persons. Although
these analyses illustrate only a limited set of substantive
hypotheses about dynamic growth processes, these are key
questions in aging research. 

An example of the segmented models fitted to the Bradway-
McArdle data has been published by Cudeck & DuToit (2001).
Using data from persons who had data on at least one of the last
three occasions (N = 74), these authors fit a nonlinear mixed
model based on Equation 18.32 and found an estimated transi-
tion age (
3 = 18.6, �3 = 0.60) where the polynomial of the
first phase changes to the linear decline component (
1 =
−.141, �3 = 0.05; 
2 = −.571) of the second phase. The es-
timated mean response shows a growth curve with rapid
increases and gradual decline (after Age[t] = 18.6). The vari-
ability of these estimated parameters allows for a variety of
different curves, and some of these are drawn in Figure 18.13.
“Although the trend is decreasing overall, a few individuals
actually exhibit increases, while for others the response is es-
sentially constant into old age. . . . The two individuals in Fig-
ure (A) had large differences in intercepts, 
i0 (70.8 versus
91.9); those in Figure (B) had large differences in slopes, 
i1

(−.32 versus 0.04); those in Figure (C) had large differences in
transition age, 
i3 (14.1 versus 23.6)” (Cudeck & duToit,
2001; p. 13). The addition of individual differences in transi-
tion points contributes to our understanding of these growth
curves.

Four alternative latent difference score models (Fig-
ure 18.12) were fitted to the nonverbal scores (Figure 18.6). To
facilitate computer programming (e.g., Mx) the original data
were rescaled into 5-year age segments (i.e., 30 to 35, 35 to 40,
etc.). A baseline no-change model (NCS) was fitted with only
three parameters and the results using this approach were com-
parable to those of the baseline growth model (M0). This was
also true for a constant change score (CCS; � only) model, and
the result was identical to that of the linear basis model (M1).
The proportional change model (PCS; 
 only), not fit earlier,
shows a minor improvement in fit (� 2 = 5 on df = 1).

To fit the dual change model (Equation 18.34), the addi-
tive slope coefficient was fixed for identification purposes
(� = 1), but the mean of the slopes was allowed to be free
(�s). This allowed estimation of the effects for nonverbal
with (a) inertial effects (	 = −1.38), (b) initial-level means
(�0 = 32) at Age = 5, and (c) a linear slope mean (�s = 81)
for each 5-year period after Age = 5. The goodness-of-fit of
the DCS model can be compared to that of every other nested
alternative, and these comparisons show the best fit was
achieved using this model (� 2 = 785 on df = 2; � 2 = 485
on df = 1; � 2 = 385 on df = 1). From these results we cal-
culate the expected group trajectories and the 5-year latent
change accumulation as the combination of Equations 18.32

and 18.34, and we find the expected trajectory over time for
the nonverbal variable represented in this way is the same
as the previous nonlinear solid line in Figure 18.9 (see
Hamagami & McArdle, 2001). This dynamic result is ex-
plored more in the next section.

MULTIPLE VARIABLES IN LATENT GROWTH
CURVE MODELS

Including Measurement Models Within Latent 
Growth Analyses

Previous research on growth models for multiple variables
has considered the application of standard multivariate
models to growth data (e.g., Harris, 1963; Horn, 1972). A

Figure 18.13 Fitted curves for selected individuals from the segmented
growth model (from Cudeck & du Toit, 2001).
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parsimonious alternative that has been explored in prior work
is the inclusion of a so-called measurement model embedded
in these dynamic structural models (for references, see
McArdle, 1988; McArdle & Woodcock, 1997). This can be
fitted by including common factor scores ( f [t]), proportion-
ality via factor loadings (y, x), and uniqueness (uy, ux). We
could write a model as

Y[t]n = vy + y fn + uy,n, and

X[t]n = vx + x fn + ux,n,
(18.35)

so that each score is related to a common factor ( f [t]) with
time-invariant factor loadings (j), unique components (uj),

and scaling intercepts (vj). We can then consider whether all
latent changes in these observed scores are characterized by
the growth parameters of the common factor scores

f [t]n = f0,n + Af [t] fs,n + ef [t]n. (18.36)

This common factor growth model is drawn as a path dia-
gram in Figure 18.14. We can also recast these common
factor scores into a latent difference form of

f [t]n = f [t − 1]n + �f [t]n and

� f [t]n = �f fs,n + 
f f [t − 1]n ,
(18.37)

so that the dynamic features of the common factors are
estimated directly (e.g., Figure 18.12).

The expectations from this kind of a model can be seen as
proportional growth curves, even if the model includes addi-
tional variables or factors. If this kind of restrictive model of
changes in the factor scores among multiple curves provides
a reasonable fit to the data, we have evidence for the dynamic
construct validity of the common factor (as in McArdle &
Prescott, 1992). To the degree multiple measurements are
made, this common factor hypothesis about the change pat-
tern is a strongly rejectable model (e.g., McArdle, Ferrer-
Caja et al., in press; McArdle & Woodcock, 1997). In either
form (Equation 18.36 or Equation 18.37) this multivariate
dynamic model is highly restrictive, so it may serve as a com-
mon cause baseline that can help guide the appropriate level
of analysis (as in McArdle & Goldsmith, 1990; Nesselroade
& McArdle, 1997).

One explicit assumption made in all growth models is that
the scores are adequate measures of the same construct(s)
over all time and ages. This assumption may be evalu-
ated whenever we fit the measurement hypothesis (i.e., is
�[t] = �[t + 1]?). It may be useful to examine the assump-
tion of metric factorial invariance over occasions without the

necessity of a simple structure basis to the measurement
model (Horn & McArdle, 1992; McArdle & Cattell, 1994;
McArdle & Nesselroade, 1994). However, in long-term
longitudinal data collections, we often use repeated measures
models when different variables measuring the same con-
structs were used at different ages. The basic requirements of
meaningful and age-equivalent measurement models are a
key problem in the behavioral sciences, and future research is
needed to address these fundamental concerns (see Burr &
Nesselroade, 1990; Fischer & Molenaar, 1995). 

Modeling Interrelationships Among Growth Curves

The collection of multiple variables at each occasion of mea-
surement leads naturally to questions about relationships
among growth processes and multivariate growth models.
The early work on this topic led to sophisticated models based
on systems of differential equations for the size of multiple
variables. In one comprehensive multivariate model, Turner
(1978) extended the simple growth principles to more vari-
ables, and permitted an examination of biologically important
interactions based on the size and sign of the estimated para-
meters (see Griffiths & Sandland, 1984). Multivariate re-
search in the behavioral sciences has not gone as far yet, and
seems to have relied on advanced versions of the linear
growth models formalized by Rao (1958), Pothoff and Roy
(1964), and Bock (1975).

Some recent structural equation models described in the
statistical literature have emphasized the examination of par-
allel growth curves, including the correlation of various com-
ponents (McArdle, 1988, 1990; Willett & Sayer, 1994). The
models fitted here can be represented in latent growth
notation for two variables by

Y[t]n = y0,n + Ay[t] ys,n + ey[t]n and

X[t]n = x0,n + Ax[t] xs,n + ex[t]n ,
(18.38)

where Y[t] and X[t] are two different variables observed over
time, there are two basis functions (Ay[t] and Ax[t]), and

E{y0, x0} = �y0,x0, E{y0, xs} = �y0,xs,

E{ys, x0} = �ys,x0, and E{ys, xs} = �ys,xs ,
(18.39)

and all covariances (�y[i],x[ j]) are allowed among the com-
mon latent variables. A path diagram of this bivariate growth
model is presented in Figure 18.15.

This set of structural equations has been used to examine
a variety of substantive hypotheses. One hypothesis relies on
the equality of the basis coefficients (e.g., Ay[t] = Ax[t]) to
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Figure 18.15 A path diagram representing a bivariate latent growth model for multiple vari-
ables (from McArdle, 1989). 

examine the overall shape of the two curves. Interpretations
have also been made about the size and sign of nonzero co-
variance of initial levels (i.e., |�y0,x0| > 0) and covariance of
slopes (i.e., |�ys,xs| > 0), but these interpretations are lim-
ited. These random coefficients reflect individual similarities
in the way persons start and change over time across different

variables, and these are key features for some researchers
(e.g., Duncan & Duncan, 1995; Raykov, 1999; Willet &
Sayer, 1994). However, it should be noted that this simple re-
lationship is not time-dependent, so it may not fully charac-
terize the interrelationships over time. This might lead us to
consider other, more elaborate models for the time-dependent

Figure 18.14 A path diagram of a multiple variable measurement model with a latent “curve
of factor scores” (McArdle, 1988).
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interrelationships among the measures. That is, if we think
one of these variables is responsible for the growth in the
other, then we might need to fit a related but decidedly differ-
ent set of models. The next section presents some advanced
models used to solve these kinds of problems.

Multivariate Dynamic Models of Determinants
of Changes 

The previous models use information about the time-
dependent nature of the scores, and there are several exten-
sion of these models of interest in multivariate growth curve
analysis (Arminger, 1987; Nesselroade & Boker, 1994). One
of the most basic extensions is the combination of a measure-
ment model with a dual change score model among common
factor scores. This kind of model was displayed earlier in
Figure 18.14 but can now be extended into Figure 18.15.
In other extensions, we may be interested in a combination of
several previous models, including parallel growth curves
and time-varying covariates. 

Suppose a new variable X[t] is measured at multiple occa-
sions and we want to examine its influence in the context of a
growth model for Y[t]. One popular model used in multilevel
and mixed-effects modeling is based on the analysis of co-
variance (Equation 18.13) with X[t] as a time-varying predic-
tor. In our notation we can write

Y[t]n = y0:xn + A[t]ys:x,n + � X[t]n + e[t]n (18.40)

where the � are fixed (group) coefficients with the same
effect on Y[t] scores at all occasions. In this case the growth
parameters (�0:x, �s:x, �s:x , etc.) are conditional on the ex-
pected values of the external X[t] variable. By taking first dif-
ferences we find that this model implies the true score change
over time is

�y[t]n = �A[t] ys:x,n + � �X[t]n, (18.41)

so the basis coefficients still reflect changes based on a con-
stant slope ( ys:x) independent of X[t], and the new coefficient
(�) represents the effect of changes in X (i.e., �X[t]) on
changes in Y (i.e., �y[t]). This time-varying covariate model
is relatively easy to implement using available mixed-effects
software (e.g., Sliwinski & Buchele, 1999; Sullivan,
Rosenbloom, Lim, & Pfefferman, 2000; Verbeke &
Molengerghs, 2000; cf. McArdle, Hamagami, et al., in press). 

Modeling for multiple variables over time has been con-
sidered in the structural modeling literature. For many re-
searchers, the most practical solution is to fit a cross-lagged
regression model (see Cook & Campbell, 1977; Rogosa,

1978). This model can be written for latent scores as 

y[t]n = vy + �y y[t − 1]n + �yx x[t − 1]n + ey[t]n, and

x[t]n = vx + �x x[t − 1]n + �xy y[t − 1]n + ex[t]n, (18.42)

where we assume a complementary regression model for
each variable with auto-regressions (�y, �x) and cross-
regressions (�yx, �x) for time-lagged predictors. This model
yields a set of first difference equations that are similar to
Equation 18.41, where each change model has zero intercept
and the lagged changes. The cross-lagged coefficients (�) are
interpreted as the effect of changes (e.g., �x[t]) on changes
(e.g., �y[t]), and form the basis for the critical hypotheses
(e.g., �yx > 0 but �xy = 0).

The literature on nonlinear dynamic models has also dealt
with similar multivariate issues, but clear examples are not
easy to find. One dynamic bivariate model based on the par-
tial adjustment concept was proposed by Coleman (1968)
and Arminger (1987) using different techniques for estima-
tion. This model can be written in difference score form as a
set of simultaneous equations where

�y[t]n = 	y(ya,n − y[t − 1]n) with

ya,n = �y + �yx x[t − 1]n,

and

�x[t]n = 	x(xa,n − x[t − 1]n) with

xa,n = �x + �xy y[t − 1]n. (18.43)

In this model we include pairs of latent asymptotes (ya and
xa), rates of adjustment (	y and 	x), intercepts (�y and �x),

and cross-effects (�yx and �xy). The partial adjustment sys-
tem has some features of a multilevel model for intercepts
and slopes (Equation 18.13). 

Now, following our previous latent difference scores
model, we can also write a bivariate dynamic change score
model as

�y[t]n = �y ys,n + 
y y[t − 1]n + �yx x[t − 1]n, and

�x[t]n = �x xs,n + 
x x[t − 1]n + �xy y[t − 1]n, (18.44)

where we assume a complementary dual change score model
for each variable. In the first part of each change score we as-
sume a dual change score model represented by parameters �
and 
. This model also permits a coupling parameter (�yx)

representing the time-dependent effect of latent x[t] on y[t],
and another coupling parameter (�xy) representing the time-
dependent effect of latent y[t] on x[t]. If we restrict the
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Figure 18.16 A path diagram representing a bivariate latent difference score structural model; each variable is allowed dual changes within vari-
ables (� = additive and 	 = proportional) as well as covariance (�) and coupling (� ) across variables (from McArdle & Hamagami, 2001).
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parameters of Equation 18.44 so that � = −
, then this
model is a reduced form of the partial adjustment system
(Equation 18.43). This model is close to the partial adjust-
ment system (Equation 18.43) but is not the same as time-
varying covariate models (Equation 18.41) or cross-lagged
models (Equation 18.42)—the latent changes in this system
of equations have an intercept (�) and the coupling parame-
ters (�) are direct effects from prior time-varying levels
(x[t − 1] and y[t − 1]). Results from these alternative mod-
els can be quite different (see McArdle & Hamagami, 2001).

This bivariate dynamic model is described in the path dia-
gram of Figure 18.16. Again the key features of this model
include the used of fixed unit values (to define �y[t] and
�x[t]) and equality constraints (for the �, 
, and � parame-
ters). These latent difference score models can lead to more
complex nonlinear trajectory equations (e.g., nonhomoge-
neous equations) but these can be described simply by writ-
ing the respective bases (Aj[t]) as the linear accumulation of
first differences (Equation 18.31) for each variable.

On a formal basis, however, this bivariate dynamic model
of Equation 18.44 permits hypotheses to be formed about

(a) parallel growth, (b) covariance among latent components,
(c) proportional growth, and (d) dynamic coupling over time.
That is to say, in addition to the previous restrictions on the
dynamic parameters (� = 0, � = 1, and/or 
 = 0) we can
focus on evaluating models in which one or more of the cou-
pling parameters is restricted (i.e., �yx = 0 and/or �xy = 0).

If only one of these coupling parameters is large and reliable,
we may say we have estimated a coupled dynamic system
with leading indicators in the presence of growth. To the de-
gree these parameters are zero, we can say we have estimated
an uncoupled system. Additional descriptions of the relevant
dynamic aspects of these model coefficients, including the
stability or instability of long run behaviors, can be evaluated
from additional calculations (e.g., eigenvalues and equilib-
rium formulas; Arminger, 1987; Tuma & Hannan, 1984). Ad-
ditional information can also come from a visual inspection
of the bivariate expectations (after Boker & McArdle, 1995).

By combining some aspects of the previous sections, we
can now represent a group difference dynamic change score
model in at least three different ways. Assume C is a ob-
served vector describing some kind of group differences
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(e.g., effect or dummy codes, for g = 1 to G groups.). If so,
we can consider a model whereby the group contrasts (Cn)
have a direct effect on the latent change

�y[t]n/�t = �y ys,n + 
y y[t − �t]n

+ �yx x[t − �t]n + �y Cn , (18.45)

with group coefficient �y. Alternatively, we can write a
model in which the contrasts have direct effects on the latent
slopes

�y[t]n/�t = �y ys,n + 
y y[t − �t]n + �yx x[t − �t]n

with ys,n = �0 + �cCn + ez[t]n. (18.46)

Finally, we can write a model in which multiple groups
(superscripts g) are used to indicate independent group
dynamics,

�y[t](g)
n /�t = �(g)

y y[s](g)
n + 
(g)

y y[t − �t](g)
n

+ �(g)
yx x[t − �t](g)

n . (18.47)

In the first model (Equation 18.45), we add the group con-
trasts as a covariate in the difference model. In the second
model (Equation 18.46), we add a multilevel prediction
structure of the dynamic slopes. In the third model (Equa-
tion 18.47), we indicate a potentially different dynamic para-
meter for each group. This third model can be fitted and used
in the same way as any multiple-group models can (e.g.,
McArdle & Cattell, 1995; McArdle & Hamagami, 1996).

Results From Fitting Multiple Variable Growth Models 

Measurement problems arise in the fitting of any statistical
model with longitudinal data, and these issues begin with
scaling and metrics. Our first problem with the Bradway-
McArdle data comes from the fact that the Stanford-Binet
(SB) was the measure administered at early ages (4, 14, 30)
and the Wechsler Adult Intelligence Scale (WAIS) was used
at the later ages (30, 42, 56, 64). Although these are both
measures of intellectual abilities, they are not scored in the
same way, and they may measure different intellectual abili-
ties at the same or at different ages. These data were exam-
ined using a set of structural equation models with common
factors for composite scores from the SB and the WAIS. 

The initial structural equation model was based on infor-
mation from the age 30 data in which both measurements
were made, and assumed invariance across all measures at
other occasions. In model fitting, the factor loading of the
first variable was fixed (�y = 1) to identify the factor scores,

and the other loading (�x = .84) was estimated and required
to be invariant over all times of measurement. The results
quickly showed a single common factor model does not pro-
duce a good fit (� 2 = 473, df = 34) even though most of
the parameter estimates seem reasonable (�x = 1.39;
�f = .06; �s f = 5.3). In subsequent analyses, the items in
each scale (SB & WAIS) were separated on a theoretical
basis—some were considered as verbal items, and these were
separated from the items that were considered as nonverbal
items in each scale (memory and number items were sepa-
rated; see Hamagami, 1998; McArdle et al., 2002). The
single-factor model was refitted to each new scale, and these
models fit much better than before (� 2 = 63, df = 32). At
least two separate constructs were needed to reflect the time-
sequence information in the interbattery data. 

Next we followed the early work of Bayley (1956; see
Figure 18.4), and we created longitudinal scores with equal
intervals by using some new forms of item response theory
(IRT) and latent trait models (Embretson, 1996; Fisher, 1995;
McDonald, 1999). From these analyses, we formed a scoring
system or translation table for each construct from the SB and
WAIS measures by using IRT calibration (using the MSTEPS
program) based on the data from the testing at age 30, in
which both the SB & WAIS were administered. These analy-
ses resulted in new and (we hope) age-comparable scales for
the verbal and nonverbal items from all occasions (as dis-
played in Table 18.1 and Figure 18.6). 

Several alternative verbal-nonverbal bivariate coupling
models were fitted to the data (for details, see McArdle,
Hamagami, et al., in press). A first model included all the bi-
variate change parameters described previously (Equation
18.44). This includes six dynamic coefficients (two each for
�, 	, � ), four latent means (�), six latent deviations (�), and
six latent correlations (� ). This model was fitted with
N = 111 individuals with at least one point of data and 498
individual data observations, and it yields an overall fit
(L = 7118) that was different from that of a random baseline
(� 2 = 379 on df = 16). The group {and individual} trajecto-
ries of the best-fitting model can be written for the verbal
(V[t]) and nonverbal (N[t]) scores in the following way 

V [t]n = 15.4 {±1.3} +
(∑

i=1,t

�V [t]n

)
+ 0 {±4.7}, and

N [t]n = 33.4 {±7.8} +
(∑

i=1,t

�N [t]n

)
+ 0 {±11.5}, with

σy0x0 = .77, σy0xs = .90, σysx0 = .08, σysxs = −.05.

(18.48)
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More fundamentally, the respective latent change scores
were modeled as

�V [t]n = −10.1 {±11.2}Vs,n + −0.99 V [t − 1]n

+ 1.02N [t − 1]n, and

�N [t]n = 34.6{±4.3}Ns,n + −0.28N [t − 1]n

+ −0.16 V [t − 1]n

(18.49)

The fitting of a sequence of alternative models suggested
some systematic coupling across the V[t] and N[t] variables.
Three additional models were fit to examine whether one or
more of the coupling parameters (� ) were different from
zero. In the first alternative model, the parameter represent-
ing the effect of N[t] on �V [t] was fixed to zero (�x = 0),
and this led to a notable loss of fit (� 2 = 123 on df = 1). The
second alternative assumed no effect from V[t] on
�N [t] (�y = 0), and this is a much smaller loss of fit
(� 2 = 27 on df = 1). Another model was fit in which no cou-
pling was allowed (�x = 0 and �y = 0), and this resulted in a
clear loss of fit (� 2 = 126 on df = 2). These results suggest a
dynamic system in which the nonverbal ability is a positive
leading indicator of changes on verbal ability, but the nega-
tive effect of verbal ability on the nonverbal changes is not as
strong. The parameters listed previously are specific to the
time interval chosen (i.e., �t = 5), and any calculation of the
explained latent variance requires a specific interval of age.
These seemingly small differences can accumulate over
longer periods of time, however, so the N[t] is expected to
account for an increasing proportion of the variance in �V [t]
over age.

These mathematical results of these kinds of models can
be also displayed in the pictorial form of a vector field plot of
Figure 18.17 (for details, see McArdle, Hamagami, et al., in
press). This allows us to write the model expectations in a rel-
atively scale-free form: Any pair of coordinates is a starting
point (y0, x0), and the directional arrow is a display of the
expected pair of 5-year changes (�y, �x) from this point.
These pictures show an interesting dynamic property—the
change expectations of a dynamic model depend on the
starting point. From this perspective, we can also interpret
the positive level-level correlation (�y0,x0 = .77), which de-
scribes the placement of the individuals in the vector field,
and the small slope-slope correlation (�ys,xs = −.05), which
describes the location of the subsequent scores for individu-
als in the vector field. In any case, the resulting flow shows a
dynamic process in which scores on nonverbal abilities have
a tendency to impact score changes on the verbal scores, but
there is no notable reverse effect.

Additional models were fit to examine a common growth
factor model proportionality hypothesis. In this case, the fac-
tor model has two indicators at each time, V[t] and N[t], and
it was combined with the previous dual change model (Equa-
tion 18.36). The basic model required only nine parameters in
common factor loadings (�y = 1, �x = .35) and common
factor dynamic parameters (�z = 1, 	z = .14, �sz = −0.13,
with no � ) and achieved convergence. However, the fit of this
common factor DCS was much worse than that of the bivari-
ate DCS model (� 2 = 1262 on df = 11), and this is addi-
tional evidence that separate process models are needed for
verbal and nonverbal growth processes. 

Differences between various Bradway demographic
groups were examined using the multiple-group dynamic
growth models (Equation 18.47). First we examined results
when the data for males and females were considered sepa-
rately. Here we found that an overall test of invariance across
groups now yielded only a small difference (� 2

(m+f) = 21 on
df = 20). We also find no difference in the coupling hypoth-
esis across gender groups (� 2

(m) = 10 on df = 2). The same
kinds of dynamic comparisons were calculated for partici-
pants with some college experience (ce) versus those with no
college education (nc). Here we find that an overall test of
invariance across groups yields another small difference
(� 2

(ce+nc) = 32 on df = 20). However, when we pursue this

Figure 18.17 A vector field diagram representing the expected trajectories
from the bivariate latent difference score model for nonverbal (y-axis) and
verbal (x-axis) changes (i.e., each pair of points is a starting point, and the
arrow is the directional change over the next 5 years (for details, see
McArdle, Hagamani, et al., in press; McArdle et al., 2002).
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result in more detail, we do find a large difference in the
coupling hypothesis across these groups—the nonverbal to
verbal coupling effect is enhanced in the group with some
college education (� = −.28, � 2

(ce) = 25 on df = 1) even
though both groups started at similar initial levels. 

The final group model was designed to answer several
questions about nonrandom attrition. This was addressed by
comparing results for participants with complete six-occasion
longitudinal data (n = 29) from those with some incomplete
data (n = 82). The differences in fit due to the assumption of
invariance of the dynamic process over data groups is rela-
tively small, but nontrivial (� 2

(c+i) = 54 on df = 20). This
means we did alter the results by using all available data
rather than just that for the persons with all data at all time
points. This leaves us with a complex issue that requires
further investigation.

FUTURE RESEARCH USING GROWTH
CURVE ANALYSES

Future Bases of Growth Curve Analyses

The study of behavioral development and change has come a
long way in the past few decades. After many years of debat-
ing whether and how to measure and represent change, it be-
came clear that a promising solution to many of the problems
of change measurement lay in collecting multiple rather than
just two occasions of measurement. There had long been a
mystique surrounding longitudinal methods in general, but
this became translated into a much more functional approach
to the representation and assessment of change. Change
could be conceptualized as a function defined across time,
rather than being based on a single difference score. This
meant that a researcher could gather data on 3, 4, 5, or 10 oc-
casions, often within a very short time frame, and instead of
getting bogged down in an array of different kinds of change
scores, could think in terms of fitting a curve over the multi-
ple time points to represent the course of change. Moreover,
concerns regarding individual differences could be cast in
terms of the resemblance between these idealized functions
and each person’s actual trajectory.

These realizations about how to represent change
processes were accelerated by the development of the variety
of methods we have been referring to as latent growth curves,
mixed-effect and multilevel models, and dynamic systems
models. The developments in growth curve analysis have
provided a number of key substantive and methodological
contributions, as have been referenced previously. These
developments can be classified by features of the models

themselves: (a) the degree of mathematical specification,
(b) the way these statistical models are fitted, and (c) the clar-
ity and substantive meaning of the results. These issues have
not been completely resolved, so we end with some com-
ments about each of these topics.

The Mathematical Basis of Growth Curve Analyses 

Most current growth curve models can be written in a com-
mon symbolic form (Seber & Wild, 1992). That is, a general
model for a change in the scores over time (often using de-
rivatives dy/dt or differences �y/�t) can be based on some
mathematical functional form ( f{x, t}) with unobserved
scores (x[t]) and with unknown parameters (A[t]) to be esti-
mated. Additional forms not discussed here can be included,
such as auto-regressive residual structures, Markov chains,
and Poisson processes. The list of growth functions described
here is not exhaustive, and future extensions to other general-
ized functions (e.g., Ramsey & Silverman, 1997) and dy-
namic and chaotic formulations (May, 1997) are likely.

It is now clear that growth curve models of arbitrary com-
plexity can be fitted to any observed trajectory over time
(i.e., the integral), and the unknown parameters can be esti-
mated to minimize some statistical function (e.g., weighted
least squares, maximum likelihood) using, for example, non-
linear programming. Several different computer programs
were used for the growth curve analyses discussed here. For
many of the initial analyses, standard SAS programs were
used, including PROC MIXED and PROC NLMIXED. The
Mx-SEM computer program used herein was based on a
simplified matrix approach to model expectations. All of
these programs can deal with incomplete data patterns using
the likelihood-based incomplete data approach presented
earlier. The SEM programming is not as convenient as the
mixed-effects program input scripts are, but SEM is far more
flexible for programming the dynamic models (McArdle,
2001).

Growth curve modeling as an important step—but only a
step—in the long progression toward better and better ways
to represent behavioral development and change. Indeed, it is
important to keep in mind the limitations as well as the
strengths of growth curve modeling. Growth curve analysis
per se results in a curve or curves defined over concrete
measurement intervals—that is, a particular curve or curves.
We have moved this towards a more dynamic representation
that is defined across the abstract occasions (t, t + 1, t + 2,
etc.) that can be integrated and solved for a particular solu-
tion. This kind of dynamic generalizability seems every bit as
central as the more traditional concerns of subject and vari-
able sampling.
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The Statistical Basis of Growth Curve Analyses

The generic statistical approach featured here avoids some
problems in older techniques, such as fitting a model to a log-
scale, or directly to the velocity, or to the analysis of differ-
ence score data. These new techniques make it possible to
address the critical problems of forecasting future observa-
tions, and further research on Bayesian estimation is a proper
focus of additional efforts (for details, see Sieber & Wild,
1989).

The present model-fitting approach also permits a wide
range of new possibilities for dealing directly with unbal-
anced, incomplete, or missing data. In classical work, linear
polynomials were used extensively to deal with these kinds
of problems (e.g., Joossens & Brems-Heyns, 1975). But the
more recent work on linear and nonlinear mixed- and multi-
level models indicates that it is possible to estimate growth
curves and test hypotheses by collecting only small segments
of data on each individual (McArdle, Ferrer-Caja, et al., in
press; Pinherio & Bates, 2000; Verbeke & Molenberghs,
2000). These statistical models are being used in many
longitudinal studies to deal with self-selection and subject at-
trition, multivariate changes in dynamic patterns of develop-
ment, and the trade-offs between statistical power and costs
of person and variable sampling. The statistical power ques-
tions of the future may not be How many occasions do we
need?, but rather How few occasions are adequate? and
Which persons should we measure at which occasions?
(McArdle & Bell, 2000; McArdle & Woodcock, 1997).

In much the same way, the issues surrounding goodness-
of-fit and the choice of an appropriate model are not simply
formal statistical issues (see Burnham & Anderson, 1998).
The way we conceptualize the relationships among these
variables and the substantive issues involved has a great deal
to do with the choice of model fitted. If we think our key vari-
ables represent substantively different growth processes, we
would fit a specific growth model representing this idea
(Figure 18.15). However, if we think our key variables are
simply indicators of the same underlying common latent
variables, then we would fit a different growth model
(Figure 18.14). If we think our variables are growing and
have time-lagged features, we would fit another model (Fig-
ure 18.16). If we do not know the difference, we might fit all
kinds of models, examine the relative goodness-of-fit, and
make some decisions about the further experiments needed.
Although this exploratory approach is probably not optimal
and probably requires extensive cross-validation, it certainly
seems better to examine a large variety of possibilities rather
than to limit our perspective on theories of growth and
change (as in McArdle, 1988).

The multiple-group models presented here challenge the
current approaches to an important theoretical area in behav-
ioral science research—the study of group dynamics. Al-
though simpler models are more common in popular usage,
they seem to be special cases in a multiple-group dynamic
framework. Variations of these models can be used to exam-
ine combinations of variables, even in the context of latent
classes based on mixture models. In the future, we should
not be surprised if our best models are checked against ex-
ploratory searches for latent-mixtures within dynamic mod-
els (Equation 18.42).

The Substantive Basis of Growth Curve Analyses

Some of the most difficult problems for future work on
growth curves do not involve statistical analyses or computer
programming, but rather deal with the elusive substantive
meaning of the growth model parameters. As it turns out,
these issues are not new but are unresolved controversies that
have important implications for all other areas (Seber &
Wild, 1993): 

“It is customary to say we are ‘model-making.’ Whether or not
our model is biologically meaningful can only be tested by
experiments. Here and in subsequent models we share G. F.
Gause’s View [Gause, 1934, p. 10]: ‘There is no doubt that
[growth, etc.] is a biological problem, and that it ought to be
solved by experimentation and not at the desk of a mathemati-
cian. But in order to penetrate deeper into the nature of these
phenomena, we must combine the experimental method with the
mathematical theory, a possibility which has been created by
[brilliant researchers]. The combination of the experimental
method with the quantitative theory is in general one of the most
powerful tools in the hands of contemporary science.’ ” (p. xx)

Of course, the growth parameters will only have substan-
tive meaning if the measurements themselves and the
changes that can be inferred from these measurements have a
clear substantive interpretation and meaning. Thus, the basic
requirements of meaningful age-equivalent measurement
models are fundamental, and future measurement research is
needed to address these concerns (see Fischer & Molenaar,
1995). Some of the multivariate models presented here may
turn out to be useful, but these will need to be further
extended to a fully dynamic time-dependent form. Empirical
information will be needed to judge the utility of any growth
curve model.

As students of behavior and behavioral change continue to
improve their theoretical formulations, there will be a contin-
ued need to further strengthen the stock of available methods.
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As the late Joachim Wohlwill (1972, 1991) argued, theory
and method are partners eternally locked in a dance, with one
of them leading at one time and the other leading at another
time—neither partner leads all the time. Growth curve mod-
eling has resulted in significant substantive findings that have
further bolstered theories about development and change. We
can expect in the not-too-distant future that strengthened
theory will request even stronger methods. Until that time,
however, the promise and power of these modeling tech-
niques should be exploited. 

Given the long history of elegant formulations from math-
ematics and statistics in this area, it is somewhat humbling to
note that major aspects of the most insightful growth curve
analyses have been based on careful visual inspection of the
growth curves. The insight gained from visual inspection of a
set of growth curves is not in dispute now; in fact, obvious vi-
sual features should be highlighted and emphasized in future
research (e.g., Pinherio & Bates, 2000; Wilkinson, 1999).
Much as in the past, the best future growth curve analyses are
likely to be the ones we can all see most clearly.
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WHAT IS MULTIPLE REGRESSION ANALYSIS?

Multiple regression analysis (MR) is a general system for
examining the relationship of a collection of independent
variables to a single dependent variable. It is among the
most extensively used statistical analyses in the behavioral
sciences. Multiple regression is highly flexible and lends
itself to the investigation of a wide variety of questions. The
independent variables may be quantitative measures such as
personality traits, abilities, or family income; or they may be
categorical measures such as gender, ethnic group, or treat-
ment condition in an experiment. In the most common form
of multiple regression analysis, which we consider here, the
dependent variable is continuous. The basic ideas of multiple
regression can be extended to consider other types of depen-
dent variables such as categories, counts, or even multiple de-
pendent variables. The relationship between an independent

variable and the dependent variable may be linear, curvilin-
ear, or may depend on the value of another independent
variable.

In the context of multiple regression analysis, the indepen-
dent variables are termed predictors; the dependent variable is
termed the criterion. These terms reflect the fact that scores on
the predictors can be used to make a statistical prediction of
scores that will later accrue on the criterion: for example, how
good an employee’s job performance (the criterion) will be after
2 months on the job, based on the employee’s characteristics
measured at the outset of the job (the predictors). Multiple re-
gression analysis provides an assessment of how well a set of
predictors taken as a whole account for the criterion. It also pro-
vides assessments of the unique contribution of each individual
predictor within the set, as well as of the contribution of one sub-
set of predictors above and beyond another subset. Assessment
of the unique contribution of each individual predictor within a
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484 Multiple Linear Regression

set of predictors and of subsets of predictors is a hallmark of
multiple regression analysis.

Three Uses of Multiple Regression Analysis:
Description, Prediction, and Theory Testing

Multiple regression analysis can be used for description, sim-
ply to summarize the relationships of a set of predictors to a
criterion at a single point in time, (e.g., to summarize the re-
lationship of a set of employee characteristics to job perfor-
mance). Further, multiple regression analysis can be used for
prediction, (e.g., to predict the job performance of a set of job
applicants based on their characteristics measured during
the job application process). The use of MR in theory testing
is perhaps the most important application for the development
of psychology as a science: Ideas derived from theory and
from previous research can be translated into hypotheses that
are tested using multiple regression analysis, (e.g., testing
whether each of a set of predictors of job performance identi-
fied by theory or previous empirical research actually predict
job performance across a variety of employment settings).

Two Foci of This Chapter

The testing of theoretical predictions through multiple re-
gression is the key focus of this chapter. Theory and prior
research lead to identification of predictors of interest, and, in
addition, characterization of the form of their relationships
(e.g. linear, curvilinear, interactive) to the criterion. Together,
identification of predictors and characterization of forms of
relationship are referred to as model specification. After a
model has been specified, multiple regression can be em-
ployed to test each aspect of the specification.

The second focus of the chapter is the identification of
problems with the implementation of regression analyses,
both from the perspective of the model and the perspective of
the data themselves. Problems with the model include, for ex-
ample, the incorrect specification of the form of relationship
of a predictor to the criterion. Problems with the data may
arise due to the distributions of the predictors or criterion, or
to the presence of a few extreme data points that distort the
analysis outcomes. Approaches to problem identification in-
clude both modern statistical graphics and a class of statisti-
cal measures called regression diagnostics.

We begin this chapter with an overview of multiple
regression as a general system for data analysis, limiting our
technical presentation to the most common form of regres-
sion analysis, multiple linear regression analysis. We then
introduce a numerical example drawn from health psychol-
ogy, which we use to illustrate the foci of our chapter, as well

as many of the kinds of questions that can be answered with
multiple regression.

THE STRUCTURE OF MULTIPLE
REGRESSION ANALYSIS

The Multiple Regression Equation

Multiple regression (MR) analysis involves the estimation of
a multiple regression equation that summarizes the relation-
ship of a set of predictors to the observed criterion. One gen-
eral form of the regression equation written for an individual
case i is as follows:

Ŷi = b0 + b1 Xi1 + b2 Xi2 + · · · + bj Xi j + · · · + bp Xip.

(19.1)

where Xi1, Xi2, . . . Xip are the scores of case i on the j = 1,
2, . . . p predictors; b1, b2, . . . bj . . . bp are partial regression
coefficients (or regression weights) and b0 is the regression
intercept. The regression equation combines the values of the
predictors into a single summary score, the predicted score Ŷ
(Y hat). Specifically, Ŷ is a linear combination of the predic-
tors: Each predictor Xj is multiplied by its regression weight
bj and these products are then summed across all the predic-
tors. The regression intercept b0 gives the arithmetic mean
value of Ŷ when each of the predictors has a value of zero and
serves to scale the predicted scores so that their mean equals
the mean of the observed criterion scores. The predicted
score Ŷ is the best statistical estimate of the observed crite-
rion score Y, based on the set of predictors. Each person
receives a single predicted score Ŷi based on his or her scores
on each of the predictors; the predicted score Ŷi can be com-
pared directly to the observed criterion score Yi for that per-
son. The regression equation expresses the unique linear
contribution of each X to Ŷ , above and beyond the contribu-
tion from all other predictors in the regression equation. As a
single predictor Xj increases in value by one unit, the pre-
dicted score increases by bj units, (i.e., by the value of the
partial regression coefficient). The MR equation is thus said
to be linear in the coefficients.

The Least Squares Criterion for Selection 
of Regression Coefficients 

How are the values of the intercept and regression weights
calculated? To understand this, we present a second general
form of the MR equation:

Yi = b0 + b1 Xi1 + b2 Xi2 + · · · + bp Xip + ei . (19.2)

schi_ch19.qxd  8/7/02  12:35 PM  Page 484



The Structure of Multiple Regression Analysis 485

Note that there are two differences between Equations 19.1
and 19.2. First, the observed value of Y has replaced the
predicted value Ŷ on the left side of the equation. Second, the
residual ei has been added to the right side of the equation.
For each person in the study, the residual ei is the difference
between that person’s observed criterion value and predicted
value, ei = Yi − Ŷi for person i; the sum of these residuals
over all individuals is zero. In multiple regression, the values
of each regression weight b0, b1, . . . , bp are chosen so as to
minimize the sum of the squared residuals across the partici-
pants. That is, the regression weights b0, b1, . . . , bp are cho-
sen so that

n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi )
2 is minimum. (19.3)

This criterion is termed ordinary least squares. MR that em-
ploys this criterion is also known as ordinary least squares
regression (OLS regression). Multiple regression computed
using ordinary least squares produces optimal estimates of
the regression weights in that the correlation between the
predicted score Ŷ and the observed criterion Y is maximized.
The weights also have desirable properties for use in testing
theoretical hypotheses when several statistical assumptions,
to be presented later in the chapter, are met. Residuals play a
special role in the detection of problems with the hypothe-
sized regression model. Examination of special plots and
diagnostic statistics based on the residuals help identify ways
in which the regression model can be modified and improved
to better capture the relationships in the data.

Nonlinear Relationships and OLS Regression

Although Equation 19.1 might seem to limit multiple regres-
sion only to the study of linear relationships, this is not the
case. We can also replace any of the Xj terms with a variety of
mathematical functions of the predictor variables in Equa-
tion 19.1 to represent other forms of relationships. For exam-
ple, a psychologist studying perceptions of the area of square
objects (Y ) as a function of their width (Xj) would include a
bj X2

j term in the regression equation given the known physi-
cal relationship for the area of squares, area = (width)2. In
general, any mathematical expression involving one or more
predictor variables may be used—

√
Xj , log (Xj), Xj

√
Xk , and

so forth. So long as the regression weight simply serves to
multiply the mathematical expression, the regression equa-
tion is linear in the coefficients and can be estimated using
ordinary least squares. Thus, although the results would
almost certainly not be theoretically meaningful, the equation
Ŷ = b0 + b1 X1 + b2

√
X2 + b3 X2

1 + b4 X1
√

X2 could be esti-
mated using OLS regression. In contrast, regression equations

that are not linear in the coefficients like Y = b0 Xb1 + e can-
not be estimated using OLS regression procedures. Such
equations require more advanced nonlinear regression tech-
niques that are beyond the scope of this chapter (see Draper &
Smith, 1998; Neter, Kutner, Nachtsheim, & Wasserman,
1996; Ryan, 1997, for accessible accounts of nonlinear
regression).

Measures of Contribution to Prediction Accuracy

In MR, we measure contributions of predictors to overall pre-
diction at three different levels. First, we measure the overall
accuracy of prediction from the full set of predictors. Second,
we measure the unique contribution of each predictor to over-
all prediction. Third, we measure how subsets of predictors
contribute above and beyond other sets of predictors.

The Squared Multiple Correlation

The correlation between the predicted score Ŷ and the ob-
served criterion score Y is called the multiple correlation. It is
the maximum possible correlation that can be attained
between Y and any linear combination of the predictors. The
OLS regression coefficients not only yield the minimum sum
of squared residuals; they also maximize the multiple corre-
lation. The multiple correlation provides a single number
summary of overall accuracy of prediction—that is, how
well the regression equation accounts for the criterion. Typi-
cally, the squared multiple correlation, the square of this
correlation, is reported. The squared measure assesses the
proportion of variation in the criterion accounted for by the
set of predictors and ranges between 0.0 indicating no linear
relationship to 1.00 indicating a perfect linear relationship
(100% of the variation in Y is explained). By variation we
mean specifically the sum of squared deviations of Y scores
about the Y mean:

SSY =
∑

(Y − MY )2 (19.4)

The notation for the squared multiple correlation varies
across sources: (a) simply R2, (b) R2

multiple, or (c) R2
Y Ŷ

to show
the correlation between Y and Ŷ , or (d) R2

Y.12...p to denote
that the criterion Y has been predicted by a set of predictors
X1, X2, . . . , Xp, (e.g., R2

Y.123 for a three-predictor regression
equation). We use R2 unless we need to indicate the specific
predictors in the equation, in which case we use R2

Y.12...p . The
squared multiple correlation provides a measure of effect size
for overall prediction. Cohen (1988) provided guidelines for
effect sizes in multiple regression: .02, .13, and .26 for small,
moderate, and large effect sizes, respectively.
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Partialed Relationships for Individual Predictors:
Partial Regression Coefficients, Partial and 
Semipartial Correlations

Three closely related measures assess the unique contribution
of individual predictors to prediction. All three measures call
upon the concept of partialing out or holding constant the over-
lapping parts of predictors. The term partial in MR signifies
that the influence of the other predictor(s) has been removed.
Insight into partialing is gleaned from the notion of holding
constant a second predictor: We can think of measuring the im-
pact of X2 on Y for individuals all of whom have the same score
on X1, so that the unique contribution of X2 on Y is measured
with no confounding from the impact of X1. We illustrate the
three measures of contribution of individual predictors with
two correlated predictors X1and X2 and the criterion Y.

First, the squared semipartial correlation of X1 with Y,
noted R2

Y (2.1) , measures the proportion of total variation in
the criterion Y—that is, SSY that is uniquely accounted for by
X2, with X1 partialed out of X2 but not out of Y (this correla-
tion is also called the squared part correlation). Put another
way, R2

Y (2.1) measures the gain in prediction from adding X2

to a regression equation that already contains X1. We compute
R2

Y 1, the squared multiple correlation or proportion of varia-
tion in Y accounted for by predictor X1 alone. Then we com-
pute R2

Y.12, the squared multiple correlation or proportion of
variation in Y accounted for by predictors X1 and X2 together.
Then the squared semipartial correlation of X2 with Y holding
X1 constant is given as R2

Y (2.1) = R2
Y.12 − R2

Y 1. The second
measure, squared partial correlation, goes a step further in
partialing out the influence of X1. The influence of X1 is par-
tialed from both predictor X2 and from the criterion Y. Thus
the squared partial correlation measures the proportion of
residual variation in the criterion Y (not accounted for by
other predictors) that is uniquely accounted for by the predic-
tor in question. Again, for X2 with Y in the two predictor case,
X1 is partialed both from X2 and Y. The standard notation
for this squared partial correlation is R2

Y 2.1 and is given
as R2

Y 2.1 = (R2
Y.12 − R2

Y 1)/(1 − R2
Y 1). Because the residual

variation in Y typically will be smaller than the total varia-
tion, the squared partial correlation will typically be larger
in value than the squared semipartial correlation. Both the
squared semipartial and squared partial correlations can
range in value from 0.00 to 1.00. Finally, the partial regres-
sion coefficient for X2 in a regression equation also containing
X1 measures the unique influence of X2 on Y with X1 partialed
out. The full notation for the b2 partial regression coefficient
for X2 in a two-predictor regression equation is bY2.1 to reflect
the influence of a one-unit change in X2 on Y with X1 par-
tialed out.

In sum, the partial regression coefficient, squared semi-
partial correlation, and the squared partial correlation all as-
sess the unique contribution of a predictor in a regression
equation containing other predictors. They all reflect the con-
ditional relationship of a predictor to the criterion; the rela-
tionship is conditional in that it depends specifically on what
other predictor(s) are partialed or held constant. In fact, all
three lead to precisely the same value of the test statistic for
significance of the predictor’s contribution.

Sets of Predictors

The notion of unique contribution of a single predictor above
and beyond other predictor(s) can be extended to the unique
contribution of a set of predictors beyond other predictor(s)—
for example, from a second set of predictors X4 and X5, above
and beyond a baseline set consisting of X1, X2, and X3. A mea-
sure of gain in prediction by the addition of the second set of
predictors to the baseline set is computed. First R2

Y.123 is com-
puted for the baseline set of predictor variables. Then R2

Y.12345

is computed for the baseline plus second set of predictors.
The gain in prediction is the difference between the R2 based
on the combined sets and the R2 based on the baseline set of
predictor variables, here R2

Y.12345 − R2
Y.123. This difference is

the squared multiple semipartial correlation R2
Y (45.123) of X4

and X5 with Y with X1, X2, and X3 partialed out. The squared
partial correlation can also be extended to sets of predictors.
However, partial regression coefficients only pertain to the
unique contribution of individual variables.

NUMERICAL EXAMPLE: PREDICTING
INTENTION TO OBTAIN A MAMMOGRAM

To provide a concrete basis for illustrating the use of multiple
regression in the behavioral sciences, we introduce an artifi-
cial data set from the health psychology area. Health psy-
chologists have conducted considerable empirical research
and have developed theory to explain the extent to which
individuals take actions to protect their health (see Aiken,
Gerend, & Jackson, 2001). Our example focuses on women’s
intentions to obtain a screening mammogram, a test that de-
tects breast cancer in its very early, treatable stages (Aiken,
West, Woodward, & Reno, 1994). The criterion Y is a scale
score on a 6-point multi-item scale of intention to obtain a
mammogram, measured on a group of N = 240 women who
are not in compliance with screening guidelines of the
National Cancer Institute at the time of data collection. There
are four predictor variables that fall into two sets. The first set
(predictor variables 1 and 2) are based on medical factors.
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The second set (predictor variables 3 and 4) are based on
psychological factors.

1. Recommendation. Recommendation for mammography
screening by a health professional is a powerful predictor
of screening compliance (Aiken, West, Woodward, & Reno
et al., 1994). Here we used a three-category recommenda-
tion predictor: (a) physician recommended a mammogram,
(b) another health professional recommended a mammo-
gram (e.g., nurse, physician assistant), (c) the woman
received no recommendation for a mammogram.

2. Medical risk. We expected intention to take health-
protective action to be related to the woman’s objective
medical risk of getting the disease. Thus we included a
10-point measure of medical risk for developing breast
cancer (see Gail et al., 1989 for an actual measure of risk
for breast cancer).

3. Perceived benefits. Based on the Health Belief Model
(Rosenstock, 1990), a well-researched model of the deter-
minants of health protective behavior, we expected that
the likelihood of protective health action would increase
with increases in the perception of the benefits of the
health action. We included scale scores on a 6-point multi-
item scale of benefits.

4. Worry. Finally, fear or worry about disease may also af-
fect protective health actions. There is disagreement as to
whether protective health behavior increases linearly with
fear or worry (Aiken et al., 2001). According to some the-
orizing (Janis & Feshbach, 1953), this relationship may
not be linear, but rather curvilinear. Health protective ac-
tions may increase as the level of fear increases only up to
a point. Beyond this point, compliance with health recom-
mendations begins to diminish as the individual increas-
ingly focuses on coping with overwhelming emotions
rather than taking health-protective actions. We included
scale scores on a 6-point multi-item scale of breast cancer
worry.

Descriptive statistics for our simulated data set are pro-
vided for each continuous predictor and the criterion in
Table 19.1. Panel A presents the possible range, mean, stan-
dard deviation, skewness, and kurtosis for the scale variables.
Of note, risk and worry are both severely nonnormal, which
can affect the ability to detect relationships and to test hy-
potheses. Panel B presents the frequency and proportion of
responses in each of the three categories of the recommenda-
tion variable, as well as the arithmetic mean intention score in
each category. Panel C presents the correlation matrix and
Panel D presents the covariance matrix for the continuous

variables, including the relation between each pair of predic-
tors and of each predictor with the criterion. Because it is not
meaningful to correlate a variable with three categories with
the criterion, we have created two predictors from recom-
mendation, our first variable. A full explanation of the ratio-
nale for creating the predictors is provided below. The first
categorical predictor any recommendation (ANYREC) con-
trasts the intention of women who receive a recommendation
from either a physician or other health professional with the
intention of women who receive no recommendation. The
second categorical predictor, physician versus other profes-
sional (PHYSOTHR), contrasts those women who received a
recommendation from a physician with those who received a
recommendation from another health professional. The cor-
relations and covariances of the ANYREC and PHYSOTHR
contrast variables with the other predictors and criterion are
included in Table 19.1, Panels C and D, respectively.

NUMERICAL EXAMPLE: 
MULTIPLE REGRESSION ANALYSES

Overview

Our strategy in this section is to work through a number of
commonly encountered types of analyses that are performed
using multiple regression. Each of these analyses is presented
in the context of testing hypotheses from health psychology
using our simulated data set. In the course of these analyses,
we introduce useful statistics that are computed in multiple
linear regression. We also introduce the use of regression
graphics and diagnostic statistics to identify problems with
the regression model.

One-Predictor Regression: Continuous Predictor
Variable—Hypothesis 1

Our first hypothesis from the medical literature is that in-
creases in medical risk increase protective health actions.
Following the precedent provided by much previous re-
search, we make the simple prediction that the relationship
between risk (X1) and intention to get a mammogram (Y) will
be linear (straight line). This leads to the specification of the
following single predictor regression equation:

Ŷ = b0 + b1 X1 (19.5)

The results of the regression analysis to test our first hypoth-
esis are summarized in Table 19.2, Panel A. In the following
discussion we explain how these values are obtained.
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The form of Equation 19.5 is very familiar from high-
school mathematics: an equation for a straight line with slope
b1 and intercept b0. The slope b1 (the regression coefficient)
indicates the change in Ŷ for a one unit increase in X. The in-
tercept b0 indicates the value of Ŷ when X = 0. The values of
b1 and b0 are chosen to meet the least squares criterion, given
in Equation 19.3. The least squares criterion leads to the fol-
lowing expressions for b1 and b0:

b1 = rXY
sY

sX
(19.6)

and
b0 = MY − b1 MX (19.7)

where rXY is the correlation between the predictor X and the
criterion Y; sX and sY are the standard deviations of predictors
X and Y, respectively; and MX and MY are the arithmetic
means of X and Y, respectively.

Table 19.1 provides the needed values for computation of b1

and b0 for the prediction of intention from risk. From the cor-
relation matrix we have rXY = .283, with standard deviations
sX = .750, sY = .914, so that b1 = (.283)(.914/.750) =.344.
From the means, we have b0 = 3.612 − (.344) × (3.989) =
3.612 − 1.376 = 2.238, yielding the regression equation
Ŷ = 2.238 + .344 RISK. For every one unit of medical risk on
the 10-point medical risk scale, intention to obtain a mammo-
gram increases by .344 points on the 6-point intention scale.
The intercept of 2.238 is the predicted value of intention when
risk = 0, here a nonsensical value, because the minimum
value on the risk scale = 1.

Centering Predictors

One way to produce an interpretable intercept is through cen-
tering the predictor—that is, putting the predictor into devia-
tion form by subtracting the arithmetic mean of the predictor

TABLE 19.1 Descriptive Statistics, Correlation, and Covariance Matrix for All Variables,
N = 240

A. Descriptive Statistics, Continuous Variables

Variable Mean Standard Deviation Skew Kurtosis Range

Risk 3.989 .750 2.146 19.634 1–10
Benefit 3.321 .900 −.027 −.515 1–6
Worry 2.373 .520 2.080 11.542 1–6
Intent 3.612 .914 −.180 .018 1–6

B. Descriptive Statistics, Categorical Variable, Recommendation

Category Frequency Proportion Intentions Mean

Recommendation by physician 96 .40 3.8949
Recommendation by other health professional 48 .20 4.1025
No recommendation 96 .40 3.0845

C. Correlation Matrix

INTENT RISK ANYRECa PHYSOTHRb BENEFIT WORRY

INTENT 1.000 .283 .472 .022 .380 .122
RISK .283 1.000 .139 −.090 .371 .523
ANYREC .472 .139 1.000 .218 .281 .072
PHYSOTHR .022 −.090 .218 1.000 −.006 −.016
BENEFIT .380 .371 .281 −.006 1.000 .402
WORRY .122 .523 .072 −.016 .402 1.000

D. Covariance Matrix

INTENT RISK ANYRECa PHYSOTHRb BENEFIT WORRY

INTENT .835 .194 .212 .008 .313 .058
RISK .194 .563 .051 −.025 .251 .204
ANYREC .212 .051 .241 .040 .124 .018
PHYSOTHR .008 .025 .040 .141 −.002 −.003
BENEFIT .313 .251 .124 −.002 .810 .188
WORRY .058 .204 .018 −.003 .188 .270

aANYREC is computed from Recommendation by the following coding: Physician recommendation =
.333333; other health professional recommendation = .333333; no recommendation = −.666667.
bPHYSOTHR is computed from Recommendation by the following coding: Physician recommendation =
.50; Other health professional recommendation = −.50; no recommendation = 0.0.
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TABLE 19.2 Regression Analyses to Test Hypotheses Concerning Relationship of Medical Factors to
Intention to Obtain a Mammogram

A. Hypothesis 1: Linear Relationship of Medical Risk to Intention

R2 .07989

Analysis of Regression

df Sum of Squares Mean Square F p

Regression 1 15.95103 15.95103 20.665 .001
Residual 238 183.70555 .77187

Regression Equation

Variable b sb 95% Confidence Interval b* t p

RISK .344424 .075766 .195167 .493681 .282652 4.545 .001
INTERCEPT 2.238386 .307494 1.632628 2.844143

B. Hypotheses 2 and 3: Relationships of Recommendation From Physician or From Other Health Professional and
Intention to Obtain a Mammogram, With Contrast Coded Predictors 

R2 .23012

Analysis of Regression

df Sum of Squares Mean Square F p

Regression 2 45.94591 22.97296 35.421 .001
Residual 237 153.71067 .64857

Regression Equation

Variable b sb 95% Confidence Interval b* t p

ANYREC .914219 .108733 .700012 1.128425 .491043 8.408 .001
PHYSOTH −.207604 .142365 −.488066 .072858 −.085166 −1.458 .146
INTERCEPT 3.693959 .054796 3.586009 3.801909

Note. b is the unstandardized regression coefficient; b* is the standardized regression coefficient; sb is the estimate of
the standard error of the regression coefficient; 95% confidence interval is on the unstandardized regression coefficient.

from each score. The predictor variable X1 is linearly trans-
formed to a centered predictor X1C, where X1C = X1 − MX1

for each participant (Aiken & West, 1991; Wainer, 2000).
Centering a predictor renders the value of 0 on the predictor
meaningful; it is the mean of the centered predictor across all
participants. Once again, we estimate the basic regression
equation (Equation 19.4) now using X1C as the predictor,

Ŷ = b̃0 + b1 X1C , (19.8)

with b̃0 and b1 respectively representing the intercept
and slope in this new equation. For our example
X1C = RISKCENTERED, and the result is Ŷ = 3.612 +
0.344 RISK CENTERED. Note that following centering of X1,
the slope is unchanged, but the intercept now equals the mean
of Y, intention to get a mammogram. An examination of
Equation 19.7 shows that when MX = 0 (which occurs when
X1 is centered), b0 will always be equal to MY. As we will see
later in the chapter, centering is often a useful procedure for
improving the interpretability of lower-order regression coef-
ficients, here b0, in regression equations that contain more

complex higher-order terms. As a final note, the changes in
the value of X1 to X1C and of b0 to b̃0 are such that the pre-
dicted scores are identical before and after centering.

Returning to our original regression equation using X1 as
the predictor (Equation 19.5), how well does this equation ac-
count for variation in the observed criterion score? To answer
this question, we compute two values based on the predicted
scores. The first is SSregression, the variation of the predicted
scores around the mean of the predicted scores (MŶ = MY ):

SSregression =
∑

(Ŷi − MŶ )2 (19.9)

The larger this value, the better the differential prediction
from the regression equation. The maximum value that
SSregression can achieve is SSY, the variation of the observed cri-
terion scores around the mean of the observed scores (MY),
given in Equation 19.4. If SSregression were to equal SSY, this
would signify that the regression equation had reproduced all
the differences among the individual scores on the observed
criterion. The second computation is the residual variation
SSresidual, a measure of failure to reproduce the observed
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criterion scores:

SSresidual = SSY−Ŷ =
∑

(Yi − Ŷi )
2 (19.10)

For the present data SSY = 199.657, SSregression = 15.951, and
SSresidual = 183.706. We note that SSY = SSregression + SSresidual,
an additive partition. This is directly analogous to the parti-
tion of SStotal = SSbetween + SSwithin in the analysis of variance
(ANOVA).

The squared multiple correlation R2 measures the propor-
tion of criterion variation accounted for by the predictor (or
predictors in the case of multiple regression). R2 is calculated
as follows:

R2 = SS regression

SSY
= 15.951

199.657
= .07989 (19.11)

We learn that approximately 8% of the variation in intention
is accounted for by medical risk. Each regression equation,
regardless of number of predictors, yields a single R2 as an
omnibus measure of overall fit. Note that centering X1 as we
did in Equation 19.8 has no effect on the value of R2 that is
obtained.

To test whether R2 differs from 0 (no prediction), we test
the null hypothesis that this value = 0 in the population:
H0 :�2 = 0. If the null hypothesis is true, then the risk scores
provide no increase in accuracy of prediction of intentions
above simply predicting the arithmetic mean of intentions for
each person. The test is an F test,

F = MS regression

MS residual
= 15.951/1

183.706/238
= 15.951

.772
= 20.665

(19.12)

where MSregression = SSregression/p and MSresidual = SSresidual/

(n − p − 1) and the degrees of freedom are dfnumerator = p and
dfdenominator = (n − p − 1). Here, with p = 1 df for the numer-
ator and (n − p − 1) = 240 − 1 − 1 = 238 d f for the de-
nominator, we reject the null hypothesis and conclude that
medical risk contributes to our differential prediction of in-
tentions across individuals. The computations involved in the
test of R2 are summarized in an analysis of regression,
illustrated in Table 19.2, Panel A. In the case of multiple
regression with more than one predictor, the test of R2 is an
omnibus test of the contribution of the set of predictors taken
together to prediction accuracy.

When we use regression analysis to test theoretical hy-
potheses, our focus is often on the question of whether spe-
cific variables contribute to the overall prediction. In the one
predictor case, the test of b1 coefficient will always be equiv-
alent to the overall test of R2. Nonetheless, we illustrate how

this test is conducted here for pedagogical purposes. We first
specify the null hypothesis that the population regression co-
efficient �1 is zero—that is to say, H0 :�1 = 0. For this test
we require an estimate of the standard error of the regression
coefficient, sb1. The standard error is a measure of instability
of the regression coefficient (i.e., how much variability we
would expect in the regression coefficient if we estimated the
same regression equation in repeated random samples from a
single population). The standard error depends upon MSresidual

and on the variation of the predictor SSX = ∑
(Xi − MX)2

and is given as

sb1 =
√

MS residual

SSx
=

√
.772

134.557
= .076 (19.13)

The denominator of this expression is informative for the sta-
bility of the regression coefficient: The more variation in the
predictor X, the more stable the regression coefficient. In
some settings, the stability of the regression coefficient may
be improved by systematically sampling over a wide range of
the predictor X (Pitts & West, 2001).

The t test for the significance of the individual predictor is
given as

tb1 = b1

sb1

== .344

.076
= 4.546 (19.14)

With (n − p − 1) = 238 degrees of freedom, we reject the
null hypothesis that this regression coefficient is zero. Given
the positive sign of b1, we conclude that medical risk has
a positive linear relationship with intention to obtain a
mammogram.

Several authors (e.g., Cohen, 1990, 1994; Wilkinson & the
Task Force for Statistical Significance, 1999) have encour-
aged the reporting of confidence intervals (CIs) because they
directly provide information about the precision of the esti-
mate. Here we consider the sample regression coefficient as
an estimator of the population regression coefficient of the
slope. We form a 95% confidence interval around the indi-
vidual regression coefficient using the following expression,

C[b1 − A ≤ �1 ≤ b1 + A] = 1 − �, (19.15)

where A = t.975(df )sb1. With df = 238, t.975(238) = 1.97,
and A = (1.97)(.076) = .150, the CI is C[.344 − .150 ≤ �1

≤ .344 + .150] = .95, or C[.194 ≤ �1 ≤ .494] = .95. Other-
wise stated, the researcher can have 95% confidence that the
population regression coefficient falls between approxi-
mately .19 and .49. Because the confidence interval does not
include zero, there is a positive effect of risk on intention,
consistent with Hypothesis 1.
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Single Categorical Predictor Variable: Regression with
Code Predictors—Hypotheses 2 and 3

Our next two hypotheses address two comparisons within the
recommendation categorical predictor variable, a nominal
variable comprised of G = 3 categories. To represent a cate-
gorical predictor variable in MR we must convert the variable
to a series of (G − 1) terms to represent the G categories. The
set of (G − 1) terms serve as predictors in the regression
equation to represent the recommendation predictor variable.
The code terms may be specified in several different ways,
depending on the researcher’s specific hypotheses (see
Cohen, Cohen, West, & Aiken, 2003, and West, Aiken, &
Krull, 1996, for complete presentations).

Here, Hypotheses 2 and 3 address the impact of the rec-
ommendations of health professionals on intention to obtain
a mammogram. Hypothesis 2 indicates that recommendation
by a physician or other health professional will increase
intention. Hypothesis 3 indicates that the physician’s re-
commendation will have a more powerful effect than will
those of other health professionals.

Contrast Codes

The hypotheses are easily translated into a coding scheme
of two orthogonal contrast codes: C1: ANYREC, and C2:
PHYSOTHR, for Hypotheses 2 and 3, respectively. The cod-
ing scheme for each contrast code is shown in the following
table (we specify many decimal points to minimize rounding
error).

Recommendation C1: ANYREC C2: PHYSOTHR

Group 1: Recommendation from .333333 .500000
physician

Group 2: Recommendation from .333333 −.500000
other health professional

Group 3: No recommendation −.666667 0.000000

Following the requirements for contrast coding, the sum
of the code values equals zero for each contrast, (e.g.,
.333333 + .333333 − .666667 = 0). We test the two hy-
potheses in a single regression equation that contains both
code terms C1 and C2. In general, the two-predictor regres-
sion equation is written as follows:

Ŷ = b0 + bY 1.2 X1 + bY 2.1 X2 (19.16)

The notation for the regression coefficients has been ex-
panded here to emphasize the fact that these are partial re-
gression coefficients. The coefficient b1 has been expanded
to bY1.2 to indicate the regression of Y on X1 with X2 held

constant or partialed out. For the two contrast codes, the
regression equation is as follows:

Ŷ = b0 + bY 1.2C1 + bY 2.1C2. (19.17)

In general, in the two-predictor regression equation, the
regression coefficient for each predictor assesses the impact
of that predictor when the effect of the other predictor is held
constant or partialed out. Any redundancy in prediction from
the predictor in question with the other predictor is taken out,
(i.e., not credited to the predictor in question). In the case of
uncorrelated predictors, there is no effect of partialing, be-
cause there is no redundancy. From the coding of ANYREC
and PHYSOTHR, it appears on the surface as if the two pre-
dictors would be uncorrelated, because the coding schemes
form orthogonal contrasts. However, because there are un-
equal sample sizes in the three categories of the recommen-
dation variable, the code terms are, in fact, correlated,
r(238) = .218. The inclusion of the two code terms in one
equation is critical. The PHYSOTHR contrast actually com-
pares the physician recommendation with other health pro-
fessional recommendation only if ANYREC is partialed out. 

Use of code terms bridges our thinking from regression
analysis in which group membership predicts the criterion Y
to an analysis of differences between means on the criterion Y
as a function of group membership. Hypothesis 2 can be re-
stated to say that the average of the arithmetic means of in-
tention in Groups 1 and 2 (having a recommendation) will
exceed the mean intention in Group 3 (no recommendation).
With the specific numerical codes employed for ANYREC,
the unstandardized regression coefficient for ANYREC will,
in fact, equal bY 1.2 = .5MY 1 + .5MY 2 − MY 3 = (MY 1+MY 2)

2 −
M3 = (3.8949+4.1025)

2 − 3.0845 = 0.9142, where MY1, MY2,
and MY3 are the mean intention in Groups 1 to 3, respectively,
as given in Table 19.1, Panel B. To achieve this equivalence
between the regression coefficient and the particular contrast
of means requires that the difference in numerical value
between the codes assigned to the groups being contrasted
equal exactly one unit. For ANYREC, the difference is
[.33333 − (−.666667)] = 1.00. The reason for this require-
ment is that the regression coefficient represents the change in
Y for a one-unit change in the predictor. In general, with K1

groups in the first set being contrasted, and K2 groups in the
second set being contrasted, the appropriate code for the
first set is K2/(K1 + K2). The code for the second set is
−K1/(K1 + K2). Here, for the K1 = 2 groups in the first set
and the K2 = 1 group in the second set, K2/(K1 + K2) = 1/

(2 + 1) = .333333, and −K1/(K1 + K2) = −2/(2 + 1) =
−.666667, respectively. The codes used in PHYSREC, that
is +.500000 and −.500000, respectively, yield a one-unit
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difference between the groups. Thus the regression coeffi-
cient for PHYSREC will equal bY 2.1 = MY 1 − MY 2 =
−0.2076. Finally the intercept b0 = (MY 1+MY 2+MY 3)

3 =
(3.8949+4.1025+3.0845)

3 = 3.6940. Thus, the regression equation
is Ŷ = 3.6940 + 0.9142 ANYREC − 0.2076 PHYSREC.

The regression analysis for the contrast coding is summa-
rized in Table 19.2, Panel B. From the section on analysis of
regression, we see that R2 = 0.23 is statistically significant,
meaning that the overall prediction using the two contrast
codes exceeds 0 in the population. Otherwise stated, there is
an overall effect of the recommendation variable on inten-
tion. The tests of the individual regression coefficients reveal
that this prediction arises from the ANYREC contrast,
t (237) = 8.41, p < .01, but not the PHYSOTHR variable,
t (237) = −1.46, ns. Equivalently, we can use Equa-
tion 19.15 to estimate the 95% confidence interval for the
population regression coefficient for each code variable. For
ANYREC, the 95% confidence interval of .70 to 1.23 does
not include 0, whereas the 95% confidence interval for the
population regression coefficient for PHYSOTHR of −0.49
to 0.07 does include 0. Hypothesis 2 is supported, but
Hypothesis 3 is not.

Model Respecification

Based on these results, we collapse the three-category recom-
mendation variable into the two categories of recommenda-
tion versus no recommendation defined by the ANYREC
contrast. This decision was made primarily for ease of pre-
sentation in the remainder of this chapter. In practice, re-
searchers should be cautious about collapsing categories
when contrasts indicate they do not differ, unless sample
sizes are very large. This caution is particularly important
when further analyses involving interactions of other predic-
tor variables with the categorical variable are planned.

Dummy Coding

Dummy coding is a second approach to developing code pre-
dictors for a categorical predictor variable. We illustrate
dummy coding here for pedagogical purposes, although in
this particular instance, the use of dummy coding does not
directly test Hypotheses 2 and 3. In dummy variable coding,
we specify a reference group to which we wish to compare
the G − 1 other groups. Here, we choose the no recommen-
dation group as the reference group. For the first code vari-
able D1, each person who received a recommendation from a
physician would be given a value of 1, and everyone else
would be given a value of 0. For the second code variable D2,

each person who received a recommendation from another
health professional would given a value of 1, and everyone
else would be given a value of 0. Each category of the rec-
ommendation variable is coded as follows:

Recommendation Category D1 D2

Group 1 Physician 1 0
Group 2 Other health professional 0 1
Group 3 No recommendation (reference group) 0 0

Note that the reference group is assigned a value of 0 on each
dummy variable, here D1 and D2. The regression equation is
specified as 

Ŷ = b0 + bY 1.2 D1 + bY 2.1 D2. (19.18)

In Equation 19.18, the intercept b0 represents the mean
value of Y when both D1 and D2 equal 0, which is the mean
intention in the reference group (no recommendation,
M = 3.0845). With both D1 and D2 in the equation, D1 is the
difference between the mean in the physician group versus
the no recommendation group (3.8949 − 3.0845 = .8104)

and D2 is the difference between the mean in the other health
professional group versus the no recommendation group
(4.1025 − 3.0845 = 1.018). Thus, the regression equation is
Ŷ = 3.0845 + .8104 D1 + 1.018 D2. The dummy codes test
the hypotheses that each recommendation group differs from
the no recommendation group. These are not the tests
required for Hypotheses 2 and 3.

Unweighted Effects Coding

A third coding scheme, unweighted effects coding, contrasts
group means with the unweighted grand mean of all the
groups. Each effects code tests the hypotheses that a recom-
mendation group differs from the unweighted grand mean.
Again, these are not the tests required for Hypotheses 2 and
3. Readers familiar with ANOVA will recall that the building
blocks of the various sums of squares in ANOVA are the
differences between each treatment mean and the grand
mean. Unweighted effects coding is, in fact, the basis of
ANOVA.

The choice among the three coding schemes depends on
the specific hypotheses being tested. As we have illustrated,
contrast codes can be developed to test any specific hypothe-
ses whatsoever about differences between groups or combi-
nations of groups. Dummy codes are useful if one wishes to
compare groups to a base reference group. Effects codes
provide a parallel to ANOVA.
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Two Continuous Predictors: High Interpredictor
Correlation—Hypothesis 4

We now turn to the two continuous psychological predictors,
benefits and worry. We can easily test the linear relationship
between each predictor and intention separately. Two ver-
sions of Equation 19.4, Ŷ = b0 + b1 X1, are estimated, the
first using scores on benefits as X1 and the second using scores
on worry as X1. The results of these one-predictor regression
analyses are given in Table 19.3, Panels A and B, respectively.
We note that the slope b1 = 0.39, t (238) = 6.34, p < .001
for benefits and that the slope b1 = 0.21, t (238) = 1.89,

p = .060 for worry.

At this point, we need to carefully consider exactly what
hypothesis the researcher wishes to test about the relation of
worry and benefits to intention. As shown in Table 19.1,
Panel C, worry and benefits are not independent predictors;
indeed r12 = .40, a magnitude between moderate and large in
terms of Cohen’s (1988) norms for the size of correlation
coefficients. These two predictors will overlap in their
prediction of intention with each providing partially redun-
dant information. Unless theory specifies that each predictor
should be considered separately, then more useful informa-
tion may often be found by considering both predictors
simultaneously in a single regression equation.

Hypothesis 4 is that benefits (X1) and worry (X2) each
provide unique prediction of intention. This hypothesis has two
parts: (a) Over and above the effects of worry, benefits is ex-
pected to have a positive linear relationship with intention,
and (b) over and above the effects of benefits, worry is also ex-
pected to have a positive linear relationship with intention. We
specify the two-predictor regression equation Ŷ = b0 + bY 1.2

BENEFIT + bY 2.1 WORRY. As shown in Table 19.3, Panel C,
when we estimate this equation, we find Ŷ = 2.44 +
0.40 BENEFIT − 0.07 WORRY. Once again, the intercept is
the predicted value of intention when both benefits and
worry = 0, not an interpretable value. The coefficient bY1.2 rep-
resents the linear effect of benefits on intention when worry is
held constant. The coefficient bY2.1 represents the linear effect
of worry on intention when benefits is held constant.

Comparing this result with the results of the two separate
one-predictor regressions, we see that the slope for benefits
hardly changes from the one-predictor to the two-predictor
model (slope = 0.39 and 0.40, respectively). In contrast,
the slope for worry decreases markedly (slope = 0.21 and
−0.07, respectively) and no longer even approaches statis-
tical significance. To understand the change in results for
worry, recall that the one predictor regression estimates the
overall linear effect of worry on intention ignoring the effects
of any other variables. The two-predictor regression de-
scribes the conditional relationship between worry and inten-
tion when the value of benefits is held constant. For example,
we might select only people who have a benefits score = 3
and study the relationship between worry and intention in this
subpopulation. The obtained pattern suggests that benefits is
contributing essentially all of the unique prediction to inten-
tion. This is apparent from R2

Y.12 from the two predictors of
.146, versus the squared correlation of benefits with intention
of R2

Y.1 = .145. The squared semipartial correlation of worry
with intentions R2

Y.(2.1) = R2
Y.12 − R2

Y.1 = (.146 − .145) =
.001, showing essentially no contribution of worry to predic-
tion in an equation already containing benefits.

TABLE 19.3 Regression Analyses to Test Hypothesis Concerning the
Linear Relationships of Benefits and Worry to Intention

A. Intention Predicted From Benefits Alone

R2 .14453

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 1 28.85571 28.85571 40.209 .001

Residual 238 170.80088 .71765

Regression Equation

Variable b sb b* t p

BENEFIT .386013 .060876 .380167 6.341 .001
INTERCEPT 2.330203 .209447 11.125 .001

B. Intention Predicted From Worry Alone

R2 .01480

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 1 2.95565 2.95565 3.576 .060

Residual 238 196.70093 .82647

Regression Equation

Variable b sb b* t p

WORRY .213877 .113097 .121670 1.891 .060
INTERCEPT 3.104729 .274716 11.302 .001

C. Hypothesis 4: Unique Contribution of Benefits and Worry to Prediction
of Intention in a Regression Equation Containing Both Predictors 

R2 .14569

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 2 29.08884 14.54442 20.209 .001

Residual 237 170.56774 .71970

Regression Equation

Variable b sb b* t p

BENEFIT .401262 .066590 .395184 6.026 .001
WORRY −.065612 .115281 −.037326 −.569 .570
INTERCEPT 2.435255 .279395 8.716 .001
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Standardized Regression Coefficients 

Although benefits and worry are each measured on similar 7-
point scales, some regression problems have predictor vari-
ables that are measured in strikingly different units. For
example, imagine that height and weight are used to predict a
measure of physical fitness. Height (millimeters) and weight
(kilograms) are in strikingly different units, so it may be dif-
ficult to interpret the meaning of the regression coefficients,
particularly in cases in which the units of the scale are not
familiar to the researcher. In such cases, it can be useful to
report standardized regression coefficients.

Conceptually, to compute standardized regression coeffi-
cients the researcher first converts X1, X2, and Y to z scores,
where zXi = (Xi −MXi )

sXi
and zY = (Y−MY )

sY
. The standardized

regression coefficient in the two predictor case is then

ẑY = b∗
Y 1.2 zX1 + b∗

Y 2.1 zX2 . (19.19)

In this equation, ẑY is the predicted score in standardized
(z score) form, b∗

Y 1.2 is the standardized regression coefficient
corresponding to zX1 and b∗

Y 2.1 is the standardized regression
coefficient corresponding to zX2 . For our example, ẑY =
0.40zX1 − .04zX2 (see Table 19.3, Panel C). Reflecting the
similarity of the rating scales for benefits and worry, the un-
standardized and standardized regression coefficients differ
only slightly. The standardized regression Equation 19.19
does not include an intercept. In general, in the two-predictor
regression equation, the intercept b0 = MY − b1 MX1−
b2 MX2 . However, because the mean z scores for X1, X2, and Y
are all 0, b0 = 0 − b1(0) − b2(0) = 0. The standardized re-
gression coefficient indicates by how many standard devia-
tions the criterion changes for a one standard deviation
change in the predictor. Thus, the predicted value of intention
changes by .40 standard deviations for each one standard de-
viation change in benefits when the value of worry is held
constant. Note that in the case of categorical predictors, with
contrast codes or dummy codes like those given previously,
the idea of a change of one standard deviation in the predic-
tor typically makes little sense.

Further insight into two-predictor regression can be
gained from examining another set of formulas for the stan-
dardized regression coefficients.

b∗
Y 1.2 = rY 1 − rY 2r12

1 − r2
12

and b∗
Y 2.1 = rY 2 − rY 1r12

1 − r2
12

(19.20)

where rY1 and rY2 are the correlations of Predictors 1 and 2 with
the criterion, respectively, and r12 is the correlation between
the predictors. The expression for b∗

Y 1.2 includes both the cor-
relation of predictor in question (rY1) and the correlation of the

other predictor with the criterion (rY2). The correlation be-
tween the predictors, r12, plays a strong role in determining the
magnitude and even the sign of each standardized regression
coefficient. Note that the standardized regression coefficient is
undefined (cannot be computed) if the correlation between the
predictors equals 1.0. In fact, there is no solution whatsoever to
the regression analysis if two predictors are correlated 1.0.
High correlation between the predictors introduces instability
into the regression coefficients. On the other hand, when
r12 = 0, then the standardized regression coefficient exactly
equals the correlation of the predictor with the criterion (i.e.,
b∗

Y1.2 = rY1 and b∗
Y 2.1 = rY2).

Standard Errors of Partial Regression Coefficients and
Interpredictor Correlation

An examination of the expression for the standard error of
each regression coefficient in the two-predictor case is also
informative as to how the correlation between two predictors
affects the stability of each regression coefficient. The stan-
dard error sb1 of the unstandardized regression coefficient b1

is a measure of instability of b1; it may be expressed as

sb1 =
√

MSresidual

SSX1

√
1

1 − r2
12

. (19.21)

Comparison of this equation to Equation 19.13 for the one
predictor case reveals that the expressions are the same, ex-
cept that Equation 19.21 contains a second term that reflects
the correlation between the two predictors. The higher this
correlation, the larger the standard error. The expression
under the square root of this second term, 1

1−r2
12

, is known as
the variance inflation factor (VIF). VIF or its reciprocal,
(1 − r2

12), which is known as tolerance, are commonly used
as indices of multicollinearity, the extent of overlap or redun-
dancy of predictors. As the value of the VIF for variable Xj in-
creases, the corresponding regression coefficient bj becomes
increasingly unstable. The VIF appears in the expression for
the standard error of the standardized regression coefficient
as well.

Detecting and Testing Nonlinear
Relationships— Hypothesis 5

Thus far, our regression models have only tested linear rela-
tionships between the predictors and the criterion. However,
past theorizing (see Janis & Feshbach, 1953) has suggested
that there may be an inverted U-shaped relationship of worry
to intention, with people at the highest levels of worry avoid-
ing screening tests.
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Figure 19.1 Scatter plot of raw data: intention as a function of worry. The
straight line is the OLS regression line from the equation, Ŷ = 3.10 + 0.21
WORRY. The curved line is the lowess fit line. The lowess line suggests a
curvilinear relationship between worry and intention.
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Figure 19.2 Scatter plot of residuals as a function of worry. The residuals
presented are from the linear regression equation, Ŷ = 3.10 + 0.21
WORRY. For each case, the residual ei = Yi − Ŷi . The horizontal line is the
point where the residuals = 0. The curved line is the lowess fit to the residu-
als. The lowess line suggests the presence of a curvilinear relationship of
worry to intentions.
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In Hypothesis 5, we test the prediction of an inverted U-
shaped relationship of worry to intention. We begin our
exploration of this possibility with a graphical display. We
initially focus only on the relationship between worry and
intention, ignoring the potential contribution of benefits. Fig-
ure 19.1 displays a scatter plot of worry versus intention. We
have superimposed two lines on this scatter plot. First is the
best-fitting straight line from the regression analysis in Table
19.3, Panel B, Ŷ = 3.10 + 0.21X. Second is a lowess smooth
(Cleveland, 1979; Fox, 2000). The lowess smooth is a non-
parametric line that follows the trend in the data. If the true
relationship in the data is linear, then the lowess smooth
should roughly approximate the straight line. Examination of
the scatter plot indicates that the data are highly right skewed,
with relatively few participants having worry scores above
about 3 (see also Table 19.1, Panel A). The lowess line indi-
cates that as worry increases up to about the value of 3.5,
intention also increases. Above this point, intention begins
to decrease consistent with the hypothesized curvilinear
relationship, although we acknowledge the sparseness of the
data (i.e., few data points) at the high end of the worry
distribution.

Figure 19.2 provides a scatter plot of the residuals from
the regression equation Ŷ = 3.10 + .021 WORRY against
WORRY. Again a lowess curve is superimposed. The lowess
curve highlights the curvilinearity to be modeled after the
linear trend in the data has been removed.

Polynomial Regression

The lowess smooth in Figure 19.1 and in Figure 19.2 leads us
to explore the curvilinear relationship further using a form of

multiple regression called polynomial regression. In polyno-
mial regression we create functions of an individual predictor
X that carry a curvilinear relationship of the predictor to the
criterion. In general the polynomial regression equation is of
the form

Ŷ = b0 + b1 X + b2 X2 + b3 X3 + · · · + bt Xt (19.22)

Equation 19.22 is a polynomial of order t, which describes a
relationship with (t − 1) bends. In psychology, at least, we
expect that our curvilinear relationships will be typically qua-
dratic so that t = 2. The specific relationships with one bend
include both U-shaped and inverted U-shaped relationships,
such as the one that appears to exist between worry and in-
tention. They also include monotonic relationships of X to Y
that accelerate or decelerate as X increases in value.

The second order polynomial is given as 

Ŷ = b0 + b1 X + b2 X2 (19.23)

This equation contains a linear b1X term and a curvilinear
(quadratic) b2X

2 term. The curvilinear term b2X
2 measures the

extent of curvilinearity in the relationship of X to Y, if and
only if the linear b1X term is included in the equation. In
other words, the curvilinear effect is a partialed effect with
the linear effect partialed out (see Cohen, 1978, for an ex-
tended discussion of partialed effects). The coefficient b2 will
be positive for U-shaped relationships; negative for inverted
U-shaped relationships. Hence, Hypothesis 5 predicts that b2

will be negative. The reader is cautioned that the b1 coefficient
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TABLE 19.4 Exploration of Curvilinear Relationship of Worry 
to Intention

Panel A. Hypothesis 5: Inverted-U-Shaped Relationship of Worry to
Intention, Examined in a Second-Order (Quadratic) Polynomial Regression
Equation

R2 .07112

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 2 14.19876 7.09938 9.072 .001

Residual 237 185.45782 .78252

Regression Equation

Variable b sb b* t p

WORRYC .501137 .133619 .285087 3.750 .001

WORRYC2 −.267887 .070674 −.288127 −3.790 .001

INTERCEPT 3.684393 .060189 61.214 .001

Panel B. Revisiting Hypothesis 4: Unique Contribution of Benefits and
Worry to Prediction of Intention in a Regression Equation Containing
Both Predictors

R2 .16299

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 3 32.54122 10.84707 15.318 .001

Residual 236 167.11537 .70812

Regression Equation

Variable b sb b* t p

BENEFITC .353639 .069484 .348283 5.090 .001

WORRYC .135010 .146053 .076805 .924 .356

WORRYC2 −.156159 .070723 −.167958 −2.208 .028

INTERCEPT 3.654315 .057560 63.487 .001

in Equation 19.23 has a very specific interpretation as the
linear regression of Y on X at the value X = 0. That is, b1 is a
conditional effect of Y on X only at X = 0, even if X = 0 is not
part of the actual scale. In this example, none of our scales
includes zero.

As we noted earlier, lower-order coefficients become
meaningfully interpretable when each of the predictors is
centered. In the present context, we again center X so that
XC = (X − MX ). This results in the regression equation.

Ŷ = b̃0 + b̃1 XC + b2 X2
C (19.24)

Once again, we use b̃0 and b̃1 to indicate that these regression
coefficients will typically differ in value from the corre-
sponding regression coefficients in Equation 19.23. In con-
trast, the b2 coefficient will be identical in the two equations.
The b̃1 coefficient still represents the regression of Y on X at
X = 0, but now X = 0 is rendered meaningful as the arith-
metic mean of the centered predictor. When predictor X is
centered, we gain a second interpretation for the b̃1 coeffi-
cient. The b̃1 coefficient represents the average linear regres-
sion of Y on X across the range of the data. The b2 coefficient
represents the extent of curvature.

Table 19.4 presents the second-order polynomial regres-
sion equation predicting intention. A new centered predictor
represented as WORRYC is employed as the linear predic-
tor, computed as WORRYC = (WORRY − MWORRY). The
square of WORRYC, WORRYC2, computed as WOR-
RYC2 = (WORRY − MWORRY)2, serves as the curvilinear pre-
dictor. Centering has a second advantage in that it decreases
the correlation between X and X2, yielding a smaller standard
error for the b̃1 coefficient. Here, the correlation between raw
(uncentered) X and X2 is .97, whereas the correlation between
XC and X2

C is .567. Aiken and West (1991) discuss the effects
of centering on interpredictor correlation in regression equa-
tions containing polynomial and interaction terms.

From Table 19.4, we see that the second-order polynomial
regression with both the linear and curvilinear terms accounts
for R2

Y.12 = R2 = .071 of the variation in intention,
F(2,237) = 9.07, p = .001. The regression coefficient for
WORRYC2 is negative, b2 = −0.27, t(237) = −3.79,
p < .001, capturing the inverted U-shaped component of the
relationship and confirming Hypothesis 5. The regression
coefficient for the linear predictor WORRYC is positive,
b1 = 0.50, t(237) = 3.75, p < .001, capturing the average
overall linear trend in the data that intention increases as
worry increases.

Note that in the present case we hypothesized a curvilinear
relationship between worry and intention, thus making the in-
terpretation of the results straightforward. Such interpretation

becomes more complex when the form of relationship has not
been hypothesized or the form may not have been correctly
specified. On one hand, using the lowess smooth provides a
powerful method of exploring the data and describing the
form of the relationship. On the other hand, powerful graphi-
cal methods like lowess can detect chance relationships that
only exist in the particular sample at hand. Unpredicted rela-
tionships detected through exploratory analyses should be
replicated using a new sample to rule out the possibility that
the results reflect relationships that are unique to the current
sample. In the present example, sampling participants so as to
include a larger number of cases with high scores on worry
would greatly improve the ability of the regression model to
distinguish between the linear and quadratic effects of worry
on intention (see Pitts & West, 2001). When a new sample
cannot be collected, a variety of resampling procedures can
be used to probe the stability of the findings across permuta-
tions of the sample. Diaconis (1985) presents an excellent
discussion of statistical inference in the context of ex-
ploratory data analysis.
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Revisiting the Unique Effects of Worry and Benefits

In our earlier section on Hypothesis 4, we showed that when
benefits and worry were both included in the regression
equation, the regression coefficient for worry no longer ap-
proached statistical significance (see Table 19.3, Panel C).
However, the regression Equation 19.16 only specified that
benefits and worry would have linear effects, and we have
seen that worry has a quadratic relationship to intention. We
now respecify Equation 19.16 so that it includes both a linear
and quadratic relationship of worry to intention. Again, for
ease of interpretation of the lower-order regression coeffi-
cients, we center both predictor variables (here, benefits
and worry, respectively): X1C = X1 − MX1 and X2C =
X2 − MX2 . This results in the following regression equation:

Ŷ = b̃0 + b̃1 X1C + b̃2 X2C + b3 X2
2C , (19.25)

Here b̃1 is the linear effect of benefits, b̃2 is the average linear
effect of worry, and b3 represents the extent of curvature for
worry. As is shown in Table 19.4, Panel B, benefits has a sta-
tistically significant linear relationship with intention, and
worry has a statistically significant quadratic relationship
with intention. This example illustrates that testing a regres-
sion model with only linear terms does not address the poten-
tial existence of higher-order relationships between a
predictor and the criterion variable. Hypothesis 4, that both
benefits and worry predict intention, is in fact supported, but
the unique relationship between worry and intention is qua-
dratic in form. We note the great flexibility of MR in uniquely
specifying the shape of the relationship of each variable to Y.

Sets of Predictors: Increment in 
Prediction—Hypothesis 6

The predictor variables fall into two distinct sets: (a) Set 1,
consisting of medical variables of risk (RISK) and recom-
mendation from a health professional (ANYREC), and
(b) Set 2, consisting of psychological variables of perceived
benefits of screening (BENEFITS) and worry about breast
cancer, now characterized by two uncentered predictors
(WORRY and WORRY2). In testing the increment in predic-
tion, centered and uncentered predictors will produce identi-
cal results. Hypothesis 6 predicts that Set 2 of psychological
variables will account for variance in intention over and
above Set 1 of medical variables; that is, even with level of
medical risk and input from a health professional accounted
for (partialed out, held constant), psychological factors will
still play a role in whether women are screened. 

We use a hierarchical regression strategy in which the con-
tribution of Set 2 of variables to an equation already containing

Set 1 is tested. Table 19.5 (Panel A) provides a regression
analysis with Set 1 predictors only; this yields R2

Y.12 = .271.

A second regression analysis in Table 19.5 (Panel B) gives the
regression analysis from both sets of predictors. This yields
R2

Y.12345 = .331. The squared semipartial correlation of Set 2
with the criterion, over and above Set 1, is R2

Y.(345.12) =
R2

Y.12345 − R2
Y.12 = .331 − .271 = .06. There is a 6% gain

in prediction by the addition of the psychological variables
(between a small and moderate effect size gain according to
Cohen, 1988).

We may test whether the squared semipartial correlation,
(i.e., the increment in prediction by Set 2 of variables over
and above Set 1) is significant, using the expression

Fgain = R2
all − R2

set1

1 − R2
all

(n − k − m − 1)

m

with [m, (n − k − m − 1)] df (19.26)

where k is the number of terms in Set 1 (here k = 2) and m is
the number in Set 2 (here m = 3 because worry is coded
with two variables, WORRY and WORRY2, in addition to
BENEFITS). R2

all is the multiple correlation for prediction
from both sets of predictors (all five terms) and R2

Set1 is the
prediction from Set 1 only.

Fgain = .331 − .271

1 − .331

240 − 2 − 3 − 1

3

= .060

.669

(
234

3

)
= 6.99

TABLE 19.5 Gain in Prediction of Intention From Psychological
Variables Above and Beyond Medical Variables

A. Prediction of Intention From Medical Variables (Set 1)

R2 .27132

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 2 54.16999 27.08500 44.122 .001

Residual 237 145.48659 .61387

B. Hypothesis 6: Prediction From Psychological Variables (Set 2) Over and
Above Medical Variables (Set 1)

R2 .33131

R2 change .06001 = .33131 − .27132

F for change F(3,234) = 6.99, p < .01

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 5 66.14839 13.22968 23.188 .001

Residual 234 133.50819 .57055

Note. The regression equation in Panel A includes predictors RISK and
ANYREC. The regression equation in Panel B includes RISK, ANYREC,
BENEFIT, WORRY, and WORRY2. Since uncentered predictors were used
in B, the regression coefficients for the individual predictors should not be
interpreted and are hence not reported.
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This test with (3, 234) degrees of freedom indicates sig-
nificant gain in prediction with the addition of the psycholog-
ical predictors (p < .01). Note that Equation 19.26 can be
extended to any number of predictors in Set 1 and Set 2.

Interaction Between Two Continuous 
Predictors—Hypothesis 7

In our considerations of what motivates individuals to protect
their health, we have argued that individuals perceive the
benefits of particular health protective actions more strongly
if they are more at risk (or perceive themselves to be more at
risk) for the disease in question (Aiken et al., 2001; Aiken,
West, Woodward, Reno & Reynolds, 1994; West & Aiken,
1997). Thus Hypothesis 7 predicts a positive or synergistic
interaction between risk and benefit. As risk increases, the
effect of benefits on intention increases as well, such that
the total effect of risk plus benefits on intention is greater than
the sum of the impacts of the two individual predictors—
hence the term synergistic interaction. Put in other terms, risk
serves as a moderator of the relationship of benefits to inten-
tion (Baron & Kenny, 1986); for each value of the moderator
(here risk), the regression of the outcome variable (here in-
tention) on the predictor in question (here benefits) takes on a
different value.

To represent an interaction in MR, we create a new term
that is a function of the two variables that are hypothesized to
interact. The interaction term is constructed as the product of
the predictors entering the interaction. In general, with X and
Z as the two predictors, the term carrying the interaction is
the product of X and Z—that is, XZ. The regression equation
containing the XZ interaction is given as follows:

Ŷ = b0 + b1 X + b2 Z + b3XZ (19.27)

The interaction is a partialed effect. The b3 partial regression
coefficient represents the interaction between X and Z if and
only if the two first order terms b1X and b2Z are included in
the equation. In general, all lower-order terms for each vari-
able involved in the interaction must be included in a regres-
sion equation containing an interaction, in order that the
regression coefficient for the interaction represent pure inter-
action variation—that is, unconfounded by first-order (main
effect) variation of the individual predictors involved in the
interaction.

Centering Predictors and Forming the Interaction Term

For our example, the interaction term is the product of risk
and benefit. Much interpretational benefit is gained by first
centering the individual predictors involved in the interaction

(by subtracting their means) and then forming the product of
the centered predictors. Here we compute centered RISKC =
(RISK − MRISK) and BENEFITC = (BENEFIT − MBENEFIT).
Then we form the crossproduct term RISKC*BENEFITC.
The regression equation containing the interaction is
Ŷ = b0 + b1 BENEFITC + b2 RISKC + b3 RISKC*BENE-
FITC. (At this point we assume that all the predictors
entering the regression equation containing an interaction
have been centered and drop the tilde notation previously
introduced).

Table 19.6 summarizes the analysis of the interaction
between centered risk and benefits. Panel A gives the means
and standard deviations of each predictor. We see that even if
the two predictors entering the interaction have been centered
and have means of zero, their crossproduct RISKC*BENE-
FITC will not generally be centered. The correlation matrix
in Panel B shows that there are quite low correlations be-
tween RISKC, BENEFITC, and the crossproduct term
RISKC* BENEFITC—that is to say, r = .148, r = −.008,
respectively. If we had not centered the predictors, then these
correlations would have been r = .760, and r = .872, for
RISK, BENEFIT with the crossproduct term, respectively.
Centering eliminates correlation due to scaling of the predic-
tors. We strongly recommend centering predictors involved
in interactions.

If only RISKC and BENEFITC are included as predictors,
without the interaction, the resulting R2

Y.12 = .168; the
regression equation is Ŷ = 3.612 + .324 BENEFITC + .200
RISKC. The regression equation containing the interaction is

Ŷ = 3.569 + .334 BENEFITC + .170 RISKC

+.175 RISKC*BENEFITC

with resulting R2
Y.123 = .186, about a 2% increment in pre-

diction (.186 − .168) due to the interaction. Although this is
a small effect size interaction, we will see that the pattern of
relationships of benefits to intention is modified by level of
risk. Consistent with Hypothesis 7, the existence of the inter-
action is supported. Having centered the predictors allows us
to interpret the regression coefficients for BENEFITC and
RISKC as the regressions of intention on these predictors at
the respective means of benefits and intention in the sample.
The reader is warned that these first-order coefficients should
only be interpreted if predictors are centered (see Aiken &
West, 1991, chap. 3, for a full explanation).

Having found a significant interaction, our next step is to
characterize its specific nature. For those familiar with analy-
sis of variance (ANOVA), the characterization of the interac-
tion in MR parallels the characterization of interactions in
ANOVA through the use of simple effects analysis (e.g., see
Kirk, 1995; Winer, Brown, & Michels, 1991). We begin by
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TABLE 19.6 Interaction Between Two Continuous Variables Benefits and Risk; RISKC*BENEFITC
Is the Crossproduct Term of RISKC With BENEFITC

A. Means and Standard Deviations of Predictors

Standard
Mean Deviation

INTENT 3.612 .914
RISKC .000 .750
BENEFITC .000 .900
RISKC*BENEFITC .250 .725
N of Cases = 240

B. Correlation Matrix Among Predictors and Criterion

INTENT RISKC BENEFITC RISKC*BENEFITC

INTENT 1.000 .283 .380 .157
RISKC .283 1.000 .371 .148
BENEFITC .380 .371 1.000 −.008
RISKC*BENEFITC .157 .148 −.008 1.000

C. Hypothesis 7: Synergistic Interaction Between Risk and Benefits

R2 .18647

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 3 37.23002 12.41001 18.031 .001
Residual 236 162.42657 .68825

Regression Equation

Variable b sb b* t p

RISKC .170410 .078090 .139848 2.182 .030
BENEFITC .334469 .064357 .329403 5.197 .001
RISKC*BENEFITC .174760 .075001 .138657 2.330 .021
INTERCEPT 3.568648 .056729 62.907 .001

D. Covariance Matrix of the Regression Coefficients

b1 b2 b3 BENEFITC RISKC RISKC*BENEFITC

b1 s11 s12 s13 BENEFITC .00414 −.00189 .0003325
b2 s21 s22 s23 = RISKC −.00189 .00610 −.0009527
b3 s31 s32 s33 RISKC*BENEFITC .0003325 −.0009527 .00563

rearranging the overall regression equation to show the re-
gression of the criterion on the predictor X in question as a
function of the moderator Z. Rearranging Equation 19.27, we
have

Ŷ = (b1 X + b3 X Z ) + (b2 Z + b0)

Ŷ = (b1 + b3 Z )X + (b2 Z + b0) (19.28)

Equation 19.28 is a simple regression equation that shows the
regression of the criterion on predictor X as a function of
the value of another predictor Z, the moderator. The simple
regression coefficient for X, given by the expression
bYX at Z = (b1 + b3 Z ), and the simple intercept (b2 Z + b0)
both depend on the value of Z. Substituting our variables,
we have

Ŷ = (b1 + b3 RISKC) BENEFITC + (b2 RISKC + b0), or

Ŷ = (.334 + .175 RISKC) BENEFITC

+ (.170 RISKC + 3.569). (19.29)

We may now compute the simple regressions of intention
on benefits at different levels of risk. By convention (Aiken
& West, 1991), we explore how benefits impacts intention
one standard deviation above and one standard deviation
below the mean of centered risk, which we term RISKCHIGH

and RISKCLOW, or in general ZHIGH and ZLOW, respectively.
The standard deviation of RISKC = .7501. We substitute this
value of RISKCHIGH = .7501 into Equation 19.29 and find

Ŷ = [.334 + .175(.7501)] BENEFITC

+ [.170(.7501) + 3.569]

Ŷ = .466 BENEFITC + 3.696, one standard
deviation above the mean of risk.
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If we substitute the value RISKLOW = −.7501, we have

Ŷ = .203 BENEFITC + 3.440, one standard deviation
below the mean of risk.

Finally, we substitute RISKC = 0 at the mean of centered
risk into Equation 19.29 to assess the regression of Y on
BENEFITC at the mean of centered risk. This yields the sim-
ple regression equation Ŷ = .334 BENEFITC + 3.569. The
simple slope and intercept equal the corresponding terms
from the overall regression equation.

In general, the regression of Y on benefits increases as
risk increases, as is predicted by Hypothesis 7, with simple
slope coefficients bYX at ZLOW = .203, bYX at ZMEAN = .334, and
bYX at ZHIGH = .466, at low, moderate, and high levels of risk,
respectively. The synergistic nature of the interaction is sup-
ported. The interaction is illustrated in Figure 19.3; the sim-
ple slopes are shown along with the raw data.

The simple slopes may be tested for significance follow-
ing a method developed in Aiken and West (1991, chap. 2).
We require a covariance matrix of the regression coefficients,
which is given in Table 19.6, Panel D. Using the notation
given in Panel D, we have that the standard error of a simple
slope is given as 

sb at Z =
√

s11 + 2Zs13 + Z2s33 (19.30)

where Z is the moderator variable (here, risk), s11 and s33 are
the variances of the b1 and b3 regression coefficients, respec-
tively, and s13 is the covariance between these regression co-
efficients. A t test for the significance of the simple slope is
given as

tb at Z = bat Z/sb at Z (19.31)

with degrees of freedom equal to the degrees of freedom of
MSresidual from the full design, (n − p − 1), where p is the
number of predictors including the interaction.

For the regression of intention on benefits at
RISKCHIGH = .7501, one standard deviation above the mean
of risk, using the values from Table 19.6, Panel D, we have

Sb at HIGH RISK

=
√

[.00414 + 2(.7501)(.0003325) + (.7501)2(.00563)]

= .088

Then a t test for the simple slope is given as tb at RISKC HIGH =
.466/.088 = 5.30 with df = (240 − 3 − 1) = 236, p < .01.
At RISKCLOW = −.7501, we have sb at RISKC LOW = .083, and
tb at RISK LOW = .203/.083 = 2.45, p < .01. The t test of simple
slope at RISKC = 0 equals that from the overall equation,
t = 5.197, p < .001. We conclude that there is a positive effect
of benefits on intention at each level of risk, and that, as pre-
dicted, the impact of benefits on intention increases with in-
creasing risk. We note that the particular values of RISKCLOW

and RISKCHIGH arise from this particular sample and, of
course, contain sampling error. Thus, the sample simple effects
computed here are approximations to the simple effects at cor-
responding points in the population. Finally, we warn that the
standard error expression in Equation 19.30 only pertains to
the simple slope in Equation 19.28;Aiken andWest (1991) pro-
vide standard error expressions for a variety of simple slopes.

We have presented an example of the treatment of inter-
actions in MR. We provide a full presentation, which in-
cludes three-variable interactions and interactions involving
curvilinear relationships in Aiken and West (1991). A method
for estimating and testing simple regression equations by
computer is also provided in Aiken and West (1991).

Interaction Between A Categorical and 
A Continuous Variable—Hypothesis 8

Researchers often hypothesize that categorical variables may
modify the relationship between two continuous variables.
These hypotheses may be proposed both when the categori-
cal variable represents an experimental treatment and when
the categorical variable represents a natural category (e.g.,
ethnic group). Such hypotheses may be proposed even if
there is also an overall relationship between the continuous
variable and the dependent variable, or between the categori-
cal variable and the dependent variable, or both. We have al-
ready seen in our example (Table 19.3, Panel A) that there is
an overall relationship between benefits and intention. We
have also seen evidence (Table 19.2, Panel B) that there is
also a relationship between receiving a recommendation

Figure 19.3 Regression of intentions on benefits at three levels of risk: low
risk, one standard deviation below the mean of risk; mean risk, at the mean
of risk; and high risk, one standard deviation above the mean of risk.
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from a doctor or other health care professional (ANYREC)
and intention.

We hypothesize (Hypothesis 8) that there is a synergistic
interaction between benefits and recommendation such that,
if a woman has both received a recommendation and has
strong beliefs in the personal benefits of mammography, she
is more likely to obtain a mammogram.

The general procedure of specifying a regression equation
to represent an interaction between a categorical and a
continuous variable draws on several lessons from previous
sections. First, the group variable is represented by G − 1 code
terms. In line with our earlier presentation, we collapse the
physician recommendation and other health care professional
recommendation groups into a single recommendation group
(REC) that is contrasted with the no recommendation group
(NOREC). With G = 2 groups, we have one code variable.
Second, the continuous independent variable is centered,
BENEFITC = BENEFIT − MBENEFIT, where MBENEFIT =
3.321. As we indicated in the previous section, centering is
used to render the lower-order coefficients interpretable in a
regression equation containing interactions. Third, the
interaction is represented by a set of terms corresponding to the
product of each of the G − 1 code variables and the centered
continuous variable.

Because the interpretation of interactions involving cate-
gorical variables can be challenging, we present two prelimi-
nary analyses for pedagogical purposes that help provide a
foundation for our understanding. Our first preliminary
analysis examines the regression of intention on centered
benefits only for the 144 participants in the REC group (i.e.,
the combined physician and other health professional recom-
mendation groups),

Ŷ = b0 + b1 BENEFITC = 3.903 + .297 BENEFITC
(REC group only) (19.32)

BENEFITC is centered at the mean of the full sample of
240 people, MBENEFIT = 3.321. Thus, b0 = 3.903 represents
the predicted value of intention in the REC group, given that
the person’s score on benefits equals the mean benefits of
the full sample, (i.e., at MBENEFIT = 3.321). Further, b1 =
0.297 represents the regression of intention on benefits in the
REC group only—that is, the predicted amount of change in
intention for each one unit change in benefits for individuals
who received a recommendation from a health professional.

Our second preliminary analysis examines the regression
of intention on centered benefits for only the 96 participants
in the NOREC group:

Ŷ = b0 + b1 BENEFITC = 3.157 + .234 BENEFITC
(NOREC group only) (19.33)

Again, since benefits is centered at the mean of all 240 cases,
b0 = 3.157 represents the predicted value of intention in the
NOREC group, given that the person’s score on benefits
equals the mean of the full sample, MBENEFIT = 3.321. Here,
b1 = 0.234 represents the slope in the NOREC group. We
note that as we predicted, the slope of the regression of inten-
tion on benefits is larger in the group that received the rec-
ommendation; yet these two analyses provide no test of
whether the difference in slopes is large enough to achieve
conventional levels of statistical significance, a test provided
by specifying a regression equation containing the interaction
between the recommendation variable and benefits.

Contrast Code and the Interaction Test

We now examine the interaction between recommendation
and benefits to test Hypothesis 8 directly. We create a contrast
code CONTRREC for the respecified two-group recommen-
dation predictor (REC vs. NOREC). We use the formulae we
used previously to construct contrast codes for sets of groups.
With K1 = 1 group in the first set (the REC group) and
K2 = 1 group in the second set (the NOREC group), we as-
sign the code K2/(K1 + K2) = .50000 to the REC group and
−K1/(K1 + K2) = −.50000 to the NOREC group. Note that
these codes are one unit apart, following the rule we previ-
ously specified. We form the crossproduct term between the
categorical CONTRREC and continuous BENEFITC vari-
able as BENEFITC*CONTRREC, which yields the regres-
sion equation

Ŷ = b0 + b1 BENEFITC + b2 CONTRREC

+ b3 BENEFITC*CONTRREC (19.34)

A significant interaction (b3 coefficient) would signify that
the regression of intention on benefits differs in the two
groups. The numerical example using this equation is given
in Table 19.7, Panel A, with the resulting regression equation

Ŷ = 3.5300 + .2653 BENEFITC + .7461 CONTRREC

+ .0619 BENEFITC*CONTRREC (19.35)

The b3 coefficient represents the interaction and is the dif-
ference between the slopes for the two groups, b3 = .2963 −
.2344 = .0619. The absence of a significant interaction,
t(236) = 0.52, ns, indicates that the simple regression slopes
for the regression of intention on benefits in the two groups are
essentially parallel within sampling error. This is also clear
from Figure 19.4. The b2 coefficient for CONTRREC is the
difference in mean intention in the two groups, b2 = 3.9030 −
3.1569 = .7461, conditioned on both groups’ being at the
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TABLE 19.7 Interaction Between a Continuous Variable (Benefits)
and a Categorical Variable (Recommendation From a Health
Professional)

A. Hypothesis 8: Synergistic Interaction Between Recommendation and
Benefits; Contrast-Coded Recommendation CONTRREC (REC = .5,
NOREC = −.5); BENEFITC*CONTRREC Is the Crossproduct Term
Between BENEFITC and CONTRREC

R2 .29050

Analysis of Variance

DF Sum of Squares Mean Square F p

Regression 3 57.99968 19.33323 32.209 .001

Residual 236 141.65691 .60024

Regression Equation

Variable b sb b* t p

BENEFITC .265325 .059763 .261307 4.440 .001

CONTRREC .746142 .107228 .400766 6.958 .001

BENEFITC*
CONTRREC .061943 .119527 .029324 .518 .605

INTERCEPT 3.529992 .053614 65.841 .001

B. Hypothesis 8: Synergistic Interaction Between Recommendation and
Benefits; Dummy-Coded Recommendation DUMMREC (REC = 1,
NOREC = 0); BENEFITC*DUMMREC Is the Crossproduct Term
Between BENEFITC and DUMMREC

R2 .29050

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 3 57.99968 19.33323 32.209 .001

Residual 236 141.65691 .60024

Regression Equation

Variable b sb b* t p

BENEFITC .234354 .094133 .230804 2.490 .014

DUMMREC .746142 .107228 .400766 6.958 .001

BENEFITC*
DUMMREC .061943 .119527 .046616 .518 .605

INTERCEPT 3.156921 .084257 37.468 .001

Note. The continuous variable is centered benefits. The categorical variable
is the respecified categorical variable that contrasts all individuals who
received a recommendation for a mammogram with those who did not
receive a recommendation. This variable is characterized in Panel A with a
contrast code and in Panel B with a dummy code.

arithmetic mean of benefits, MBENEFIT = 3.321. This difference
is significant, t(236) = 6.96, p < .001 and is reflected in the
difference in elevations of the two simple regression lines in
Figure 19.4. Due to our use of a contrast code for group, and,
moreover, to the choice of the particular values of the codes,
the b0 and b1 coefficients give specific information about over-
all sample of N = 240 cases of which the groups are com-
prised. The intercept b0 equals the unweighted mean of the
intercepts of the regression equations within the REC and the
NOREC groups, b0 = (3.9030 + 3.1569)/2 = 3.5299. The b1

coefficient represents the unweighted mean of the slopes in the
REC and NOREC groups so that b1 = (0.2963 + 0.2344)/2 =

0.2653.As we showed above, the b2 coefficient provides infor-
mation about the difference between intercepts (means) of
the two groups; the b3 coefficient provides information about
the differences between the slopes of the two groups.

Had the interaction been significant, we could have per-
formed simple slope analyses, testing whether the slope in
each group was different from zero. We might also ask at
what particular values of benefits, if any, the two groups dif-
fered in their intention. The test of difference in intentions
across groups at particular values of benefits is given by the
Johnson-Neyman procedure, which is explained in Aiken and
West (1991, chap. 7), Pedhazur (1997), and West, Aiken, and
Krull (1996).

Dummy Coding and the Interaction

Instead of using the contrast code CONTRREC, we could
have employed a dummy code DUMMREC to represent the
respecified two-group recommendation variable, where
DUMMREC = 1 for the REC group and 0 for the NOREC
group. (Recall that the group coded 0 in a dummy-coded
scheme is the reference group.) The crossproduct term is
BENEFITC*DUMMREC. The regression equation to be es-
timated in this instance is

Ŷ = b0 + b1 BENEFITC + b2 DUMMREC

+ b3 BENEFITC*DUMMREC (19.36)

The resulting regression equation, given in Table 19.7,

Figure 19.4 Regression of intentions on benefits within each recommen-
dation group. The upper regression line is for the REC group, which received
a recommendation from a physician or other health professional for a mam-
mogram; the lower line is for the NOREC group. Raw data points are repre-
sented by Xs for the REC group and open Os for the NOREC group.
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Panel B, is

Ŷ = 3.1569 + 0.2343 BENEFITC + 0.7461 DUMMREC

+ 0.0619 BENEFITC*DUMMREC (19.37)

In Equation 19.37, b2 and b3, which are associated with the
DUMMREC variable, have the same numerical value as in
Equation 19.35 containing the contrast-coded CONTRREC;
again, they give the difference in intercept and slope, respec-
tively, in the two groups. The b0 and b1 coefficients give
information about the reference group at centered
BENEFITC = 0. Here b0 is the intercept in the reference
group (NOREC) for people for whom BENEFITC = 0; b1

gives the regression of intention on benefits in the reference
(NOREC) group.

The choice of contrast versus dummy codes for the cate-
gorical by continuous variable interaction is a matter of inter-
pretational ease and preference. Changing from contrast code
to dummy code yields the following general change: With
contrast coding, we obtain overall information about the
average of the groups, both average intercept and average
slope; with dummy coding, we obtain information about the
intercept and slope in the reference group. Only in the two-
group case do both coding schemes give identical informa-
tion about the difference in slopes (i.e., the interaction) and
about the difference between the means of the two groups on
the outcome variable when the formulas presented for estab-
lishing the values of the contrast codes are followed. West,
Aiken, and Krull (1996) include an extensive presentation of
the interpretation of regression coefficients given various
schemes for coding the categorical variable when there are
more than two groups.

MODEL CHECKING AND DETECTING
REGRESSION PROBLEMS

Model Respecification

Models we examine in regression analysis may be incorrectly
specified in terms of either the predictors included or the
form of the relationship of predictors to the criterion. In two
instances we respecified our original regression model during
the course of analysis: (a) We collapsed two of the three cat-
egories of the recommendation variable into one because we
found no statistical evidence of difference between these cat-
egories, and (b) We moved from a linear to a curvilinear spec-
ification of the relationship of worry to intention based on the
data as well as on Janis and Feshbach’s (1953) earlier theo-
retical and empirical work. A combination of statistical tests
and graphical displays led us to these model revisions. When

model respecification is accomplished in this manner, cross-
validation—that is, testing of the respecified model in a new
sample, is highly desirable.

Shrinkage of R2

Even when the regression equation has been properly speci-
fied, the sample R2 is a positively biased estimator of the
population squared multiple correlation �2—that is, R2, on
average, is larger than �2. An adjusted value of R2 is com-
puted in the sample; R2

adjusted provides a more accurate esti-
mate of �2. It is given as

R2
adjusted = 1 − (1 − R2)

(n − 1)

(n − p − 1)
(19.38)

This value is given in standard regression analysis software,
including SPSS and SAS. The difference between R2 and
R2

adjusted is an estimate of how much R2 would drop if the sam-
ple regression equation were applied to the whole population;
the drop is referred to as shrinkage. There is a second use of
the term shrinkage. In cross-validation, we apply a regression
equation developed in one sample to the data from another
sample. We again expect R2 to drop from the first to second
sample, due to the idiosyncrasies of each sample. The shrink-
age on cross-validation is expected to be larger than the
shrinkage from sample to population; (see Schmitt, Coyle, &
Rauschenberger, 1977, for estimates of the cross-validated
multiple correlation).

Assumptions of Regression Analysis and 
Detection of Violations

The OLS regression model makes a series of assumptions,
which, if they are met, yield regression coefficients that are
optimal statistically in that the coefficients have the smallest
standard errors of all linear unbiased coefficients (i.e., are
said to be best linear unbiased). These assumptions include
that the predictors are fixed, (i.e, that cases have been sam-
pled at fixed values on the predictors), that all predictors are
measured without error, that the relationships of predictors to
the criterion are linear (or can be cast into linear form, as we
saw in polynomial regression). The residuals (Yi − Ŷi ) are
the focus of an additional series of assumptions: (a) that they
are independent of one another, (b) that they exhibit homo-
scedasticity (i.e., their variance is constant for all values of
X), and (c) for purposes of statistical inference, that they are
normally distributed. Violation of these assumptions may
lead to bias in regression coefficients. Moreover, violation
may lead to bias in the standard errors of the regression coef-
ficients, which, in turn, yield biased significance tests and
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confidence intervals. Treatments of these assumptions can be
found in regression texts such as Cohen et al. (2003, chap. 4)
or Neter et al. (1996). A number of graphical displays and
statistical tests are used in the detection of violations of
assumptions.

Multicollinearity

Multicollinearity, or high redundancy among predictors,
causes great instability of regression coefficients. We have al-
ready encountered the variance inflation factor (VIF), a mea-
sure of the extent to which each predictor is redundant with
(can be predicted from) the other predictors in the set. Pre-
dictor sets should be screened for variables with very high
VIF values. These variables may be eliminated or combined
with other variables with which they are very highly corre-
lated. An extensive discussion of multicollinearity and its po-
tential remedies is given in Cohen et al. (2003, chap. 10).

Errant Data Points and Regression Diagnostics

Within a data set there may exist errant or extreme data points
that have an unduly strong effect on the outcome of a regres-
sion analysis. By outcome we mean the actual values of the
regression coefficients, including the intercept, and the size
of R2. It is possible that a single data point is responsible for
the presence of an effect (significant regression coefficient).
In contrast, a single data point may mask an effect that would
be statistically significant if the point were removed. A set
of statistical measures, termed regression diagnostics, are
employed to detect such data points and to measure their po-
tential or actual impact on the regression analysis. The diag-
nostic measures are case statistics—that is, they yield a set of
scores assigned to each individual case that characterize a va-
riety of potential or actual impacts of that case on the regres-
sion analysis. Regression diagnostic measures are of three
types. The first type, measures of leverage, assesses the
potential of a point to influence the outcome of a regression
analysis; measures of leverage are based on the predictors
only. The second type, measures of distance or discrepancy,
assesses how far the observed criterion score Y for each case
is from the predicted score Ŷ . Points with high discrepancy
are data points whose Y scores are unexpected, given their X
scores or position in the predictor space. The third type, mea-
sures of influence, assesses the actual impact of each case on
the outcome of the regression analysis. Following a regres-
sion analysis, it is strongly recommended that regression di-
agnostics be examined to determine whether there are cases
that are having an undue influence on the outcome of the

analysis, perhaps leading to conclusions that would not stand
a test of replication in the absence of the errant case.

There are a number of measures of each type of regression
diagnostic. We present a recommended choice of measure of
each type, and illustrate its use with our numerical example.
More complete treatments are given in Fox (1991) and in
Cohen et al. (2003, chap. 10).

Leverage

Measures of leverage are based on the distance between an
individual point and the centroid of the sample. The centroid
of the sample is the point representing the mean on each pre-
dictor variable. In a simple regression equation containing
only the risk and benefits predictors, the centroid is the point
at the means of these two predictors: MRISK = 3.989;
MBENEFIT = 3.321, as given in Table 19.1, Panel A. The far-
ther an individual observation is from the centroid of the pre-
dictors, the greater the potential of that case to change the
outcome of the regression analysis. We consider a measure of
leverage, referred to as hii, which is commonly employed.

Distance or Discrepancy

Measures of distance (discrepancy) are all based on the resid-
ual for a case (Yi − Ŷi ). We focus on one of a number of these
measures, the externally studentized residual (or studentized
deleted residual). This measure has two characteristics. First,
it is a standardized residual that follows a t distribution
(residual/standard deviation of residual). Second, it is based
on a regression equation derived from an analysis in which
the case in question has been deleted. The reason for the
deletion of the case during computation of the regression
model is that if the case is in the sample and if the case is un-
duly affecting the regression analysis, then the regression line
(or regression plane) will be pulled toward the point. In such
cases, the residual will be small because the point is so influ-
ential, even though the point may be grossly unrepresentative
of the remainder of the sample.

Influence

Measures of influence assess the extent to which a single case
determines the outcome of the regression analysis. The mea-
sure DFFITS is a standardized measure (in z score form) of
the difference in the predicted score for a case if the case is
included in the analysis versus if the case is excluded from
the analysis. Finally, a series of measures, DFBETAS, one for
each regression coefficient, are standardized measures of the
change in each regression coefficient if the case is included
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TABLE 19.8 Regression Diagnostics and the Impact of Individual
Cases on Regression Analysis

A. Extreme Cases 239 and 240

1. Overall diagnostic measures of leverage (hii), discrepancy (Studentized
Deleted Residual), and influence (DFFITS)

Studentized
CASE hii Deleted Residual DFFITS

239 .11163 −4.41127 −1.59640
240 .54688 −2.32443 −2.57518

2. Scores of cases on predictors and criterion 

CASE RISK BENEFIT INTENT

239 7.47 3.96 1.45
240 9.99 4.47 4.90

3. Diagnostic measures of impact on individual regression coefficients
(DFBETAS)

Intercept Risk Benefit Interaction
CASE DFBETAS0 DFBETAS1 DFBETAS2 DFBETAS3

239 −.08686 −1.31349 .28886 −.60307
240 .37806 −1.50425 .28541 −1.78621

B. Estimation of regression model with case 240 removed

R2 .19807

Analysis of Regression

DF Sum of Squares Mean Square F p

Regression 3 39.21527 13.07176 19.347 .001

Residual 235 158.77608 .67564

Regression Equation

Variable b sb b* t p

RISKC .286797 .092160 .202081 3.112 .002

BENEFITC .316269 .064244 .311714 4.923 .001

RISKC*

BENFITC .307495 .093718 .197115 3.281 .001

INTERCEPT 3.547398 .056946 62.294 .000

versus deleted from the analysis (i.e, they indicate by how
many standard deviations each point changes each of the re-
gression coefficients).

We turn to our numerical example and examine the mea-
sures of leverage, discrepancy, and influence for each case.
Table 19.8 summarizes the findings. To limit the demonstra-
tion, we adopt the strategy of identifying the case which is
most extreme on each of the three diagnostic measures. (In
usual practice, we would adopt the strategy of identifying a
few extreme cases on each diagnostic measure and examin-
ing them in detail or following some rules of thumb for se-
lecting potential problematic cases.) We also simplify matters
by focusing on the limited regression equation of intention on
centered risk, benefits, and their interaction, summarized in
Table 19.6, and given as

Ŷ = 3.569 + .170 RISKC + .334 BENEFITC 

+ .175 RISKC*BENEFITC

The diagnostic measures identify two extreme cases, Cases
239 and 240 that together exhibit the most extreme scores on
the three diagnostic measures. Information about these cases
is given in Table 19.8, Panel A. As shown in Panel A(1), Case
240 is most extreme on the measures of leverage (hii) and
overall influence (DFFITS); Case 239 is most extreme on dis-
crepancy (studentized deleted residual). Panel A(2) provides
raw scores on risk, benefit, and intention. Case 239 has the
second-highest risk score in the sample (7.47 on a 10-point
scale), a benefits score at the 74th percentile of the sample,
and a very low intention score (1.45 on a 6-point scale) at the
2nd percentile of intention in the sample. Case 240 has the
highest risk score in the sample (9.99 on a 10-point scale), a
perceived benefits score at the 90th percentile, and an inten-
tion score (4.90 on a 6-point scale) at the 93rd percentile.
Given the remarkably high risk score, we might have ex-
pected a higher intention score (the highest in the sample is
5.89 on the 6-point scale). Panel A(3) gives the DFBETAS
for the intercept and the three predictors for Cases 239 and
240. Each case has the effect of reducing the positive regres-
sion coefficient for risk—that is, making the coefficient more
than one standard deviation closer to zero than it would be if
the case were deleted. This is shown by the large negative
DFBETAS1 for risk (−1.313, −1.504, for Cases 239 and 240,
respectively). The reason is that each case has a very high
risk score relative to its lower intention score. Case 240 also
has a similar effect on the positive interaction between risk
and benefit, with a DFBETAS3 for the interaction of −1.786.

To illustrate the impact of Case 240 on the regression
equation, we repeat the regression analysis with the case
eliminated. The result is given in Table 19.8, Panel B, and

should be compared with that in Table 19.6, Panel C, which
gives the same analysis with Case 240 included. Both the
regression coefficient for RISKC and for the interaction
RISKC*BENEFITC are larger when Case 240 is removed.
We find this result comforting in that our interpretations of
positive impact of risk on intention and the synergistic inter-
action between risk and benefits from Table 19.6, Panel D
are only enhanced by the deletion of this case. We warn the
reader, however, that there can be instances in which the
removal of an influential case can completely eradicate an
effect.

What should be done about extreme errant data points?
Consideration must be made of the source of the extreme
cases. The very low intentions score for Case 239 may sim-
ply represent a clear recording or data entry error that can be
rectified. In other cases, the case may represent a rare sub-
population that is different from the general population of
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interest. For example, Case 239 may belong to a religious
group that does not believe in any form of medical testing or
intervention. If so, Case 239 and any other cases representing
this religious group should be removed from the analysis.
The analyst should then present a full explanation of the ra-
tionale for the removal and clearly indicate that the results of
the analysis can be generalized only to a population of eligi-
ble women for whom religious beliefs do not prohibit med-
ical tests. In still other cases, the analyst will have no clear
understanding of the source of the outliers. In such instances,
the analyst might repeat the analysis without the errant
case(s) and report the results of both analyses. Alternatively,
the analyst might transform the data or use robust estimation
methods that reduce the influence of the outliers on the re-
sults relative to OLS regression (Cohen et al., 2003; Wilcox,
1997). McClelland (2000) notes that some substantive psy-
chologists are concerned about the potential that unscrupu-
lous scientists could abuse these methods; however, many
statisticians tend to be more concerned about the possibility
that misleading conclusions could be reached based on a
small number of aberrant cases in the data set. Given these
conflicting concerns, we encourage researchers to make their
raw data available for secondary analysis and to follow
Kruskal’s (1960) classic advice: Always provide full infor-
mation about outliers in published research reports, “even
when one feels that their causes are known or rejects them for
whatever good rule or reason” (p. 257).

Missing Data

Throughout our presentation we have assumed that data are
complete on all variables. Certain forms of missing data may
produce sample regression coefficients that are biased esti-
mates of corresponding population values, as well as in-
creased standard errors. Graham, Cumsille, and Elek-Fisk
(this volume) and Allison (2001) provide introductions to the
treatment of missing data. Little and Rubin (1987) and Shafer
(1997) provide advanced treatments. 

SUMMARY

Regression analysis is a broad data analytic system for relat-
ing a set of independent variables (or predictors) to a single
dependent variable (or criterion) or to a set of dependent vari-
ables. We have presented the structure of regression analysis
in general and focused in detail on ordinary least squares re-
gression analysis with a single continuous dependent variable.
We have examined the squared multiple correlation as a mea-
sure of overall fit of a regression model. We have explained

the central concept of examining the effect of individual pre-
dictors with the impact of other predictors held constant or
partialed out. Using a simulated numerical example designed
to follow closely theorizing and empirical findings in health
psychology, we have illustrated the use of multiple regression
to examine relationships of both continuous and categorical
predictors to a criterion, the impact of interpredictor correla-
tion on regression results, the detection of curvilinear rela-
tionships through graphical analysis, the respecification of the
regression model to accommodate empirically derived forms
of relationship, and the detection and interpretation of interac-
tions between continuous variables and between a continuous
and a categorical variable. We have also presented methods
for detecting errant data points that may have undue influence
on regression analysis results and thus undermine conclu-
sions. Throughout the numerical example, we have attempted
to serve the aim of illustrating the interplay between theory
and empirical findings in the specification, testing, and revi-
sion of regression models.
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Categorical response variables are common in social and
behavioral research. Researchers are frequently interested in
modeling such phenomena as the initiation of sexual activity
by a certain age, whether individuals have been the victims of
various types of crimes, whether couples have experienced
violence in their relationship, and so forth. In these instances
the response variable may be binary (initiated sexual activity
by age 16, did not initiate such activity), unordered categori-
cal (not a crime victim, victim of a property crime, victim of
a violent crime, victim of a white-collar crime), or ordered
categorical (nonviolent relationship, relationship character-
ized by minor violence, relationship characterized by severe
violence). For various reasons, to be detailed later, linear re-
gression is not the optimal statistical procedure for modeling
categorical data. Instead, logistic or probit regression is pre-
ferred. In this chapter I provide a thorough introduction to lo-
gistic regression. (For probit regression, the reader is referred
to the works by Aldrich and Nelson, 1984, and Long, 1997.)

I begin with a discussion of binary response variables.
Here, I outline the pitfalls of using linear regression and
develop the logistic regression model. Subsequent sections
focus on model estimation, the interpretation of model coeffi-
cients, various inferential tests used in this type of analysis,
and analogues of R2 for assessing the discriminatory power of
a model. Discussion of binary responses then proceeds to
more advanced issues, such as modeling and interpreting in-
teraction effects, comparing models across groups, and com-
paring coefficients of focus variables across nested models. I
then treat unordered categorical variables, detailing the use of
the multinomial logistic regression model and the test of col-
lapsibility of response categories. Finally, I address the or-
dered categorical model and how to proceed when the model
is not appropriate for the data. The chapter concludes with sug-
gested readings for those interested in pursuing the topic with
greater rigor. It is assumed that readers are reasonably familiar
with multiple linear regression. Knowledge of matrix algebra
is not a requirement; however, matrix notation is introduced
in places to facilitate the compact presentation of material.

MODELS FOR A BINARY RESPONSE

Why a Linear Model Is Inappropriate

Suppose that the researcher is interested in modeling a binary
response variable, Y, coded 1 for those in the category of in-
terest, and 0 otherwise, using a set of explanatory variables,

Data for this chapter are from the National Survey of Families and
Households, which was funded by a grant (HD21009) from the Cen-
ter for Population Research of the National Institute of Child Health
and Human Development and by a grant from the National Institute
on Aging. The author wishes to thank William H. Greene for his
contribution to the section on R2 analogues and Wendy D. Manning
for her contribution to the section on comparing coefficients across
models.
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510 Logistic Regression

X1, X2, . . . , X K . One possibility is to use multiple linear re-
gression. The model for each sample observation is (omitting
the i subscript indicating each individual case):

Y = �0 + �1 X1 + �2 X2 + · · · + �K X K + �, (20.1)

where the �s, or conditional errors, are usually assumed to
be independent and identically distributed random variables
with a mean of zero, a variance of �2 that is constant across
values of the Xs, and, in small samples, a normal distribution.
The model can also be expressed in terms of the conditional
mean of the response:

E(Y ) = �0 + �1 X1 + �2 X2 + · · · + �K X K . (20.2)

In that Y is dummy coded, its mean is �, the proportion of in-
dividuals in the category coded 1. Alternatively, it is the prob-
ability that the ith case is in the category of interest. Because
this is being modeled as a linear function of the explanatory
variables (more accurately, a linear function of the model pa-
rameters), Equation 20.2 is referred to as the linear probabil-
ity model (LPM; Long, 1997). What is wrong with this
approach? There are two major problems: heteroscedastic er-
rors and incorrect functional form. As discriminant analysis
is equivalent to multiple linear regression with a dummy
response when the dependent variable is binary (Kerlinger &
Pedhazur, 1973; Stevens, 1986), it suffers from the same
drawbacks.

First, we rewrite Equation 20.2, substituting � for E(Y ):

� = �0 + �1 X1 + �2 X2 + · · · + �KX K . (20.3)

Here it is clear that what is being modeled is the probability
that Y = 1. Now Equation 20.1 becomes Y = � + �. Con-
sider the error term. Because Y is binary, the error takes on
only two values: 1 − � when Y is 1, and −� when Y is 0. The
ordinary least squares (OLS) estimators of the �s are still
unbiased because the mean of the errors is still zero. To
see this, note that the mean of the errors is E(�) =∑

� �p(�) = (1 − �)� + (−�) (1 − �) = 0. But the vari-
ance of the errors is no longer constant over levels of X. This
is evident in the expression for the error variance:
V (�) = ∑

� (� − E(�))2 p(�) = ∑
� �2 p(�) = (1 − �)2 � +

(−�)2 (1 − �) = �(1 − �)[(1 − �) + �] = �(1 − �). Be-
cause Equation 20.3 shows � to be a function of the Xs, the
error variance is, too. Thus, the LPM is inherently het-
eroscedastic. This condition has two consequences. First, the
OLS estimators are no longer efficient—there exist other
estimators with smaller sampling variance. More important,
OLS estimates of the standard errors of the coefficients are

biased (see Greene, 1997, for a discussion of standard-error
bias in the presence of heteroscedasticity). That is, the
standard-error estimates printed out by regression software
are incorrect. These problems are not insurmountable. An
alternative to OLS in this situation is to use weighted least
squares to estimate the regression coefficients, where the
weight is the inverse of the estimated error variance (see
Aldrich & Nelson, 1984, for details on using this alternative).

A more serious problem, however, is the implicit assump-
tion in Equation 20.3 that the probability is a linear function
of the explanatory variables. The difficulty is that the left-
hand side of Equation 20.3, being a probability, is bounded
between the values of zero and one. The right-hand side has
no such restriction. It is free to take on any real value. The
practical consequences of this are coefficient estimates that
often give nonsensical predicted probabilities (values less
than zero or greater than one) or indicate nonsensical impacts
of predictors. An example of the latter is found in Long
(1997). He presents an analysis using the LPM in which the
response is whether a married woman is in the labor force.
Data are from the 1976 Panel Study of Income Dynamics.
The OLS coefficient for the number of children under 5 in the
household is −.295. This means that each additional child in
the household reduces the probability of the wife’s being em-
ployed by .295. However, the reduction in the probability of
employment for having four additional children in the house-
hold is 1.18, which, of course, is impossible. These caveats
aside, conclusions reached regarding the sign and signifi-
cance of predictor effects using the LPM will typically be
consistent with those arrived at using the more sophisticated
analytic strategies discussed later.

The Logistic Regression Model

Both logistic and probit regression employ functions of the
Xs that are restricted to fall between zero and one. With one
X in the equation, the logistic regression model for the prob-
ability that Y = 1 is

� = e�0+�1 X

1 + e�0+�1 X
. (20.4)

Figure 20.1 shows the difference between the linear and lo-
gistic functions for P(Y = 1). The logistic function (as well
as the probit function) is called a sigmoid, meaning S-shaped,
curve. It should be clear that the right-hand side of Equa-
tion 20.4 can never fall outside the 0,1 range. The function
approaches 0 as �0 + �1 X becomes increasingly negative,
and approaches 1 as �0 + �1 X becomes increasingly posi-
tive, as shown in the figure. (For illustration purposes, it is
assumed that �1 is positive.) In the linear specification for
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Figure 20.1 P(Y = 1) as a linear, vs. a logistic, function of an explanatory
variable.

P(Y = 1), the impact of a unit increase in X on the probabil-
ity is a constant, �1, at every value of X . In the logit specifi-
cation, X has maximum impact on the probability in the
middle range of X values, whereas at the extremes of X , in-
creases in X have little effect. This is substantively rea-
sonable. For example, suppose that X is annual income in
thousands of dollars and Y is home ownership. We would ex-
pect that a unit (i.e., thousand-dollar) increase in income
would effect a noticeable increase in the probability of home
ownership for people with annual incomes in the range of,
say, $20,000 to $100,000. However, for those with incomes
below $20,000 annually, home ownership is relatively un-
likely, and another $1,000 probably will not make much dif-
ference. Similarly, those making more than $100,000 per
year almost certainly own a home, and $1,000 is not likely to
matter much. In sum, the logistic curve is an appealing func-
tion for modeling a probability, from a mathematical as well
as a conceptual standpoint.

Motivation to use the logit or probit formulation also fol-
lows if we consider Y to be a binary proxy for a latent con-
tinuous variable that follows the multiple linear regression
model. Suppose, for example, that the propensity for violence
toward an intimate is a continuous, unobserved variable, de-
noted Y ∗, ranging from minus infinity to plus infinity. When
Y ∗ is greater than some threshold, say, 0, we observe violence
toward an intimate partner. Otherwise, no violence is ob-
served. The model for Y ∗ is: Y ∗ = ∑

�k Xk + �, where∑
�k Xk = �0 + �1 X1 + �2 X2 + · · · + �K X K , and the dis-

tribution of � is assumed to be symmetric about zero (not
necessarily normal, however). Now the probability that vio-
lence is observed to occur is P(Y = 1) = P(Y ∗ > 0) =
P(

∑
�k Xk + � > 0) = P(� > −∑

�k Xk) = P(� <
∑

�k

Xk). This last result follows from the symmetry of the distri-
bution for � (i.e., the probability that � > −c is equal to the

probability that � < c). The probability of the event of inter-
est is therefore the probability that the error term is less than
the value given by 

∑
�k Xk . Whether logistic or probit re-

gression is used depends on the distribution assumed for the
errors. If the standard normal distribution is assumed, probit
analysis would be used. If instead we assume a logistic distri-
bution for � (also a distribution symmetric about 0, but with a
variance of �2/3 instead of 1, where in this case � is the con-
stant 3.14159), the analysis becomes a logistic regression. In
general, the logistic regression model for the probability of
an event, using K regressor variables, is

� = e
∑

�k Xk

1 + e
∑

�k Xk

. (20.5)

Modeling the Logit

Equation 20.5 is a model for probabilities. The model can
also be expressed in terms of odds. The odds of event occur-
rence is �/(1 − �). This is the ratio of the probability of
event occurrence to the probability of event nonoccurrence.
For example, if the probability that an event occurs is .2, the
odds of event occurrence is .2/.8 = .25, or 1 in 4. That is, the
event is about one fourth as likely to occur as not to occur. In
terms of model parameters, the equation for the odds is

�

1 − �
= e

∑
�k Xk = e�0 e�1 X1 e�2 X2 · · · e�K X K . (20.6)

In other words, the odds is a multiplicative function of model
parameters, where each term in the product is exp(�k Xk). If
we take natural logarithms (denoted “log” throughout the
chapter) of both sides of Equation 20.6, we have

log

(
�

1 − �

)
= �0 + �1 X1 + �2 X2 + · · · + �K X K . (20.7)

Here the resemblance to the linear regression model should
be obvious. The right-hand side is the same as in Equa-
tion 20.3. The left-hand side is the log odds of event occur-
rence, also called the logit of event occurrence. The logit can
take on any value from minus to plus infinity, and is therefore
unrestricted in value, just like the right-hand side. The betas
are interpreted just as in linear regression: A unit increase in
Xk changes the logit by �k units, controlling for other covari-
ates in the model. However, in that changes in log odds
are difficult to translate into intuitive terms, we will find it
easier to interpret variable effects in terms of Equation 20.6
(discussed later).
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Estimation

In linear regression, parameter estimates are obtained by
minimizing the sum of squared errors with respect to the pa-
rameters. In logistic regression, estimates are arrived at by
maximizing the likelihood function for the observed data
with respect to the parameters. The likelihood function plays
an important role in logistic regression and is therefore worth
discussing in some detail. Recall that the response variable Y
is coded 1 if the ith case has experienced the event of interest
(or is in the category of interest) and 0 otherwise, and the
probability that Y equals 1 is �. The probability function for
the random variable Y is then p(y) = �y(1 − �)1−y . This
function gives the probability that Y takes on either value
in its range: p(0) = �0(1 − �)1−0 = 1 − �, and p(1) =
�1(1 − �)1−1 = �. A particular collection of Y scores for N
cases can be denoted by y, indicating a vector, or collection,
of Y scores. The probability of observing a specific set
of Y scores, assuming independence of observations, is:
p(y) = ∏

�y(1 − �)1−y , where the product is over all
N cases in the sample. To write this function in terms of the
model parameters, we substitute the right-hand side of Equa-
tion 20.5 for �:

L(� | y, x) =
∏(

e
∑

�k Xk

1 + e
∑

�k Xk

)y(
1

1 + e
∑

�k Xk

)1−y

.

(20.8)

Equation 20.8 is the likelihood function. For a given sample
of Xs and Y s, the value of this expression depends only on
the model parameters. Maximum likelihood estimation
(MLE) routines find the values of the parameters that result
in the largest possible value for this function. These are then
the parameter values that make the sample data most likely to
have been observed.

Asymptotic Properties

Maximum likelihood estimators have several desirable
asymptotic, or large-sample, properties (technically, proper-
ties that hold as the sample size tends toward infinity) that
make them optimal in statistical applications (Bollen, 1989).
First, they are consistent, which means that they converge to
the true parameter value as the sample size gets ever larger.
(Technically, consistency means that the probability that the
MLE is further than some arbitrarily small distance from the
parameter value tends to zero as the sample size approaches
infinity.) Second, they are unbiased—again, in large samples.

Third, they are asymptotically efficient. This means that in
large samples they have smaller sampling variance than any
other consistent estimator. Finally, they are asymptotically
normally distributed, enabling tests of significance using the
standard normal distribution. However, these properties hold
only in larger samples. Long (1997), for example, recom-
mends having at least 10 observations per parameter esti-
mated, and never using samples smaller than 100 cases.

An Example

In the following pages I present a series of logistic regression
models for the occurrence of intimate violence among 4,401
married and unmarried cohabiting couples for the period
1987–1994. Data are from the National Survey of Families
and Households (NSFH), a two-wave panel study of a na-
tional probability sample of U.S. households conducted by
the University of Wisconsin (details of the initial survey can
be found in Sweet, Bumpass, & Call, 1988). The sample for
analyses in this chapter consists of couples who were married
or living together unmarried in the first wave of the survey
(1987–1988) who were still together in the second wave
(1992–1994). My interest is in examining what characteris-
tics of couples at time 1 are predictive of violence during the
5- to 7-year period in which the couples were followed. De-
scriptive statistics for all variables used in the following
analyses are shown in Table 20.1. The binary dependent vari-
able in the first set of analyses is whether violence was re-
ported to have occurred in at least one wave of the survey. (In
multinomial models I distinguish between two different types
of violence; for now, both types are combined into one cate-
gory, called “Violence” in the table.) Violence is coded as
having occurred if at least one of the partners reported perpe-
trating or being the victim of physical aggression in the rela-
tionship. (Details of survey items on which the coding of
violence is based can be found in DeMaris, 2000a, 2001.) Of
the 4,401 couples, 586, or 13.3%, report violence in their
relationship in at least one survey wave.

Independent variables were measured in the first wave of
the survey and pertain to sociodemographic characteristics of
couples (age at inception of the union, minority status, com-
pleted education), relationship stressors (alcohol or drug
problems in the household, the relationship of household in-
come to financial need), interdependence factors (duration of
the relationship, cohabiting status, number of children), and
aspects of the couples’ style of conflict resolution (frequency
of open disagreements, communication style, nonassertive-
ness). Generally, I expect couples to be more prone to vio-
lence if they were younger when they wed or moved in
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TABLE 20.1 Descriptive Statistics for Characteristics of 4,401 Married and Cohabiting Couples in the National
Survey of Families and Households

Variable Description (range) Mean SD

Intense male violenceD 1 if his violence is greater than her violence,
or she is the only injured partner .050 .218

Common couple violenceD 1 if violence is other than “intense male” kind .083 .276
ViolenceD 1 if either type of violence occurred .133 .340
Female’s age at union Female’s age at inception of union 24.705 7.429
Cohabiting coupleD 1 if couple is cohabiting unmarried .021 .143
Relationship duration Length of relationship, in years 16.120 13.815
Substance abuseD 1 if either partner abuses alcohol/drugs .057 .231
Minority coupleD 1 if either partner is a minority .295 .456
Number of children Number of children <18 in household 1.178 1.278
Male’s education Male’s education in years 13.216 3.115
Female’s education Female’s education in years 12.979 2.716
Income-to-needs ratio Household income divided by poverty line

for the household 4.870 4.759
Open disagreement Scale of frequency of open disagreements

in past year 10.990 3.965
Communication style Scale of positive communication style 7.354 1.384
Male nonassertiveness Frequency with which male keeps opinions

to himself 2.593 .979
Female nonassertiveness Frequency with which female keeps opinions

to herself 2.453 1.032

DDummy variable.

together, if either partner is a minority (Leonard & Senchak,
1996), or if partners are characterized by lower education
(Leonard & Senchak, 1996). Similarly, I expect violence to
be more likely in relationships experiencing more financial
stress (Dutton, 1988), as indexed by a low income-to-needs
ratio, and in those in which one or both partners are abusing
drugs or alcohol (Heyman, O’Leary, & Jouriles, 1995). On
the other hand, I expect violence to be less likely when
couples have more resources invested in their relationship
(Rusbult & Buunk, 1993), that is, when they have been to-
gether longer, are married instead of cohabiting (Stets, 1991),
and have more children in the household (MacMillan &
Gartner, 1999). Finally, several scholars have found couples’
styles of resolving conflict to be a key predictor of whether
arguments erupt in violence, as well as whether the couple re-
mains together over the long term (Gottman, Coan, Carrere,
& Swanson, 1998; Margolin, John, & Gleberman, 1988).
Hence, I expect less violence to the extent that couples have
fewer open disagreements, argue in a reasoned fashion when
they do have disagreements (i.e., have a “positive” communi-
cation style), and bring their opinions out into the open when
a difference of opinion occurs (i.e., refrain from being
“nonassertive”).

Table 20.2 presents the results of three logistic regression
models of intimate violence for these couples. (All analyses
for this chapter were performed using SAS, version 6.12 for
the PC, with procedure LOGISTIC used for the Table 20.2

results.) The response variable is the log odds of Violence (as
in Equation 20.7); the coefficients in the table are estimates of
the betas in the model. Except for the number of children, all
continuous variables have been centered, or deviated from
their means. That is, for each continuous variable X , I substi-
tute the variable X − X . Centered variables therefore have
means of zero. Model 1 includes only the focus variables in
the study—the sociodemographic, relationship stressor, and
interdependence factors. Because of centering, the intercept
is interpretable as the estimated log odds of violence for mar-
ried, nonminority couples with no children under 18 at home,
who have no substance abuse problems, and who are average
in age at entry into the union, length of relationship, educa-
tion, and income-to-needs ratio. Its value is −2.141, imply-
ing that the odds of violence for this group is exp(−2.141),
or .118. The probability is recovered from the odds by the
formula probability = odds/(1 + odds). Thus, the probabil-
ity of violence for this group is .118/(1 + .118) = .106; in
other words, this group has about a 10% chance of exhibiting
relationship violence.

Interpreting the Betas

At the simplest level, the signs of the coefficients reveal at a
glance whether increases in the predictor values raise or
lower the probability of event occurrence. Because of the
monotonic relationship between the log odds, the odds, and
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TABLE 20.2 Logistic Regression Results for Three Models of Intimate Violence

Standardized
Coefficients

Explanatory Variable Model 1 Model 2 Model 3 for Model 3

Intercept −2.141*** −2.222*** −2.210***
Female’s age at uniona −.021** −.006 −.006 −.024
Cohabiting couple .877*** .982*** 1.000*** .079
Relationship durationa −.045*** −.034*** −.035*** −.268
Substance abuse 1.095*** .766*** .766*** .098
Minority couple .234* .221* .161 .041
Number of children −.038 −.113** −.128** −.090
Male’s educationa −.033 −.031 −.029 −.049
Female’s educationa .005 .014 .019 .029
Income-to-needs ratioa −.005 −.007 .002 .004
Open disagreementa .080*** .079*** .173
Communication stylea −.410*** −.412*** −.315
Male nonassertivenessa −.041 −.035 −.019
Female nonassertivenessa −.113∗ −.115* −.065
Minority couple ×

income-to-needs ratio −.091* −.091
Model Chi-Squared 208.560*** 472.915*** 480.561***
Model d f 9 13 14
R2 analogues:

�̂ .052 .126 .128
R2

M Z .123 .240 .243

Note. N = 4,401.
aCentered predictor.
*p < .05. **p < .01. ***p < .001.

the probability, any factor that increases or decreases the log
odds also increases or decreases the odds or the probability.
So, for example, couples who were older when entering into
the union (female’s age at union is a proxy for the age of the
couple) or who have been together longer have lower proba-
bilities (odds) of violence, whereas minority couples or those
with substance abuse problems have higher probabilities
(odds) of violence.

Odds Ratios

Beta values indicate the change in the log odds for each unit
increase in a predictor, net of other predictors in the model.
However, the log odds has no intuitive meaning for most
analysts. Effects are more easily understood if couched in
terms of the odds of violence. Equation 20.6 shows that if we
exponentiate the coefficients, they indicate the multiplicative
impact (Agresti, 1989) on the odds for each unit increase in
the predictors. To make this clearer, consider an equation with
just two predictors, X and Z . The ratio of the odds of the event
for those who are a unit apart on X , controlling for Z , is

� x+1 = e�0 e�1(x+1)e�2 Z

e�0 e�1x e�2 Z
= e�1(x+1)

e�1x
= e�1 , (20.9)

where � x+1 represents the odds ratio for those who are a unit
apart on X , controlling for all other covariates in the model.
Equation 20.9 shows that the odds of the event for those with
an X value of x + 1 is higher by a factor of e�1 than for those
with an X value of x . In logistic regression, the odds ratio is
the multiplicative analogue of the unstandardized coefficient
in linear regression. Like the latter, it indicates a constant
change in the response for a unit increase in a given predictor,
except in this case it is the multiplicative, rather than addi-
tive, change in the odds.

Because the odds ratio is such a staple of interpretation in
logistic regression, it is worth exploring further. Consider the
zero-order impact of substance abuse on violence: Of the
4,151 couples with no substance abuse, 509 reported vio-
lence. For this group, then, the probability of violence is
509/4151 = .123, and the odds of violence is therefore
.123/(1 − .123) = .140. Among the 250 couples with sub-
stance abuse problems, 77 reported violence. Their probabil-
ity of violence is therefore 77/250 = .308, implying an odds
of violence of .308/(1 − .308) = .445. To quantify the
“effect” of substance abuse on violence, we take the ratio of
the odds, or .445/.140 = 3.179. That is, substance abuse
raises the odds of violence by a factor of 3.179. Or, the odds
of violence is 3.179 times higher for those with substance
abuse problems. Notice that it is incorrect to say that those
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with substance abuse problems are “3.179 times as likely” to
be violent, implying that their probability of violence is 3.179
times higher. In fact, their probability of violence is only
.308/.123 = 2.504 times higher. This ratio of probabilities,
called the relative risk, is only equivalent to the odds ratio if
the probabilities are both very small (Hosmer & Lemeshow,
1989). In sum, the odds ratio is the preferred metric for
quantifying effects of predictors in logistic regression. In
general, a unit increase in Xk raises the odds of the response
by e�k .

Additionally, it is the case that � x+c = e�k c. That is, a
c-unit increase in X elevates (reduces) the odds by a factor of
exp(�kc). Hence, in Model 1, each 1-year increase in age the
female was upon entering the union lowers the odds of vio-
lence by a factor of exp(−.021) or .979, whereas being
5 years older at entry lowers the odds of violence by a factor
of exp(−.021 × 5) = .900. Effects can be expressed also in
terms of percent changes in the odds: 100(e�1 − 1) indicates
the percent change in the odds for a unit increase in X in
Equation 20.9. So, again in Model 1, each 1-year increase in
time that the couple has been together changes the odds of
violence by 100(e−.045 − 1) = −4.4, or effects a 4.4% re-
duction in the odds of violence. Exponentiating the coeffi-
cient for a dummy variable gives the odds ratio for those in
the interest category, compared to the reference group. So the
odds of violence for minority couples is exp(.234) = 1.264
times higher (or 26.4% higher) than for nonminority couples.
Also, the odds of violence for couples with a substance
abuse problem (adjusted for other model covariates) is
exp(1.095) = 2.989 times higher (or 198.9% higher) than for
those without such problems.

Impacts on Probabilities

The odds ratio neatly encapsulates the impact of a predictor
on the odds of event occurrence, an impact that is invariant to
the values of other covariates in the model. There is no com-
parable measure for effects on the probability of event occur-
rence. The reason for this is that the logistic regression
model, unlike the linear one, is nonlinear in the parameters.
Therefore the partial derivative of � with respect to, say,
Xk—representing the effect of Xk net of other covariates—is
not a constant, as it is in the linear probability model (Equa-
tion 20.3). In fact, we saw earlier that the assumption of a
constant effect on the probability can result in nonsensical
estimates of predictor effects. In Equation 20.5 the partial
derivative of � with respect to Xk is �k[�(x) (1 − �(x))],
where �(x) indicates the probability of an event at a particu-
lar setting of the Xs in the model. Because �(x) depends on
model parameters, this expression shows that the impact of

Xk on � depends on the values of all Xs in the model, in-
cluding Xk . In other words, the model is inherently interac-
tive in the probability of event occurrence.

This phenomenon is easy to see using Model 1 in
Table 20.2. Recall that the estimated probability of violence
for married, nonminority couples with no children under 18
at home, who have no substance abuse problems, and who
are average in age at entry into the union, length of relation-
ship, education, and income-to-needs ratio, is .106. If a cou-
ple with these characteristics were together for 1 year longer,
their odds of violence would be .113 (=e−.045 × .118),
implying that their probability of violence would be
.113/(1 + .113) = .102. The change in probability for a
1-year increase in relationship duration is therefore
.106 − .102 = .004. Now consider a minority couple with
the same initial characteristics. Their odds of violence would
be .149 (= e.234 × .118), implying a probability of violence
of .130. If they were together a year longer, their odds of vio-
lence would drop to .142, implying a new probability of .124.
For these couples, a 1-year increase in relationship duration
therefore results in a change of .006 in the probability of vio-
lence. These results illustrate that the change in probability
corresponding to a unit increase in a given predictor (e.g., re-
lationship duration) depends on the values of other variables
in the model—even though there are no interaction terms in
the model.

Interpretational issues are further complicated by another
problem. Even at a particular setting of model covariates,
there is no simple expression for the change in � given a unit
increase in a particular predictor. Some have suggested that
the partial derivative, �k[�(x)(1 − �(x))], has that interpre-
tation (see, e.g., Cleary & Angel, 1984). Although the partial
derivative may closely approximate this change, it does not
represent the change exactly. In general, for an equation link-
ing Y with X , the partial derivative of Y with respect to X is
the rate of change of Y with change in X at the point x .
Specifically, it is the slope of the line tangent to the curve of
the function linking Y with X , at the point x . In simple linear
regression, the “curve” linking E(Y ) with X is already a
straight line, so the tangent line and the curve are synony-
mous. Correspondingly, the partial derivative of E(Y ) with
X is � at every x . This means that unit changes in X add � to
E(Y ) everywhere along the line. Figure 20.2 shows the tan-
gent line to the logistic curve at the point x , with just one X
in the equation. If we let P(x) indicate P(Y = 1) given
X = x , then �P = P(x + 1) − P(x) is the actual change in
probability along the logistic curve for a unit increase in x .
The derivative of P(x) with respect to X at the point x ,
P ′(x), indicates the change in P(x) along the tangent line—
not along the function—for a unit increase in X . Thus, P ′(x)
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Figure 20.2 Change in probability along the logistic curve for a unit
increase in X : exact change vs. change estimated by the partial derivative.

is not generally equal to �P . If one wants to compute the
precise change in � for a unit increase in X , one generally
must evaluate P(x + 1) − P(x); see DeMaris (1993) for an
extended discussion of this issue.

Standardized Coefficients

In linear regression, standardized coefficients are used to
compare the relative impacts of different predictors in the
same equation. The standardized coefficient is the product of
the unstandardized coefficient times the ratio of the standard
deviation of Xk to the standard deviation of Y . In logistic
regression, calculating a standardized coefficient is not as
straightforward. Recall the latent-variable formulation for the
logistic regression model, discussed earlier. The logistic
regression coefficient, �k , can, of course, be interpreted as the
change in Y ∗ for each unit increase in Xk . If we had an esti-
mate of the standard deviation of Y ∗, we could compute the
standardized version of this coefficient as

�s
k = �k

(
sXk

sY ∗

)
.

But Y ∗ is unobserved, so its standard deviation is not readily
estimated. One solution, which is found in SAS, is to stan-
dardize the coefficients partially by multiplying them by the
factor sXk

��
, where �� is the standard deviation of the con-

ditional errors, or approximately 1.814 (since the variance of
the errors is assumed to be �2/3 in the logistic distribution).
These are shown in the last column of Table 20.2 and apply
to the full model for violence—one containing the focus vari-
ables, the conflict resolution factors, and an interaction of
minority status with the income-to-needs ratio. For example,
the standardized coefficient for relationship duration is

−.035(13.815/1.814) = −.267, which agrees with the figure
of −.268 in the table (within rounding error). These coeffi-
cients perform the same function as the standardized coef-
ficients in linear regression of indicating the relative
magnitude of predictor effects within any given equation.
From their values, it appears that communication style has
the strongest impact on the log odds of violence, followed by
relationship duration and then open disagreement.

Inferences in Logistic Regression

Several statistical tests that have counterparts in linear re-
gression are of interest in logistic regression. First, it is usu-
ally important to test whether one’s model is of any utility in
predicting the response. The null hypothesis for this test is
that all of the coefficients other than the intercept equal 0.
That is, we test H0: �1 = �2 = · · · = �K = 0. If this is re-
jected, we conclude that at least one of the �k s is nonzero.
In linear regression, the F test is used to assess this hypoth-
esis. The comparable test statistic in logistic regression is
called the model chi-squared. It is based on evaluating the
likelihood function (Equation 20.8) at the MLEs for two
models. The first is a model that excludes all predictors ex-
cept the intercept, which is the correct model if the null hy-
pothesis is true. The likelihood function for this model is
denoted L0 . The second is the hypothesized model with in-
tercept plus regression coefficients, and its likelihood is de-
noted L1 . If the null hypothesis is true, the statistic
−2 log(L0/L1) is distributed asymptotically (i.e., in large
samples) as chi-squared with degrees of freedom equal to
the number of parameters (excluding the intercept) in the
model. As this statistic is based on the ratio of two likeli-
hoods, it is also referred to as the likelihood-ratio chi-
squared. Table 20.2 shows that the model chi-squared for
Model 1 is 208.560, which, with 9 degrees of freedom, is a
highly significant result.

Given a model with predictive utility, we usually wish to
know which regressors have significant effects on the re-
sponse. In linear regression, the coefficient divided by its
estimated standard error provides a t test for the null hypoth-
esis that the population coefficient is zero. Similarly, in logis-
tic regression, the coefficient divided by its estimated
standard error is a z test for the null hypothesis that the para-
meter is zero. That is, under H0: �k = 0, the statistic z = bk

�̂bk

has approximately the standard normal distribution in large
samples. Some software programs, such as SAS, print out
the square of this statistic, which is labeled the “Wald Chi-
square” on SAS printouts. Under the null hypothesis that
�k = 0, this statistic has the chi-squared distribution with
1 degree of freedom. Significant coefficients, according to
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these tests, are starred in Table 20.2. It is evident that the sig-
nificant predictors of violence in Model 1 are the female’s
age at union, whether the couple is cohabiting or married,
relationship duration, whether either partner has a substance
abuse problem, and whether the couple is a minority.

It is frequently of interest to test whether a block of vari-
ables makes a significant contribution to the model over and
above a set of initial variables. More generally, we may wish
to test whether there is a difference in predictive utility be-
tween two nested models. Formally, model B is nested inside
model A if the parameters of B can be produced by placing
constraints on those of A. The most common constraint is to
set a parameter to zero, although more complex constraints
are possible. In linear regression, we use a partial F test to
test the null hypothesis that model B fits as well as model A
or that the constraints imposed on A to create B are true
(Long, 1997). In logistic regression, we use a likelihood-ratio
chi-squared test. This time, however, the test statistic is
−2 log(L B/L A), where L B is the likelihood for the con-
strained model and L A is the likelihood for the unconstrained
model. Mathematically, this is equivalent to the difference in
model chi-squareds for the two models. Under the null hy-
pothesis that the constraints are valid, this statistic has the
chi-squared distribution with degrees of freedom equal to the
number of constraints imposed (e.g., the number of parame-
ters set to zero).

Model 2 in Table 20.2 shows the result of adding the
block of four conflict resolution variables to Model 1. The
difference in model chi-squareds for Models 1 and 2 is
472.915 − 208.56 = 264.355. With four degrees of freedom,
this difference is highly significant (p < .0001), suggesting
that one or more of the additional coefficients is different
from zero. In fact, three of the four are significant by indi-
vidual tests: open disagreement, communication style, and
female nonassertiveness. As expected, the greater the fre-
quency of open disagreements, and the poorer the communi-
cation between partners (e.g., the partners argue heatedly and
shout at each other), the greater the probability of violence.
Contrary to expectation, on the other hand, nonassertiveness
is associated with a lower chance of aggression: In particular,
the more the female partner keeps her opinions to herself, the
less likely the couple is to experience violence.

Wald Test versus Likelihood-Ratio Chi-Squared

Model 3 in Table 20.2 adds one more term to those in
Model 2: the crossproduct of minority status with the (cen-
tered) income-to-needs ratio. This term is designed to capture
interaction effects between minority status and the income-
to-needs ratio in their effects on the log odds of violence.

Although the interpretation of interaction effects is post-
poned until a later section, let’s focus on the test of this term
for the moment. There are two tests for the addition of a
single parameter to the model. One is the likelihood-ratio chi-
squared, calculated as the difference between model chi-
squareds for models with and without the term. Comparing
Models 2 and 3, its value is 480.561 − 472.915 = 7.646.

With 1 degree of freedom, this result is significant at
p < .006. The other test is the Wald chi-squared, whose
value is 6.461, also significant, at p < .02. These tests will
typically agree fairly closely. Both have asymptotic chi-
squared distributions with 1 degree of freedom under the null
hypothesis that the added term is zero in the population.
However, Wald’s test can behave in an aberrant manner if the
effect of the term in question is too large. Hauck and Donner
(1977) showed that this problem occurs because whereas the
likelihood-ratio chi-squared is a monotone increasing func-
tion of the magnitude of the parameter estimate, the Wald sta-
tistic is not. In fact, for any sample size, the Wald test statistic
decreases to zero as the absolute value of the parameter esti-
mate tends toward infinity. Moreover, when the parameter
estimate becomes too large, the power of the test decreases to
the alpha level for the test, which is typically .05. In practical
terms, this implies that the researcher could underesti-
mate the importance of a given effect if he or she were to rely
solely on the Wald test. When in doubt, the likelihood-ratio
test is always to be preferred over the Wald test for testing in-
dividual coefficients (Hauck & Donner, 1977).

Numerical Problems

Estimation of logistic regression models is frequently
plagued by numerical difficulties. Some of these are also
common to estimation with least squares. For example, mul-
ticollinearity creates the same kinds of problems in logistic
regression that it does in OLS: inflation in the magnitudes of
estimates as well as in their standard errors, or, in the extreme
case, counterintuitive signs of coefficients (Schaefer, 1986).
Collinearity diagnostics are not necessarily available in logis-
tic regression software—for example, none are provided in
SAS’s LOGISTIC procedure. However, in that collinearity is
strictly a problem connected with the explanatory variables,
it can also be addressed with linear regression software. In
SAS, I use collinearity diagnostics in the OLS regression pro-
cedure (PROC REG) to evaluate linear dependencies in the
predictors. The best single indicator of collinearity problems
is the variance inflation factor (VIF) for each coefficient. This
is the reciprocal of the tolerance, which is the proportion
of variation in the kth predictor that is not shared with the
other predictors in the model. VIFs above 10 (or tolerances
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smaller than .1) generally signal problematic multicollinear-
ity (Myers, 1986). In the current example, the VIFs for all
coefficients in Model 3 in Table 20.2 were inspected for signs
of collinearities. As all VIFs were well under 2, no such prob-
lems were evident.

Other problems are more unique to MLE. The first per-
tains to zero cell counts. If the cross-tabulation of the re-
sponse variable with a given categorical predictor results in
zero cells, it will not be possible to estimate effects associated
with those cells in a logistic regression model. In an earlier
article (DeMaris, 1995) I presented an example using the
1993 General Social Survey in which the dependent variable
is happiness, coded 1 for those reporting being “not too
happy” and 0 otherwise. Among categorical predictors, I em-
ployed marital status, represented by four dummy variables
(widowed, divorced, separated, never married) with married
as the reference group, and race, represented by two dummies
(Black, other race), with White as the reference group.
Among other models, I tried to estimate one with the interac-
tion of marital status and race. The problem is that among
those in the “other race” category who are separated, all re-
spondents report being “not too happy,” leaving a zero cell in
the remaining category of the response. I was alerted that
there was a problem by the unreasonably large coefficient
for the “other race × separated” term in the model and by its
associated standard error, which was about 20 times larger
than any other. Running the three-way cross tabulation of the
response variable by marital status and race revealed the zero
cell. An easy solution, in this case, was to collapse the cate-
gories of race into White versus non-White and then to esti-
mate the interaction again. If collapsing categories of a
categorical predictor is not possible, it could be treated as
continuous, provided that it is at least ordinal scaled (Hosmer
& Lemeshow, 1989).

A much rarer problem occurs when one or more predictors
perfectly discriminate between the categories of the re-
sponse. Suppose, as a simple example, that all couples with
incomes under $10,000 per year report violence, and all cou-
ples with incomes over $10,000 per year report being non-
violent. In this case, income completely separates the
outcome groups. Correspondingly, the problem is referred to
as complete separation. When this occurs, the MLEs do not
exist (Hosmer & Lemeshow, 1989). Finite MLEs exist only
when there is some overlap in the distribution of explanatory
variables for groups defined by the response variable. If
the overlap is only marginal—say, at a single or a few tied
values—a problem of quasi-complete separation develops. In
either case, the analyst is again made aware that something is
amiss by unreasonably large coefficient estimates and associ-
ated standard errors. SAS also provides a warning if the

program can detect this data configuration. Surprisingly, the
suggested solution for this problem is to revert to OLS
regression. One advantage of the LPM over logit or probit is
that estimates of coefficients are available under complete or
quasi-complete separation (Caudill, 1988).

An Alternative Modeling Strategy

The models examined in Table 20.2 demonstrate one type of
modeling strategy—purposive, sequential entry of variables
according to a specific theoretical framework. The entry of
sociodemographic, relationship stressor, and interdepen-
dence factors (the focus variables) as the first predictor set in
the model reflects their role as more distal influences on vio-
lence. The subsequent entry of conflict management factors
(open disagreement, communication style, and male and fe-
male nonassertiveness) is consistent with their role as media-
tors of the impact of the focus variables on violence. For
example, I expected substance abuse to elevate the likelihood
of violence by leading to more frequent heated arguments be-
tween the partners. And such arguments, in turn, become the
proximal causes of violence. To assess whether this chain of
events is plausible, I must add the conflict management fac-
tors after the focus variables and then examine whether the
impact of, say, substance abuse is reduced once conflict man-
agement factors are controlled. The fact that the coefficient
for substance abuse is indeed reduced in Model 2 suggests
that this causal chain may be supported (below I explain how
to test whether this drop in the effect of substance abuse is, in
fact, a significant reduction in the coefficient). Finally, after
all the main effects of interest are in the model, I test whether
there is an interaction between minority status and the
income-to-needs ratio.

At times, however, the analyst has no clear idea which ex-
planatory variables are likely to be important in the predic-
tion of the response. Instead, he or she may wish to engage in
a more exploratory approach to model fitting. In this case,
there is a stepwise model-fitting approach in logistic regres-
sion that is much like stepwise linear regression. This tech-
nique is particularly useful when the analyst wishes to screen
a large number of variables quickly to discern which are
the most compelling predictors of the dependent variable
(Hosmer & Lemeshow, 1989). As an example, I apply step-
wise logistic regression to Model 3 in Table 20.2 to see if a
more parsimonious set of regressors can be selected from the
14 shown there. First, however, I examine the functional
form of the relationship between the log odds of violence and
each continuous predictor (except for the cross-product term)
to ensure that any nonlinear associations are adequately
captured.
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There are several ways to examine potential nonlinearities
in the relationship between X and the logit of Y (see Hosmer &
Lemeshow, 1989, for a thorough discussion). Perhaps the sim-
plest approach is to use the Box-Tidwell transformation
(Hosmer & Lemeshow, 1989). This involves simply adding a
term of the form x log(x) (i.e., x times the natural logarithm of
x) to the model in addition to x itself, for each continuous x in
the model. If the coefficient of x log(x) is significant, then there
is nonlinearity in the relationship between x and the logit.As all
continuous predictors in Table 20.2 are centered—and thus
have both negative as well as positive values—the natural log
would not always be defined for these variables. Therefore,
I used a quadratic term (x2) in place of x log(x) to assess non-
linearity. Quadratic terms will capture any type of nonlinearity
that can be described as a curve with one bend. Of all continu-
ous predictors, only relationship duration evinced a significant
quadratic effect, suggesting a nonlinear trend in the relation-
ship between relationship duration and the log odds of vio-
lence. A quadratic term for relationship duration was therefore
added to the regressors in Model 3 prior to the stepwise run.

Stepwise logistic regression begins with a model contain-
ing only the intercept and no regressors. In the first step, the
variable is added that results in the largest model chi-
squared, compared to the intercept-only model, provided that
the p value for that chi-squared is smaller than some preset
value. (In the current example, I chose .15 as the minimum p
value for entry of variables.) In the next step, the variable is
added that produces the largest change in the model chi-
squared, compared to the model with just the first predictor
entered. Again, that variable is added if the p value for the
change is less than the preset value. At this point, there are
two predictors in the model. The program now checks
whether, with the second variable in the model, the first is
still significant. This is accomplished by examining the
change in model chi-squared resulting from deleting the first
variable entered. If the p value for that change is larger than
a second criterion value—the p value for removal of a
term—the first variable would be removed from the model.
Typically, the p value for removal is set higher than the p
value for entry to prevent adding and then dropping the same
variable in one step. For this procedure, I chose a p value of
.20 for removal of terms. The procedure continues in this
fashion, checking each subsequent variable in the candidate
pool, adding the variable resulting in the largest change in the
model chi-squared— provided that p for chi-squared is less
than the preset entry value—and dropping any variables that
do not remain significant at the p value for removal of vari-
ables, at each step. The procedure terminates when no more
variables can be entered—the p value for the largest change
in chi-squared is greater than the entry criterion—and when

no more variables can be dropped—the p value for removal
of the least significant variable is smaller than the removal
criterion.

Table 20.3 presents the results of the stepwise procedure
for the candidate variables in Model 3 in Table 20.2—plus
the quadratic effect of relationship duration. Shown are vari-
ables entered in each step, the resulting change in the score
chi-squared statistic for variable entry, and the p value for
that change. As is evident, open disagreement produces the
largest change in the likelihood function, and therefore re-
sults in the largest model chi-squared in the first step. Next, in
order, are entered communication style, relationship dura-
tion, relationship duration squared, substance abuse, cohabi-
tation, the interaction of minority status with income-
to-needs ratio, female nonassertiveness, minority couple sta-
tus, and number of children. After the entry of number of
children, no other variables cause a change in the model
chi-squared at a p value less than .15, so no further variables
are entered. Once entered, all variables appear to retain their

TABLE 20.3 Results of Stepwise Logistic Regression Applied to
Explanatory Variables in Model 3 in Table 20.2, Plus a Quadratic
Effect of Relationship Duration

Summary of Stepwise Procedure

Change in
Step Variable Entered Number in Score � 2 p Value

1 Open disagreementa 1 261.300 .0001
2 Communication stylea 2 108.900 .0001
3 Relationship durationa 3 65.187 .0001
4 Relationship duration2 4 31.181 .0001
5 Substance abuse 5 22.588 .0001
6 Cohabiting couple 6 17.753 .0001
7 Minority couple ×

income-to-needs ratio 7 7.251 .0071
8 Female nonassertivenessa 8 6.039 .0140
9 Minority couple 9 2.852 .0912

10 Number of children 10 2.246 .1339

Final Model Selected by Stepwise Procedure

Explanatory Variable b

Intercept −2.537***
Cohabiting couple .956***
Relationship durationa −.043***
Relationship duration2 .001***
Substance abuse .766***
Minority couple .185
Number of children −.065
Open disagreementa .082***
Communication stylea −.423***
Minority couple ×

income-to-needs ratio −.086*
Female nonassertivenessa −.113*

Note. N = 4,401.
aCentered predictor.
*p < .05. **p < .01. ***p < .001.
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importance, as none of the entered variables is removed in a
later step. The final model selected by the stepwise procedure
retains 10 of the original 15 variables considered.

In the current example, stepwise selection is not a particu-
larly desirable approach. To begin, several factors are omitted
that have theoretical importance. For example, male and
female education and the age at which the union was
formed—tapped by the female’s age at union—are important
background variables that could affect the couple’s style of
conflict management, and, therefore, violence. Also, male
nonassertiveness is an element in the conflict management
group that is posited to mediate the effects of other variables
on violence, and should therefore be entered with that group.
Finally, the model contains an illegitimate nonhierarchical
interaction because the cross product of minority status by
the income to needs ratio is present, but the main effect of
income to needs is omitted. The interaction term and its com-
ponent effects, could, of course, be forced into the model in
advance. Still, stepwise selection of variables should proba-
bly not be used when analyses are guided by theoretical
considerations.

Analogues of R2

Much work in linear regression relies on R2 to index a
model’s discriminatory power—the ability of a model to dis-
criminate among scores on the response. Many counterparts
have been proposed for use in logistic regression (see, e.g.,
Long, 1997), but no single measure is consistently used. Two
difficulties are paramount in fashioning a counterpart for
logistic regression. In linear regression, R2 in any given
sample is a function of the discrepancy between the observed
response, Y , and the response predicted by the model, Ŷ .
In particular, R2 = 1 − [∑

(Y − Ŷ )2/
∑

(Y − Y )2
]
. In

this case the observed score is directly modeled: Y =∑
�k Xk + �. In logistic regression, we model the probability

of an event. This is a mathematical abstraction, not an ob-
servable entity. What we do observe is only whether an event
has occurred. And although we typically assign scores of 1
and 0 to denote the occurrence or nonoccurrence of the event,
respectively, these values are purely arbitrary—although
mathematically convenient—and have no real quantitative
meaning. Constructing an R2 analogue for the logistic re-
gression model is, therefore, less straightforward.

A second concern revolves around the identity of the para-
meter that R2 is intended to estimate in logistic regression.
Recall the latent variable development of the logistic regres-
sion model, as articulated earlier. If Y is a proxy for a latent
scale, Y ∗, then it seems that the explained variance in
Y ∗, or �2 (rho-squared), is the parameter to be estimated. On

the other hand, if Y represents a qualitative change in state
(e.g., becoming pregnant before age 18), then the explained
variance in the binary indicator of event occurrence—Y
itself—is the parameter of interest. I refer to this latter quan-
tity as the explained risk of the event (following the termi-
nology used by Korn & Simon, 1991) and use � to represent
this quantity.

In a recent simulation study (DeMaris, 2000b), I investi-
gated the performance of eight popular R2 analogues as esti-
mators of each of these criteria. Of the eight measures, two
emerge as best—one for each criterion—based on the criteria
of consistency and mean-squared error. To understand these
measures, it is necessary to review the concept of explained
variance briefly.

The general expression for the decomposition of variance
in a joint distribution of Y and X1, X2, . . . , X K (Greene,
1997) is

Var(Y ) = Varx [E(Y | X)] + Ex [Var(Y | X)]. (20.10)

That is, the variance in Y equals the variance of the condi-
tional mean of Y , given X (the first term in the sum on the
right-hand side of Equation 20.10), plus the mean of the con-
ditional variance of Y , given X (the second term on the right),
where X represents the vector of covariates X1, X2, . . . , X K .

In linear regression, for example, E(Y | X) = �0 + �1 X1 +
�2 X2 + · · · + �K X K , and Var(Y | X) = �2. Dividing both
sides of Equation 20.10 by Var(Y ) results in

1 = Varx [E(Y | X)]

Var(Y )
+ Ex [Var(Y | X)]

Var(Y )
. (20.11)

The first term on the right-hand side of Equation 20.11 is
�2, the proportion of variance in Y that is due to the structural
part of the model, or the explained variance in Y . Equa-
tion 20.11 can also be expressed as follows:

�2 = 1 − Ex [Var(Y | X)]

Var(Y )
= 1 − �2

Var(Y )
. (20.12)

That is, �2 is 1 minus the ratio of the average conditional
variance of Y to the marginal variance of Y . (Note that the
conditional variance of Y is the same as the variance of the
conditional errors. And in the classic linear regression model
with constant error variance, the average of �2 is, of course,
just �2.) �2 ranges between the values of 0 (indicating that all
of the variance in Y is due to error variance) to 1 (suggesting
that all of the variance in Y is due to the model covariates).

An analogous decomposition can be applied to a binary
response variable, Y , taking on the values 0 and 1 for mathe-
matical convenience. Such a variable has the Bernoulli
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distribution with mean � and variance �(1 − �) (Hoel, Port,
& Stone, 1971), where � is the marginal probability that the
variable takes on the value 1. Assuming a model for �, based
on X , of the form � | X = F(X) (where, e.g., F[X] is the
cumulative logistic distribution function), the conditional
mean of Y given X is � | X , while the conditional variance of
Y given X is �(1 − �) | X . Equation 20.12 can be applied to
this situation, resulting in a measure of explained variance
(�) for a dichotomous variable. The formula for � is

� = 1 − Ex [�(1 − �)|X]

�(1 − �)
. (20.13)

Assuming a correctly specified model, consistent estima-
tors of P2 and � are as follows. The estimator of P2 is the
McKelvey-Zavoina (1975) pseudo-R2, or R2

MZ, defined as

R2
MZ = V

(∑
bk Xk

)
V

(∑
bk Xk

) + �2

3

, (20.14)

where the bk are the logistic regression estimates, and �2/3
is, by assumption, the underlying error variance for the logis-
tic regression model. Because the logistic regression coeffi-
cients are estimates of the betas in Y ∗ = ∑

�k Xk + �, the
numerator is a consistent estimator of the variance of the
conditional mean of the Y ∗ and the denominator is a consis-
tent estimator of the marginal variance of Y ∗. R2

MZ is there-
fore a consistent estimator of P2.

A consistent estimator of � is �̂, defined as

�̂ = 1 −
∑

�̂(1−�̂)|X
N

p(1 − p)
(20.15)

where the estimated probabilities in the numerator of the sec-
ond term on the right-hand side of Equation 20.15 are the es-
timated conditional probabilities of event occurrence, based
on the model, and p is the sample marginal probability that Y
equals 1.

Values for R2
MZ and �̂ for the models in Table 20.2 are

shown at the bottom of the table. Which measure to use de-
pends, of course, on whether violence is to be regarded as a
qualitative change in state or a proxy for a latent continuous
variable. If the former, then �̂ suggests that the different
models account for between 5% and 13% of variance in the
occurrence of violence. If a latent scale underlies the binary
indicator of violence, on the other hand, the range of varia-
tion explained in that latent scale is between 12% and 24%.
(A SAS program that estimates one’s model and prints out
R2

MZ, �̂, and six other R2 analogues is available on request
from the author.)

ADVANCED TOPICS IN BINARY
LOGISTIC REGRESSION

Modeling Interaction Effects

Interaction effects occur when the impact of one variable
depends on the values of another variable or variables. The
other variables are said to interact with, moderate, or condi-
tion the impact of the first variable. In this section I discuss
the modeling of first-order interaction effects—the case in
which the focus variable interacts with only one other vari-
able. These are the most commonly modeled types of inter-
action effects. I also discuss the case in which the model as a
whole might differ depending on group membership—that is,
the effects of possibly all model predictors depend on levels
of a grouping variable.

Interaction effects in the log odds are modeled using
cross-product terms just as in linear regression. The logistic
regression model for two predictors, X and Z , with interac-
tion between the predictors is therefore

log

(
�

1 − �

)
= �0 + �1 X + �2 Z + �3 X Z . (20.16)

To see that the impact of X (the focus variable) is dependent
upon the level of Z (the moderator variable) we write equa-
tion 16 isolating the impact of X:

log

(
�

1 − �

)
= �0 + �2 Z + (�1 + �3 Z )X. (20.17)

The partial slope for X is therefore (�1 + �3 Z), which
clearly depends on the value of Z . Recall that exponentiating
the partial slope gives us the impact on the odds of a unit in-
crease in the predictor. Similarly, e�1+�3 Z is the impact on the
odds for a unit increase in X in the interaction model. Here it
is clear that the odds ratio for those who are a unit apart on X
is a function of the value of Z . As an example, Model 3 in
Table 20.2 contains the cross product of minority status with
the income-to-needs ratio, a significant interaction effect. To
interpret the effect, it is helpful to choose one of the two vari-
ables involved in the interaction as the focus variable. Say we
pick the income-to-needs ratio. The impact of this predictor
on the log odds is .002 − .091 × minority couple. For
nonminorities, the impact is therefore .002—the impact on
the odds is exp(.002) = 1.002. For minorities, on the other
hand, it is .002 − .091 = −.089—the impact on the odds is
exp(−.089) = .915. Thus, a unit increase in the income-to-
needs ratio reduces the odds of violence by 8.5% for minori-
ties but has virtually no effect for nonminorities. Because this
interaction effect is significant, we know that the difference
in the effect of income to needs for each group is significant.
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However, is the impact of income to needs significant within
either group? To answer this question, we need to test the sig-
nificance of the partial slope for the focus variable at each
level of the moderator. In the abstract, the estimated partial
slope for the focus variable has the form b + cZ , where b is
the sample coefficient of the focus variable, c is the sample
coefficient of the cross product, and Z is the moderator
variable. Under the assumption that values of Z are fixed
over repeated sampling, the variance of the partial slope
is V (b + cZ) = V (b) + 2ZCov(b, c) + Z2V (c) (Aiken &
West, 1991). The square root of this quantity is the standard
error of the partial slope at a particular value of Z . Asymptot-
ically, the partial slope divided by its standard error is a z test
for the null hypothesis that the partial slope is zero, as noted
previously.

The test for the effect of income to needs for nonminori-
ties is just the test for the main effect of income to needs
(because Z = 0 for nonminorities), which is nonsignificant
in the table. For minorities, we need to use the sample esti-
mates of variances and covariances among parameter esti-
mates found in the “variance-covariance matrix of parameter
estimates” (optionally output in SAS using the model option
COVB). The variances of the parameter estimates for the
income-to-needs ratio and the interaction term are, respec-
tively, .000106 and .0012883, while the covariance of these
terms is −.000083. The variance of the effect for minorities
(keeping in mind that Z is now 1), is therefore, .000106 +
2(1)(−.000083) + 12(.0012883) = .0012283. The standard
error is therefore .035, and the test is −.089/.035 = −2.54,
which is significant at p < .02.

On the other hand, letting minority status be the focus
variable, its partial slope on the log odds is .161 − .091 × the
income-to-needs ratio. Aside from rendering the intercept
interpretable, centering continuous predictors has the addi-
tional advantage of making the main effects interpretable in
interaction models. Hence, .161 is the impact of minority
status on the log odds of violence at the average income-to-
needs ratio (because the mean of the centered income-to-
needs ratio is zero), a nonsignificant effect. At this level of the
moderator, minority couples are no different from nonmi-
norities in the odds of violence. But at one standard deviation
below average income to needs the impact of minority status
is .161 − .091(−4.759) = .594, implying an increase of
81% in the odds of violence. At this setting of the mod-
erator, the variance of the partial slope is .0119173 +
2(−4.759)(.0010906) + (−4.759)2(.0012883) = .0307145.

The standard error is therefore .175, and the test of this effect
is z = .594/.175 = 3.39, which is significant at p < .001. A
more complete discussion of first-order interaction in logit
models, in general, can be found in DeMaris (1991).

Two other points should be mentioned about interaction
effects in logistic regression. First, as in linear regression,
cross-product terms typically induce multicollinearity among
the regressors involved because the cross product tends to be
highly correlated with its component parts. One final advan-
tage of centering continuous predictors, as outlined by Aiken
and West (1991), is that it tends to reduce this collinearity
substantially. Second, in that the model is inherently interac-
tive in the probabilities, what changes with a cross-product
term in the model? The principal difference is that using a
cross-product term allows interaction effects in the probabil-
ities to be disordinal, whereas without it the interaction is
constrained to be ordinal. The descriptors “ordinal” and “dis-
ordinal” (Kerlinger, 1986) refer to degrees of interaction.
When  the impact of the focus variable differs only in magni-
tude across levels of the moderator, the interaction is ordinal.
If the nature (or direction) of the impact changes over levels
of the moderator, the interaction is disordinal. Without a
cross-product term, the partial slope of Xk on the proba-
bility is, as noted earlier, �k[�(x)(1 − �(x))]. Because
[�(x)(1 − �(x))] > 0, the impact of Xk on the probability al-
ways has the same sign, regardless of the settings of the Xs in
the model; that is, �k[�(x)(1 − �(x))] takes on whatever
sign �k takes. Hence, the effect of Xk can only differ in
magnitude, but not direction, with different values of the Xs.
With a cross product in the model of the form �Xk Xj , how-
ever, the partial slope for Xk on the probability becomes
(�k + �Xj )[�(x)(1 − �(x))]. In this case, because �k and �

could be of opposite signs, the impact of Xk on the probabil-
ity could change direction at different levels of Xj , producing
a disordinal interaction.

Comparing Models Across Groups

A variation on the interaction theme involves asking whether
a given model applies equally in different groups. For exam-
ple, my sample consists of minority and nonminority cou-
ples. We have seen that the impact of income to needs is
different in each group. Suppose that we wish to test the hy-
pothesis that the impacts of all predictors are different in each
group. There are two equivalent ways to proceed. Both strate-
gies assume that the underlying error variance is the same in
each group (Allison, 1999). That is, in the latent variable for-
mulation of the model, Y ∗ = ∑

�k Xk + � (outlined earlier),
it is assumed that the variance of � is the same for minority as
for nonminority couples. (See Allison, 1999, for procedures
to be used when this assumption may not be tenable.) One
strategy is to form cross products of all predictors with mi-
nority status and to test whether this block of interaction
terms is significant when added to Model 2 in Table 20.2.
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The model chi-squared for this complete-interaction model
(results not shown) is 500.177, with 25 degrees of free-
dom. The test for the interaction block is therefore
(500.177 − 472.915) = 27.262. With 25 − 13 = 12 degrees
of freedom, this is significant at p < .01. Individual cross-
product terms that are significant in the interaction model are
the cross products of minority status with income to needs
(as already discovered), communication style, and male
nonassertiveness.

An equivalent way to proceed for those who want to know
only whether the model is different across groups is to test for
group differences using an equivalent of the Chow test
(Chow, 1960) in linear regression. As outlined by Allison
(1999), the procedure is as follows. First, we estimate the
model for the combined sample with minority status as one of
the predictors (this allows the intercept to differ across
groups, as is the case in the first procedure). This is Model 2
in Table 20.2. Then we estimate the same model, minus
the dummy for minority status, in each separate sample—
minority couples versus nonminority couples. The results are
shown in Table 20.4, with Model 2 in Table 20.2 repeated as
the first column of the table (under the heading “Combined
Sample”) for comparison. The test for group differences is
then −2 log Lc − [−2 log Lm + (−2 log Lnm)], where Lc is
the likelihood for the combined sample, Lm is the likelihood
for the minority sample, and Lnm is the likelihood for the
nonminority sample, all evaluated at the MLEs. Under the
null hypothesis that model coefficients (excluding the inter-
cept) are the same across groups, this statistic is distributed as

chi-squared with degrees of freedom equal to the difference
in the number of parameters (including the intercept) esti-
mated in the combined model versus the two separate mod-
els. From Table 20.4, the test is 2980.409 − (971.412 +
1981.735) = 27.262, with (13 + 13) − 14 = 12 degrees of
freedom, which agrees with the first result. In the table I have
noted which effects are significantly different in each group.
Apparently, income to needs reduces the odds of violence
only among minority couples (as noted previously). Commu-
nication style appears to be more effective in reducing the
odds of violence among nonminority couples. And male
nonassertiveness has opposite effects in each group, enhanc-
ing the odds of violence for minority couples but reducing the
odds of violence for nonminority couples. The advantage of
using the first approach, of course, is that it allows examina-
tion of which particular effects differ across groups, whereas
the second approach provides only an omnibus test of group
difference.

Comparing Coefficients Across Models

It is often the case in regression models that interest centers
on changes in coefficients when other variables are added to
a model. Theoretically, the analyst may expect the additional
variables to confound, mediate, or suppress the effects of
variables already in the model. He or she therefore wishes to
know whether the effects of existing variables undergo sig-
nificant changes when additional variables are added. In par-
ticular, several of the focus variables in Model 1 in Table 20.2

TABLE 20.4 Logistic Regression Results for Model 2 in Table 20.2, Estimated for the
Combined Sample As Well As for Minorities and Nonminorities, Separately

Explanatory Variable Combined Sample Minority Couples Nonminority Couples

Intercept −2.222*** −1.990*** −2.259***
Female’s age at unionc −.006 −.009 −.004
Cohabiting couple .982*** .993** .938**
Relationship durationc −.034*** −.035*** −.035***
Substance abuse .766*** .830** .732***
Minority couple .221* — —
Number of children −.113** −.119 −.135*
Male’s educationc −.031 .013 −.052*
Female’s educationc .014 −.030 .059*
Income-to-needs ratioc −.007 −.085* −.000ab

Open disagreementc .080*** .071*** .083***
Communication stylec −.410*** −.312*** −.473a***
Male nonassertivenessc −.041 .211* −.115a*
Female nonassertivenessc −.113* −.014 −.156**
−2 Log L 2980.409 971.412 1981.735
Number of parameters 14 13 13
N 4,401 1300 3101

aCoefficient is significantly different for minority vs. nonminority couples.
bCoefficient is less than .0005 in absolute value.
cCentered predictor.
*p < .05. **p < .01. ***p < .001.
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are seen to change when the conflict resolution variables are
added in Model 2. Theoretically, I would expect the extent of
relationship conflict and style of conflict resolution to medi-
ate some of the effects of the focus variables. For example,
those who marry at younger ages or have been together for a
shorter period of time are more likely to fight physically
because they are too inexperienced in relationships or have
spent too little time together to have learned how to
argue constructively. Similarly, those characterized by sub-
stance abuse problems are likely to argue more frequently
and perhaps more heatedly over those difficulties. In other
words, I expect that entering the union at a younger age,
being together for less time, and having substance abuse
problems elevates the probability of physical aggression be-
cause they increase the frequency of conflict and detract from
good conflict resolution skills. Evidence for this hypothesis is
that all three effects are reduced when the conflict resolution
block is entered into the model. But, are these effects signifi-
cantly lower in model 2? In general, what is needed is a test
for significance of the changes in coefficients across models.
The issue is complicated by the fact that coefficients in the
initial model are not independent of the same coefficients
after variables have been added (Clogg, Petkova, & Haritou,
1995). Fortunately, such a test has recently been developed
by Clogg et al. (1995).

Formally, we consider two models. The reduced model
(HR) is

log

(
�

1 − �

)
= �∗

0 + �∗
1 X1 + · · · + �∗

p X p, (20.18)

whereas the full model (HF ) is

log

(
�

1 − �

)
= �0 + �1 X1 + · · · + �p X p

+ �1 Z1 + · · · + �q Zq . (20.19)

We are interested in whether the �∗
k , the coefficients of the

focus variables in the reduced model, are significantly different

from the �k—the coefficients of the same focus variables in the
full model—after the other variables (the Z1, Z2, . . . , Zq )
have been included. Therefore, we wish to test whether the co-
efficient differences, 	k = �∗

k − �k , for k = 1, 2, . . . , p, are
different from zero. Under the assumption that the full model is
the true model that generated the data, the statistic dk

�̂dk
(where

dk = b∗
k − bk is the sample difference in the kth coefficient and

�̂dk is the estimated standard error of the difference) is distrib-
uted asymptotically as standard normal (i.e., it is a z test) under
H0: 	k = 0 (Clogg et al., 1995).

Unfortunately, the standard errors of the dk are not a stan-
dard feature of logistic regression software. However, they
can be recovered via a relatively straightforward matrix
expression. If we let V(	̂) represent the estimated variance-
covariance matrix of the coefficient differences, then the for-
mula for this matrix is

V (	̂) = V (�̂) + V (�̂∗)(V (�̂))−1V (�̂∗) − 2V (�̂∗),
(20.20)

where V (�̂) is the sample variance-covariance matrix for the
bks in the full model, V (�̂

∗
) is the sample variance-

covariance matrix for the b∗
k s in the reduced model, and

(V (�̂))−1 is the inverse of the variance-covariance matrix for
the bks in the full model (Clogg et al., 1995). (A copy of a
SAS program that estimates the reduced and full models,
computes V (	̂), and produces z tests for coefficient changes
across models is available on request from the author.)

For the focus variables of Model 1 in Table 20.2,
Table 20.5 shows the coefficients in the reduced and full
models, their differences, the standard errors of the differ-
ences, and z tests for the significance of the differences. Due
to the large sample size for the current problem, all but two of
the coefficient changes (for minority status and male’s
education) are significant. As expected, the effects of age at
union, relationship duration, and substance abuse are signifi-
cantly reduced when conflict factors are added to the model.

TABLE 20.5 Comparison of Logistic Regression Coefficients for Focus Variables of
Model 1 in Table 20.2 Before and After Adding Conflict Resolution Factors in Model 2

Focus Variable (Before) Model 1 (After) Model 2 	̂ SE(	̂) z

Female’s age at uniona −.021** −.006 −.015 .001 −15.000
Cohabiting couple .877*** .982*** −.105 .028 −3.750
Relationship durationa −.045*** −.034*** −.011 .001 −11.000
Substance abuse 1.095*** .766*** .329 .020 16.450
Minority couple .234* .221* .013 .009 1.444
Number of children −.038 −.113** .074 .007 10.570
Male’s educationa −.033 −.031 −.002 .002 −1.000
Female’s educationa .005 .014 −.009 .002 −4.500
Income-to-needs ratioa −.005 −.007 .002 .001 2.000

Note. N = 4,401.
aCentered predictor.
*p < .05. **p < .01. ***p < .001.
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Unexpectedly, the effects of unmarried cohabitation and
number of children are significantly enhanced with controls
for conflict resolution. Apparently, conflict resolution factors
acted as suppressors for these latter variables.

MULTINOMIAL MODELS

Response variables may consist of more than two values but
still not be appropriate for linear regression. Unordered cate-
gorical, or nominal, variables are those in which the different
values cannot be rank ordered. Ordered categorical variables
have values that represent rank order on some dimension, but
there are not enough values to treat the variable as continuous
(e.g., there are fewer than, say, five levels of the variable).
Logistic regression models, addressed in the following sec-
tion, are easily adapted to these situations.

Unordered Categorical Variables

To this point I have been treating intimate violence as a uni-
tary phenomenon. However, in that violence by males typi-
cally has graver consequences than violence by females
(Johnson, 1995; Morse, 1995), it may be important to make
finer distinctions. For this reason, I distinguish between two
types of violence in couples. The first is “intense male vio-
lence,” which refers to any one of the following scenarios:
The male is the only violent partner; both are violent but he
is violent more often; both are violent but only the female is
injured. All other manifestations of violence are referred to as
“common couple violence,” after the terminology introduced
by Johnson (1995). My interest in this section is in examining
how characteristics of couples in the initial survey might dis-
criminate intense male from common couple violence, and
both from nonviolence. I begin by treating the trichotomous
categorization—no violence, common couple violence, in-
tense male violence—as unordered categorical. That is, these
three levels are treated as qualitatively different types of
physical aggression (or the lack of it). However, it can be ar-
gued that they represent increasing degrees of violence sever-
ity, with intense male violence being more severe than
common couple violence. In a later section, these categories
are therefore treated as ordered.

Of the 4,401 couples in the current example, 3,815
(86.7%) are nonviolent, 366 (8.3%) have experienced com-
mon couple violence, and 220 (5%) are characterized by in-
tense male violence. There are three possible nonredundant
odds that can be formed to contrast these three categories.
Each of these is conditional on being in one of two categories
(Theil, 1970). For example, there are 4,181 couples who ex-
perienced no violence or common couple violence. Given

location in one of these two categories, the odds of common
couple violence is 366/3815 = .096. This odds is also the
ratio of the probability of common couple violence to the
probability of nonviolence, or .083/.867 = .096. Similarly,
given that a couple is characterized by either nonviolence or
intense male violence, the odds of intense male violence is
220/3815 (= .05/.867) = .058. Only two of the odds are
independent: Once they are recovered, the third is just
the ratio of the first two. Thus, given some type of violence,
the odds that it is intense male violence are .058/.096 =
.604. In general, for an M-category variable, there are
M(M − 1)/2 nonredundant odds that can be contrasted, but
only M − 1 independent odds.

Modeling M − 1 Log Odds

As before, we typically wish to model the log odds as func-
tions of one or more explanatory variables. However, this
time we require M − 1 equations, one for each independent
log odds. Each equation is equivalent to a binary logistic re-
gression model in which the response is a conditional log
odds—the log odds of being in one versus being in another
category of the response variable, given location in one
of these two categories. (Indeed, the multinomial logistic
regression model can be estimated as a series of binary logis-
tic regressions—see, e.g., Begg and Gray, 1984—but it is
more efficient to estimate it by maximizing a single likeli-
hood function.) Each odds is the ratio of the probabilities of
being in the respective categories. Equations for all of the
other M(M − 1)/2 − (M − 1) dependent log odds are func-
tions of the parameters for the independent log odds, and
therefore do not need to be estimated from the data. Typi-
cally, we choose one category, say the M th, of the response
variable as the baseline and contrast all other categories with
it (i.e., the probability of being in this category forms the de-
nominator of each odds). With �1, �2, . . . , �M representing
the probabilities of being in category 1, category 2, . . . ,
category M , of the response variable, respectively, the multi-
nomial logistic regression model with K predictors is

log

(
�1

�M

)
= �1

0 + �1
1 X1 + · · · + �1

K X K

log

(
�2

�M

)
= �2

0 + �2
1 X1 + · · · + �2

K X K

...

log

(
�M−1

�M

)
= �M−1

0 + �M−1
1 X1 + · · · + �M−1

K X K ,

(20.21)
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where the superscripts on the betas indicate that effects of the
regressors can change, depending on which log odds is being
modeled.

Estimation

As before, parameters are estimated via maximum likeli-
hood. In this case, however, the likelihood being maximized
is the joint likelihood function for all of the parameters
(across the M − 1 equations), given the data (see Hosmer &
Lemeshow, 1989, for details). In SAS, one uses the proce-
dure CATMOD for estimating this model. As SAS automati-
cally chooses the highest value of the response variable as
the baseline, one controls the choice of baseline by coding
the variable accordingly. In the current example, I wanted
nonviolence to be the baseline category, so the variable vio-
lence type was coded 0 for intense male violence, 1 for com-
mon couple violence, and 2 for nonviolence. Results are
shown in Table 20.6. Coefficients in the first two columns are
for the two independent log odds contrasting each type of vi-
olence with the baseline category of nonviolence. The last
equation contrasts intense male with common couple vio-
lence. The coefficients in this column are just the differences
(within rounding error) between coefficients in the first two
columns.

Interpretation

Model coefficients are interpreted just as they are in the bi-
nary case, except that now more than two outcome categories
are being compared. For example, cohabitants are signifi-
cantly different in the odds of both intense male and common
couple violence, compared to marrieds. In particular, cohabi-
tants’ odds of intense male violence (vs. nonviolence) is
exp(1.104) = 3.016 times higher than for marrieds, while
their odds of common couple violence (vs. nonviolence) is
exp(.885) = 2.423 times higher. The odds of occurrence of
intense male violence versus common couple violence, how-
ever, is not significantly different for cohabitants, compared
to marrieds. Each additional child significantly reduces the
odds of common couple violence (vs. nonviolence) by a fac-
tor of exp(−.248) = .780, or effects a 22% reduction in the
odds of this type of violence. On the other hand, the odds of
intense male violence (vs. nonviolence) is not significantly
affected by the number of children. Relative to common cou-
ple violence, however, the odds of intense male violence is
enhanced by a factor of exp(.301) = 1.351 for each addi-
tional child. This seemingly anomalous effect is due to the
fact that the number of children only slightly increases the
odds of intense male violence but markedly reduces the odds
of common couple violence. Hence, the odds of intense male

TABLE 20.6 Multinomial Logistic Regression Results for the Prediction of Intense
Male Violence, Common Couple Violence, and Nonviolence

Intense Male
Intense Male Common Couple Violence vs.

Explanatory Violence vs. Violence vs. Common Couple
Variable Nonviolence Nonviolence Violence

Intercepta −3.723*** −2.444*** −1.278***
Female’s age at unionb −.010 −.004 −.006
Cohabiting couplea 1.104*** .885** .218
Relationship durationab −.058*** −.027*** −.031**
Substance abusea .940*** .661*** .279
Minority couple .274 .097 .176
Number of childrena .053 −.248*** .301***
Male’s educationb −.064* −.008 −.057
Female’s educationb .063 −.003 .066
Income-to-needs ratiob .007 −.003 .009
Open disagreementab .070*** .086*** −.017
Communication styleab −.476*** −.377*** −.099
Male nonassertivenessb −.159* .036 −.195*
Female nonassertivenessab −.012 −.176** .164
Minority couple × income-

to-needs ratioa −.105 −.078 −.027
Model Chi-Squared 527.999***
Model d f 28

Note. N = 4,401.
aPredictor has a significant global effect on the response variable.
bCentered predictor.
*p < .05. **p < .01. ***p < .001.
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versus common couple violence grows correspondingly
larger with each additional child. Other variables that en-
hance either type of violence (vs. nonviolence) are substance
abuse and open disagreement. Factors that reduce the odds of
either type of violence are a longer relationship duration and
a positive communication style. Only a couple of factors ap-
pear to discriminate intense male violence from common
couple violence. The longer couples have been together, and
the more that the male partner keeps his opinions to himself,
the lower the odds that their violence (if it occurs) will be
of the intense male type. The more children they have, on
the other hand, the greater the odds that their violence will be
of the intense male kind. Whether these two types of vio-
lence are really discriminated by model predictors will be
examined in more detail later.

Inferences

There are several statistical tests of interest in multinomial lo-
gistic regression. First, as in binary logistic regression, there
is a test for whether the model as a whole exhibits any pre-
dictive efficacy. The null hypothesis is that all K (M − 1) of
the regression coefficients (i.e., the betas) in Equation 20.21
equal zero. Once again, the test statistic is the model chi-
squared, equal to −2 log (L0/L1), where L0 is the likelihood
function evaluated for a model with only the MLEs for the in-
tercepts and L1 is the likelihood function evaluated at the
MLEs for the hypothesized model. This test is not automati-
cally output in CATMOD. However, as the program always
prints out −2 log L for the current model, it can be readily
computed by first estimating a model with no predictors, and
then recovering −2 log L0 from the printout (it is the value of
“−2 Log Likelihood” for the last iteration on the printout).
This test can then be computed as −2 log L0 − (−2 log L1).
For the model in Table 20.6, −2 log L0 was 4228.9316,
while −2 log L1 was 3700.9325. The test was therefore
4228.932 − 3700.933 = 527.999, with 14(2) = 28 degrees
of freedom, a highly significant result.

Second, the test for the global effect on the response vari-
able of a given predictor, say Xk , is not a single degree of
freedom test, as in the binary case. For multinomial models,
there are (M − 1)�ks representing the global effect of Xk ,
one for each of the log odds in Equation 20.21. Therefore the
test is for the null hypothesis that all M − 1 of these �ks equal
zero. There are two ways to construct the test. One is to run
the model with and without Xk and note the value of
−2 log L in each case. Then, if the null hypothesis is true, the
difference in −2 log L for the models with, and without, Xk

is asymptotically distributed as chi-squared with M − 1
degrees of freedom. This test requires running several

different models, however, and excluding one of the predic-
tors on each run. Instead, most software packages—including
SAS—provide an asymptotically equivalent Wald chi-
squared test (see Long, 1997, for its formula) that performs
the same function. Predictors having significant global ef-
fects on violence types, according to this test, are flagged
with a superscript a in Table 20.6.

A third test is the test of the effect of a predictor on a par-
ticular log odds. This is simply the ratio of a given coefficient
to its asymptotic standard error, which—as in the binary
case—is a z test. Fourth, it may be desirable to test effects of
predictors on the nonindependent log odds—the odds of in-
tense male violence versus common couple violence in the
current example. As SAS prints only coefficients and associ-
ated tests for the independent log odds in a given run (the first
two columns of Table 20.6), these are not automatically out-
put. However, it is a simple matter to obtain these tests,
simply by rerunning the program and changing the coding of
the response variable. Fifth, tests of nested models are ac-
complished the same as in the binary case. That is, if model B
is nested inside model A (because, e.g., the predictors in B are
a subset of those in A), then −2 log(L B/L A) = −2 log L B −
(−2 log L A) is a chi-squared test for the significance of the
difference in fit of the two models.

Last, there is a test of collapsibility of outcome categories.
Two categories of the outcome variable are collapsible with
respect to the predictors if the predictor set is unable to dis-
criminate between them. In the current example, it was seen
that very few of the predictors discriminate between intense
male and common couple violence. A chi-squared test for the
collapsibility of these two categories of violence can be con-
ducted as follows. First, I select only the couples experienc-
ing one or the other of these types of violence, a total of 586
couples. Then I estimate a binary logistic regression model
for the odds of intense male versus common couple violence.
The test of collapsibility is the usual likelihood-ratio chi-
squared test that all of the betas in this binary model are zero.
Under the null hypothesis that the predictors do not discrimi-
nate between these types of violence, this statistic is asymp-
totically distributed as chi-squared (Long, 1997). The test
turns out to have the value 44.835, which, with 14 degrees of
freedom, is significant at p < .001. Apparently, the model
covariates do discriminate between intense male and com-
mon couple violence. Previously, I commented on which
predictors seem to be important in this regard.

Estimating Probabilities

The probabilities of being in each category of the response
are readily estimated based on the sample log odds. That is, if
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U is the estimated log odds of intense male violence for a
given couple and V is the estimated log odds of common
couple violence for that couple, then the estimated probabili-
ties of each response for that couple are

P (intense male violence) = eU

1 + eU + eV
,

P (common couple violence) = eV

1 + eU + eV
,

P (nonviolence) = 1

1 + eU + eV
.

(20.22)

Table 20.7 presents the probabilities of each response cate-
gory based on selected profiles of the predictors, using
the coefficient estimates in Table 20.6 and Equation 20.22.
One purpose in examining the probabilities is to compare the
conclusions reached with probabilities rather than odds ra-
tios. In the table I show the probabilities associated with hav-
ing 0, 1, 2, and 3 children for nonminority married couples
without substance abuse problems, while setting all continu-
ous predictors to either their mean values, 1 standard devia-
tion below the means, or 1 standard deviation above the
means. I also show the probabilities associated with being a
minority couple versus being a nonminority couple, for mar-
rieds without substance abuse problems, at the three settings

of the continuous predictors. The exception in the latter case
is that 0 children is used in place of 1 standard deviation
below the mean number of children.

Odds ratios convey a different impression than probabili-
ties. It is therefore important to exercise care in interpreting
odds ratios because it is easy to be misled unless one under-
stands their conditional nature. For example, each additional
child raises the odds of intense male versus common couple
violence by exp (.301), or 35%, even though the probability
of intense male violence is almost always lower than the
probability of common couple violence. Given violence,
however, the odds that it is of the intense male kind are
comparatively higher with an additional child. As another
example, compared to nonminority couples, minority cou-
ples generally have higher odds of intense male violence
versus common couple violence. At the mean level of income
to needs, the odds is exp (.176) = 1.192 times higher. At 1
standard deviation below mean income to needs it is
exp [.176 − .027(−4.759)] = 1.356 higher. And at 1 stan-
dard deviation above mean income to needs it is
exp [.176 − .027(4.759)] = 1.049 higher. One might be
led to conclude that minorities have higher probabilities of
intense male violence compared to nonminorities. However,
this is not true at 1 standard deviation above the mean of
other covariates (including income to needs). At that setting,
in fact, the probability of either type of violence is actually

TABLE 20.7 Predicted Probabilities of Intense Male Violence, Common Couple Violence, and
Nonviolence for Unit Changes in the Number of Children and for Minority vs. Nonminority
Couples, Based on Multinomial Logit Model Estimates in Table 20.5

Minority Values of Probability Probability Probability
Number of Status of Other of Intense of Common of

Children Couple Predictorsa Male Violence Couple Violence Nonviolence

1 nonminority mean .023 .062 .915
0 nonminority mean .022 .078 .900
1 nonminority mean − 1 SD .080 .115 .805
0 nonminority mean − 1 SD .074 .143 .783
1 nonminority mean + 1 SD .006 .031 .963
0 nonminority mean + 1 SD .006 .039 .955
3 nonminority mean .026 .039 .935
2 nonminority mean .025 .049 .926
3 nonminority mean − 1 SD .092 .073 .835
2 nonminority mean − 1 SD .086 .092 .822
3 nonminority mean + 1 SD .007 .019 .974
2 nonminority mean + 1 SD .007 .024 .969
1.178 minority mean .031 .065 .904
1.178 nonminority mean .024 .059 .917
0 minority mean − 1 SD .136 .196 .668
0 nonminority mean − 1 SD .074 .143 .783
2.456 minority mean + 1 SD .006 .017 .977
2.456 nonminority mean + 1 SD .007 .022 .971

Note. N = 4,401.
aSubstance abuse and cohabiting couple are each set to 0 (for “no substance abuse,” and “married,”
respectively).
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slightly lower for minorities (.006 vs. .007 for intense male
violence; .017 vs. .022 for common couple violence). But the
odds of intense male violence is nevertheless higher for mi-
norities because given any type of violence, the probability of
intense male violence is higher in comparison to the proba-
bility of common couple violence than it is for nonminorities.
As long as one understands that higher odds do not always
mean higher probabilities, no confusion is likely to result.
(Note that odds ratios computed using the probabilities in
Table 20.7 may seem at variance with those based on coeffi-
cients in Table 20.6, but this is due only to rounding error. For
example, the impact on the odds of intense male violence ver-
sus nonviolence for each additional child is, according to
Table 20.6, exp (.053) = 1.054. Yet using rows 5 and 6
of Table 20.7, one gets (.006/.963)/(.006/.955) = .992.

However, if the probabilities in Table 20.7 are carried out
to five significant digits, we actually get (.0063/.96282)/
(.00593/.95483) = 1.054.)

Ordered Categorical Variables

When the values of a categorical variable are ordered, it is
usually wise to take advantage of that information in model
specification. For example, the trichotomous categorization
of violence used for the analyses in Tables 20.6 and 20.7 rep-
resents different degrees of violence severity, as mentioned
previously. In this section I treat it as an ordinal variable. The
ordered logit model is a variant of logistic regression specifi-
cally designed for ordinal-level dependent variables. Al-
though there is more than one way to form logits for ordinal
variables (see, e.g., Agresti, 1984, 1989, for other formula-
tions), I shall focus on cumulative logits. These are especially
appropriate if the dimension represented by the ordinal mea-
sure could theoretically be regarded as continuous (Agresti,
1989). Cumulative logits are defined as follows. Suppose that
the response variable consists of J ordered categories coded
1, 2, . . . , J . The j th cumulative odds is the ratio of the prob-
ability of being in category j or lower on Y to the probability
of being in category j + 1 or higher. That is, if O≤ j repre-
sents the j th cumulative odds and �j is the probability of
being in category j on Y , then

O≤ j = �1 + �2 + · · · + �j

�j+1 + �j+2 + · · · + �J
.

Cumulative odds are therefore constructed by utilizing
J − 1 bifurcations of Y. In each one, the probability of being
lower on Y (the sum of probabilities that Y ≤ j ) is contrasted
with the probability of being higher on Y (the sum of proba-
bilities that Y > j ). This strategy for forming odds makes
sense only if the values of Y are ordered. With regard to

violence, the first cumulative odds, O≤0, is the ratio of
the probability that violence type is 0 (intense male) to the
probability that violence type is 1 (common couple) or 2
(none). Using the marginal probabilities of each type of
violence from Table 20.1, the marginal sample value is
.05/(.083 + .867) = .053. The second cumulative odds,
O≤1, is the ratio of the probability that violence type is 0 or 1
to the probability that it is 2, with marginal value
(.05 + .083)/.867 = .153. In other words, each odds is the
odds of more severe versus less severe violence, with “more
severe” and “less severe” being defined using different values
of j , the cut point (Agresti, 1989), in either case. The j th cu-
mulative logit is just the log of this odds. For a J -category
variable, there are a total of J − 1 such logits that can be con-
structed. These logits are ordered because the probabilities in
the numerator of the odds keep accumulating as we go from
the first through the (J − 1)th logit. That is, if Uj is the jth cu-
mulative logit, then it is the case that U1 ≤ U2 ≤ · · · ≤ UJ−1.

One model for the cumulative logits, based on a set of K
explanatory variables is

log O≤ j = �
j

0 + �
j

1 X1 + �
j

2 X2 + · · · + �
j
K X K , (20.23)

where the superscripts on the coefficients of the regressors in-
dicate that the effects of the regressors can change, depending
on the cut point. This model is easily estimated using binary
logistic regression software, as Equation 20.23 is just a bi-
nary logistic regression based on bifurcating Y at the jth cut
point. Table 20.8 presents the results of estimating this model
for violence type. Estimates in the second column, for the log
odds of violence versus nonviolence, are just the estimates
from Model 3 in Table 20.2, repeated here for completeness.
Estimates in the first column are for the log odds of intense
male violence versus any other response.

Invariance to the Cut Point

For the most part, results suggest that predictors have the
same effect on the log odds of more severe versus less severe
violence, regardless of the cut point used to make this dis-
tinction. For example, substance abuse elevates the odds of
intense male violence versus any other response by a factor
of exp (.800) = 2.226, whereas it raises the odds of any vio-
lence versus no violence by a factor of exp (.766) = 2.151. If
the effects of predictors are invariant to the cut point, then a
more parsimonious specification of Equation 20.23 is possi-
ble. This is what we usually think of as the ordered logit
model:

log O≤ j = �
j

0 + �1 X1 + �2 X2 + · · · + �K X K . (20.24)
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TABLE 20.8 Ordered Logit Model Results for the Prediction of Intense Male Violence,
Common Couple Violence, and Nonviolence

Intense male
Explanatory Violence vs. Violence vs. More vs.
Variable Other Response Nonviolence Less Violence

Intercept −3.8144*** −2.210*** —
Intercept 1 — — −3.418***
Intercept 2 — — −2.224***
Female’s age at uniona −.011 −.006 −.006
Cohabiting couple .876** 1.000*** .946***
Relationship durationa −.055*** −.035*** −.035***
Substance abuse .800*** .766*** .767***
Minority couple .246 .161 .150
Number of children .094 −.128** −.107**
Male’s educationa −.062* −.029 −.030
Female’s educationa .065 .019 .022
Income-to-needs ratioa .007 .002 .004
Open disagreementa .052** .079*** .077***
Communication stylea −.410*** −.412*** −.404***
Male nonassertivenessa −.161* −.035 −.058
Female nonassertivenessa .020 −.115* −.097*
Minority couple ×

income-to-needs ratio −.093 −.091* −.090*
Model Chi-Squared 245.643*** 480.561*** 484.895***
Model df 14 14 14
Score test — — 44.866***
Score df — — 14

Note. N = 4,401.
aCentered predictor.
*p < .05. **p < .01. ***p < .001.

In this model, the effects of predictors are the same regardless
of the cut point for the odds. The results of estimating this
model (using procedure LOGISTIC in SAS) are shown in the
last column of Table 20.8. Notice that the intercept is allowed
to depend on the cut point, so there are two intercepts in the
equation. (In fact, there are two different equations, but the
coefficients are being constrained to be the same in each.)
In that predictors are assumed to be invariant to the cutpoint,
there is only one set of regression coefficients. Effects are in-
terpreted just as in binary logistic regression, except that the
response is the log odds of more versus less severe violence,
rather than, as in Table 20.2, violence per se. Thus, substance
abuse is seen to raise the odds of more severe violence by
exp (.767) = 2.153, or about 115%, whereas each additional
child lowers the odds of more severe violence by about 10%.

Test of Invariance

In the first two columns of Table 20.8, where effects are al-
lowed to depend on the cut point, some predictors appear to
have different effects on the odds of intense male violence,
compared to violence per se. Particularly noticeable are the
effects of number of children, which are opposite in sign and
only significant for violence per se, and nonassertiveness,

which has a differential impact on each odds, depending on
gender. Are these effects significantly different, or just the re-
sult of sampling error? This can be tested using the score test
for the proportional odds assumption (automatically pro-
vided in SAS). The test is for the null hypothesis that regres-
sor effects are the same across all J − 1 possible cut points
(i.e., H0 is that, for each of the K regressors in the model,
�

j
k = �k , for j = 1, 2, . . . , J − 1). Under the null hypothe-

sis, this statistic is asymptotically distributed as chi-squared
with degrees of freedom equal to K ( J − 2). This is the dif-
ference in the number of parameters required to estimate the
model in Equation 20.23 versus Equation 20.24: K ( J − 1) −
K = K ( J − 1 − 1) = K ( J − 2). As shown in Table 20.8 for
the current example, its value is 44.866, which, with 14 de-
grees of freedom, is quite significant. Apparently, predictor
effects in Table 20.8 are not invariant to the cut point.

In the event that the score test proves significant, the
researcher has several options. First, he or she can use the
ordered logit model anyway, especially if noninvariant ef-
fects are only peripheral to the study. As an example, if I am
primarily interested in how cohabitation, substance abuse, or
relationship duration affect violence net of conflict resolution
factors, the invariance model in column 3 of Table 20.8 sum-
marizes those effects in an elegant fashion. Particularly when

schi_ch20.qxd  8/2/02  3:07 PM  Page 530



References 531

there are several categories of the response variable, Equa-
tion 20.24 is a substantially more parsimonious description
of the data than is any of the alternatives. Nevertheless, it is
frequently desirable to use a different modeling strategy
when invariance is rejected. One alternative is therefore to
choose the most informative bifurcation of the response vari-
able and proceed with binary logistic regression. For exam-
ple, either column 1 or 2 in Table 20.8 could be a legitimate
model to estimate. However, if it is especially important to
preserve the distinctions among different response cate-
gories, the multinomial analysis (as presented in Tables 20.6
and 20.7) is a viable strategy. Of course, if the response vari-
able has at least 5 levels, its sample distribution is not too
skewed, and the sample is large, the researcher may just want
to treat it as continuous and employ OLS.

SUGGESTIONS FOR FURTHER STUDY

This chapter has been intended as an introduction to a topic
with many complex facets. To become more familiar with lo-
gistic regression, the reader may want to consult many of the
sources that have been cited throughout the chapter. Two vol-
umes that are especially informative are those by Hosmer and
Lemeshow (1989) and Long (1997). One major use of logistic
regression not covered in this chapter is in survival analysis.
This technique is used whenever one is examining the unfold-
ing of events in time. For example, one may be investigating
the factors that predict the onset of sexual intercourse among
at-risk youth or the timing of entrance into or egress from mar-
ital unions. In these analyses, the response variable can be cast
in two equivalent forms. First, it can be the length of time peo-
ple survive in a given state (celibacy, singlehood, marriage)
until the occurrence of the event of interest (sexual inter-
course, marriage, divorce). Or it can be the hazard of event
occurrence. The latter is approximately the instantaneous
probability of event occurrence at time t, given that no event
has occurred prior to t, for a group of cases at risk for the event.
Logistic regression is a convenient statistical tool for estimat-
ing survival or hazard models. For those wishing to learn about
this use of the technique, Allison (1982, 1995) and Singer and
Willett (1993) are especially good source materials.
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The small-sample studies typical of psychological research
produce seemingly contradictory results, and reliance on sta-
tistical significance tests causes study results to appear even
more conflicting. Meta-analysis integrates the findings across
such studies to reveal the simpler patterns of relations that
underlie research literatures, thus providing a basis for theory
development. Meta-analysis can correct for the distorting ef-
fects of sampling error, measurement error, and other arti-
facts that produce the illusion of conflicting findings. This
chapter discusses these artifacts and the procedures used to
correct for them. Different approaches to meta-analysis
are discussed. Applications of meta-analysis in industrial-
organizational (IO) psychology and other areas are discussed
and evidence is presented that meta-analysis is transforming
research in psychology.

WHY WE NEED META-ANALYSIS

The goal in any science is the production of cumulative
knowledge. Ultimately this means the development of
theories that explain the phenomena that are the focus of the
scientific area. One example would be theories that explain
how personality traits develop in children and adults over

time and how these traits affect their lives. Another would be
theories of what factors cause job and career satisfaction and
what effects job satisfaction in turn has on other aspects of
one’s life. But before theories can be developed, we need to
be able to pin down the relations between variables. For ex-
ample, what is the relation between peer socialization and
level of extroversion? Or the relation between job satisfac-
tion and job performance?

Unless we can precisely calibrate such relations among
variables, we do not have the raw materials out of which to con-
struct theories. There is nothing for a theory to explain. For ex-
ample, if the relationship between extroversion and popularity
of children varies capriciously across different studies from a
strong positive to strong negative correlation and everything in
between, we cannot begin to construct a theory of how extro-
version might affect popularity. The same applies to the rela-
tion between job satisfaction and job performance.

The unfortunate fact is that most research literatures do
show conflicting findings of this sort. Some research studies
in psychology find statistically significant relationships
and some do not. In many research literatures, this split is
approximately 50–50 (Cohen, 1962, 1988; Schmidt, Hunter,
& Urry, 1976; Sedlmeier & Gigerenzer, 1989). This has been
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the traditional situation in most areas of the behavioral and
social sciences. Hence it has been very difficult to develop
understanding, theories, and cumulative knowledge.

The Myth of the Perfect Study

Before meta-analysis, the usual way in which scientists at-
tempted to make sense of research literatures was by use of
the narrative subjective review. In many research literatures,
however, there were not only conflicting findings, there were
also large numbers of studies. This combination made the
standard narrative-subjective review a nearly impossible
task—one far beyond human information-processing capa-
bilities (Hunter & Schmidt, 1990b, pp. 468–469). How does
one sit down and make sense of (for example) 210 conflicting
studies?

The answer as developed in many narrative reviews was
what came to be called the myth of the perfect study.
Reviewers convinced themselves that most—usually the vast
majority—of the studies available were methodologically de-
ficient and should not even be considered in the review. These
judgments of methodological deficiency were often based on
idiosyncratic ideas: One reviewer might regard the Peabody
Personality Inventory as lacking in construct validity and
throw out all studies that used that instrument. Another might
regard use of that same inventory as a prerequisite for
methodological soundness and eliminate all studies not using
this inventory. Thus any given reviewer could eliminate from
consideration all but a few studies and perhaps narrow the
number of studies from 210 to seven, for example. Conclu-
sions would then be based on these seven studies.

It has long been the case that the most widely read litera-
ture reviews are those appearing in textbooks. The function
of textbooks, especially advanced-level textbooks, is to sum-
marize what is known in a given field. But no textbook can
cite and discuss 210 studies on a single relationship. Often
textbook authors would pick out what they considered to be
the one or two best studies and then base textbook conclu-
sions on just those studies, discarding the vast bulk of the
information in the research literature—hence the myth of the
perfect study.

But in fact there are no perfect studies. All studies contain
measurement error in all measures used, as discussed later.
Independent of measurement error, no study’s measures have
perfect construct validity.And there are typically other artifacts
that distort study findings. Even if a hypothetical (and it would
have to be hypothetical) study suffered from none of these
distortions, it would still contain sampling error—typically a
substantial amount of sampling error, because sample sizes are
rarely very large. Hence no single study or small selected sub-

group of studies can provide an optimal basis for scientific con-
clusions about cumulative knowledge. As a result, reliance on
so-called best studies did not provide a solution to the problem
of conflicting research findings. This procedure did not even
successfully deceive researchers into believing it was a
solution—because different narrative reviewers arrived at dif-
ferent conclusions because they selected a different subset of
“best” studies. Hence the so-called conflicts in the literature
became conflicts in the reviews.

Some Relevant History

By the middle 1970s the behavioral and social sciences
were in serious trouble. Large numbers of studies had accu-
mulated on many questions that were important to theory
development, social policy decisions, or both. Results of
different studies on the same question typically were con-
flicting. For example, are workers more productive when
they are satisfied with their jobs? The studies did not agree.
Do students learn more when class sizes are smaller? Re-
search findings were conflicting. Does participative deci-
sion making in management increase productivity? Does
job enlargement increase job satisfaction and output? Does
psychotherapy really help people? The studies were in con-
flict. As a consequence, the public and government officials
were becoming increasingly disillusioned with the behav-
ioral and social sciences, and it was becoming more and
more difficult to obtain funding for research. In an invited
address to the American Psychological Association in 1970,
then-Senator Walter Mondale expressed his frustration with
this situation:

What I have not learned is what we should do about these prob-
lems. I had hoped to find research to support or to conclusively
oppose my belief that quality integrated education is the most
promising approach. But I have found very little conclusive evi-
dence. For every study, statistical or theoretical, that contains a
proposed solution or recommendation, there is always another,
equally well documented, challenging the assumptions or con-
clusions of the first. No one seems to agree with anyone else’s
approach. But more distressing I must confess, I stand with my
colleagues confused and often disheartened.

Then in 1981, the Director of the Federal Office of Man-
agement and Budget, David Stockman, proposed an 80% re-
duction in federal funding for research in the behavioral and
social sciences. (This proposal was politically motivated in
part, but the failure of behavioral and social science research
to be cumulative created the vulnerability to political attack.)
This proposed cut was a trial balloon sent up to see how much
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political opposition it would arouse. Even when proposed
cuts are much smaller than a draconian 80%, constituencies
can usually be counted on to come forward and protest the
proposed cuts. This usually happens, and many behavioral
and social scientists expected it to happen. But it did not. The
behavioral and social sciences, it turned out, had no con-
stituency among the public; the public did not care (see “Cuts
Raise New Social Science Query,” 1981). Finally, out of des-
peration, the American Psychological Association took the
lead in forming the Consortium of Social Science Associa-
tions to lobby against the proposed cuts. Although this su-
perassociation had some success in getting these cuts reduced
(and even, in some areas, getting increases in research fund-
ing in subsequent years), these developments should make us
look carefully at how such a thing could happen.

The sequence of events that led to this state of affairs was
much the same in one research area after another. First, there
was initial optimism about using social science research
to answer socially important questions. Do government-
sponsored job training programs work? We will do studies to
find out. Does Head Start really help disadvantaged kids?
The studies will tell us. Does integration increase the school
achievement of Black children? Research will provide the
answer. Next, several studies on the question are conducted,
but the results are conflicting. There is some disappointment
that the question has not been answered, but policymakers—
and people in general—are still optimistic. They, along with
the researchers, conclude that more research is needed to
identify the supposed interactions (moderators) that have
caused the conflicting findings—for example, perhaps
whether job training works depends on the age and education
of the trainees. Maybe smaller classes in the schools are
beneficial only for children with lower levels of academic
aptitude. It is hypothesized that psychotherapy works for
middle-class but not working-class patients. That is, the
conclusion at this point is that a search for moderator vari-
ables in needed.

In the third phase, a large number of research studies are
funded and conducted to test these moderator hypotheses.
When they are completed, there is now a large body of stud-
ies, but instead of being resolved, the number of conflicts in-
creases. The moderator hypotheses from the initial studies
are not borne out, and no one can make sense out of the con-
flicting findings. Researchers conclude that the question that
was selected for study in this particular case has turned out to
be hopelessly complex. They then turn to the investigation of
another question, hoping that this time the question will turn
out to be more tractable. Research sponsors, government
officials, and the public become disenchanted and cynical.
Research funding agencies cut money for research in this

area and in related areas. After this cycle has been repeated
enough times, social and behavioral scientists themselves
become cynical about the value of their own work, and they
publish articles expressing doubts about whether behavioral
and social science research is capable in principle of devel-
oping cumulative knowledge and providing general answers
to socially important questions (e.g., see Cronbach, 1975;
Gergen, 1982; Meehl, 1978).

Clearly, at this point there is a critical need for some
means of making sense of the vast number of accumulated
study findings. Starting in the late 1970s, new methods of
combining findings across studies on the same subject were
developed. These methods were referred to collectively as
meta-analysis, a term coined by Glass (1976). Applications
of meta-analysis to accumulated research literatures showed
that research findings are not nearly as conflicting as had
been thought, and that useful and sound general conclusions
can in fact be drawn from existing research. Cumulative the-
oretical knowledge is possible in the behavioral and social
sciences, and socially important questions can be answered in
reasonably definitive ways. As a result, the gloom and cyni-
cism that had enveloped many in the behavioral and social
sciences has been lifting.

META-ANALYSIS VERSUS 
SIGNIFICANCE TESTING

A key point in understanding the effect that meta-analysis has
had is that the illusion of conflicting findings in research lit-
eratures resulted mostly from the traditional reliance of re-
searchers on statistical significance testing in analyzing and
interpreting data in their individual studies (Cohen, 1994).
These statistical significance tests typically had low power to
detect existing relationships. Yet the prevailing decision rule
has been that if the finding was statistically significant, then a
relationship existed; and if it was not statistically significant,
then there was no relationship (Oakes, 1986; Schmidt, 1996).
For example, suppose that the population correlation be-
tween a certain familial condition and juvenile delinquency is
.30. That is, the relationship in the population of interest is
� = .30. Now suppose 50 studies are conducted to look for
this relationship, and each has statistical power of .50 to de-
tect this relationship if it exists. (This level of statistical
power is typical of many research literatures.) Then approxi-
mately 50% of the studies (25 studies) would find a statisti-
cally significant relationship; the other 25 studies would
report no significant relationship, and this would be inter-
preted as indicating that no relationship existed. That is, the
researchers in these 25 studies would most likely incorrectly
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state that because the observed relationship did not reach sta-
tistical significance, it probably occurred merely by chance.
Thus half the studies report that the familial factor was re-
lated to delinquency and half report that it had no relationship
to delinquency—a condition of maximal apparent conflicting
results in the literature. Of course, the 25 studies that report
that there is no relationship are all incorrect. The relationship
exists and is always � = .30. Traditionally, however, re-
searchers did not understand that a statistical power problem
such as this was even a possibility, because they did not un-
derstand the concept of statistical power (Oakes, 1986;
Schmidt, 1996). In fact, they believed that their error rate was
no more than 5% because they used an alpha level (signifi-
cance level) of .05. But the 5% is just the Type I error rate
(the alpha error rate)—the error rate that would exist if the
null hypothesis were true and in fact there was no relation-
ship. They overlooked the fact that if a relationship did exist,
then the error rate would be 1.00 minus the statistical power
(which here is 1.00 − .50 = .50). This is the Type II error
rate: the probability of failing to detect the relationship that
exists. If the relationship does exist, then it is impossible to
make a Type I error; that is, when there is a relationship, it is
impossible to falsely conclude that there is a relationship.
Only Type II errors can occur—and the significance test does
not control Type II errors.

Now suppose these 50 studies were analyzed using meta-
analysis. Meta-analysis would first compute the average r
across the 50 studies; all rs would be used in computing this av-
erage regardless of whether they were statistically significant.
This average should be very close to the correct value of .30,
because sampling errors on either side of .30 would average
out. So meta-analysis would lead to the correct conclusion that
the relationship is on the average � = .30.

Meta-analysis can also estimate the real variability of the
relationship across studies. To do this, one first computes the
variance of the 50 observed rs, using the ordinary formula for
the variance of a set of scores. One next computes the amount
of variance expected solely from sampling error variance,
using the formula for sampling error variance of the correla-
tion coefficient. This sampling variance is then subtracted
from the observed variance of the rs; after this subtraction,
the remaining variance in our example should be approxi-
mately zero if the population correlations are all .30. Thus the
conclusion would be that all of the observed variability of the
rs across the 50 studies is due merely to sampling error and
does not reflect any real variability in the true relationship.
Thus one would conclude correctly that the real relationship
is always .30—and not merely .30 on the average.

This simple example illustrates two critical points. First,
the traditional reliance on statistical significance tests in

interpreting studies leads to false conclusions about what the
study results mean; in fact, the traditional approach to data
analysis makes it virtually impossible to reach correct con-
clusions in most research areas (Hunter, 1997; Hunter &
Schmidt, 1990a; Schmidt, 1996). Second, meta-analysis
leads, by contrast, to the correct conclusions about the real
meaning of research literatures. These principles are illus-
trated and explained in more detail in Hunter and Schmidt
(1990a); for a shorter treatment, see Schmidt (1996).

The reader might reasonably ask what statistical methods
researchers should use in analyzing and interpreting the data
in their individual studies. If reliance on statistical signifi-
cance testing leads to false conclusions, what methods should
researchers use? The answer is point estimates of effect sizes
(correlations and d values) and confidence intervals. The
many advantages of point estimates and confidence intervals
are discussed in Hunter and Schmidt (1990b), Hunter (1997),
and Schmidt (1996). A recent APA Task Force report on sta-
tistical methods in research also discusses the advantages of
confidence intervals over significance tests (Wilkinson & the
Task Force on Statistical Inference, 1999).

Our example here has examined only the effects of sam-
pling error variance and low statistical power. There are other
statistical and measurement artifacts that cause artifactual
variation in effect sizes and correlations across studies—for
example, differences between studies in amount of measure-
ment error, range restriction, and dichotomization of mea-
sures. Also, in meta-analysis, mean correlations (and effect
sizes) must be corrected for downward bias due to such
artifacts as measurement error and dichotomization of
measures. There are also artifacts such as coding or tran-
scriptional errors in the original data that are difficult or
impossible to correct for. These artifacts and the complexities
involved in correcting for them are discussed later in this
chapter and are covered in more detail in Hunter and Schmidt
(1990a, 1990b) and Schmidt and Hunter (1996). This section
is an overview of why traditional data analysis and interpre-
tation methods logically lead to erroneous conclusions and
why meta-analysis can solve this problem and provide
correct conclusions.

A common reaction to the preceding critique of tradi-
tional reliance on significance testing goes something like
this: Your explanation is clear but I don’t understand how so
many researchers (and even some methodologists) could
have been so wrong so long on a matter as important as the
correct way to analyze data? How could psychologists and
others have failed to see the pitfalls of significance testing?
Over the years, a number of methodologists have addressed
this question (Carver, 1978; Cohen, 1994; Guttman, 1985;
Meehl, 1978; Oakes, 1986; Rozeboom, 1960). For one thing,

schi_ch21.qxd  9/6/02  1:00 PM  Page 536



Is Statistical Power the Solution? 537

in their statistics classes young researchers have typically
been taught a lot about Type I error and very little about
Type II error and statistical power. Thus they are unaware
that the error rate is very large in the typical study; they tend
to believe the error rate is the alpha level used (typically .05
or .01). In addition, empirical research suggests that most
researchers believe that the use of significance tests provides
them with many nonexistent benefits in understanding their
data. For example, most researchers believe that a statisti-
cally significant finding is a reliable finding in the sense that
it will replicate if a new study is conducted (Carver, 1978;
Oakes, 1986; Schmidt, 1996). For example, they believe that
if a result is significant at the .05 level, then the probability
of replication in subsequent studies (if conducted) is
1.00 − .05 = .95. This belief is completely false. The prob-
ability of replication is the statistical power of the study and
is almost invariably much lower than .95 (e.g., typically .50
or less). Most researchers also falsely believe that if a result
is nonsignificant, one can conclude that it is probably just
due to chance—another false belief, as illustrated in our
delinquency research example. There are other widespread
but false beliefs about the usefulness of information pro-
vided by significance tests (Carver, 1978; Oakes, 1986). A
recent discussion of these beliefs can be found in Schmidt
(1996).

During the 1980s and accelerating up to the present, the
use of meta-analysis to make sense of research literatures has
increased dramatically, as is apparent from reading research
journals. Lipsey and Wilson (1993) found over 350 meta-
analyses of experimental studies of treatment effects alone;
the total number is many times larger, because most meta-
analyses in psychology and the social sciences are conducted
on correlational data (as was our hypothetical example
above). The overarching metaconclusion from all these ef-
forts is that cumulative, generalizable knowledge in the be-
havioral and social sciences not only is possible but also is
increasingly a reality. In fact, meta-analysis has even pro-
duced evidence that cumulativeness of research findings in
the behavioral sciences is probably as great as in the physical
sciences. Psychologists have long assumed that their research
studies are less replicable than those in the physical sciences.
Hedges (1987) used meta-analysis methods to examine vari-
ability of findings across studies in 13 research areas in parti-
cle physics and 13 research areas in psychology. Contrary to
common belief, his findings showed that there was as much
variability across studies in physics as in psychology. Fur-
thermore, he found that the physical sciences used methods
to combine findings across studies that were essentially iden-
tical to meta-analysis. The research literature in both areas—
psychology and physics—yielded cumulative knowledge

when meta-analysis was properly applied. Hedges’s major
finding is that the frequency of conflicting research findings
is probably no greater in the behavioral and social sciences
than in the physical sciences. The fact that this finding
has been so surprising to many psychologists points to two
conclusions. First, psychologists’ reliance on significance
tests has caused our research literatures to appear much more
inconsistent than they are. Second, we have long overesti-
mated the consistency of research findings in the physical
sciences. In the physical sciences also, no research question
can be answered by a single study, and physical scientists
must use meta-analysis to make sense of their research
literature, just as psychologists do.

Another fact is relevant at this point: The physical sci-
ences, such as physics and chemistry, do not use statistical
significance testing in interpreting their data (Cohen, 1990). It
is no accident, then, that these sciences have not experienced
the debilitating problems described earlier that are inevitable
when researchers rely on significance tests. Given that the
physical sciences regard reliance on significance testing as
unscientific, it is ironic that so many psychologists defend the
use of significance tests on grounds that such tests are the
objective and scientifically correct approach to data analysis
and interpretation. In fact, it has been our experience that
psychologists and other behavioral scientists who attempt to
defend significance testing usually equate null hypothesis sta-
tistical significance testing with scientific hypothesis testing
in general. They argue that hypothesis testing is central to sci-
ence and that the abandonment of significance testing would
amount to an attempt to have a science without hypothesis
testing. They falsely believe that null hypothesis significance
testing and hypothesis testing in science in general are one
and the same thing. This belief is tantamount to stating that
physics, chemistry, and the other physical sciences are not
legitimate sciences because they are not built on hypothesis
testing. Another logical implication of this belief is that prior
to the introduction of null hypothesis significance testing by
R. A. Fisher (1932) in the 1930s, no legitimate scientific re-
search was possible. The fact is, of course, that there are many
ways to test scientific hypotheses—and that significance
testing is one of the least effective methods of doing this
(Schmidt & Hunter, 1997).

IS STATISTICAL POWER THE SOLUTION?

Some researchers believe that the only problem with signifi-
cance testing is low power and that if this problem could be
solved there would be no problems with reliance on signifi-
cance testing. These individuals see the solution as larger
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sample sizes. They believe that the problem would be solved
if every researcher before conducting each study would cal-
culate the number of subjects needed for so-called adequate
power (usually taken as power of .80) and then use that sam-
ple size. What this position overlooks is that this requirement
would make it impossible for most studies ever to be con-
ducted. At the start of research in a given area, the questions
are often of this form: Does Treatment A have an effect? (e.g.,
Does interpersonal skills training have an effect? or Does
this predictor have any validity?). If Treatment A indeed has
a substantial effect, the sample size needed for adequate
power may not be prohibitively large. But as research devel-
ops, subsequent questions tend to take this form: Is the effect
of Treatment A larger than the effect of Treatment B? (e.g., Is
the effect of the new method of training larger than that of the
old method?, or Is Predictor A more valid than Predictor B?).
The effect size then becomes the difference between the two
effects. Such effect sizes will often be small, and the required
sample sizes are therefore often quite large—often 1,000 or
2,000 or more (Schmidt & Hunter, 1978). And this is just to
attain power of .80, which still allows a 20% Type II error
rate when the null hypothesis is false—an error rate most
would consider high. Many researchers cannot obtain that
many subjects, no matter how hard they try; either it is be-
yond their resources or the subjects are just unavailable at
any cost. Thus the upshot of this position would be that
many—perhaps most—studies would not be conducted at all.
(Something like this has apparently occurred in IO psychol-
ogy in the area of validation studies of personnel selection
methods. After the appearance of the Schmidt et al. (1976) ar-
ticle showing that statistical power in criterion related valid-
ity studies probably averaged less than .50, researchers began
paying more attention to statistical power in designing stud-
ies. Average sample sizes increased from around 70 to more
than 200, with corresponding increases in statistical power.
However, the number of studies conducted declined dramati-
cally, with the result the total amount of information created
per year or per decade for entry into meta-analyses (validity
generalization) studies probably decreased. That is, the total
amount of information generated in the earlier period from
large numbers of small sample studies may have been greater
than that generated in the later period from a small number of
larger sample studies.)

People advocating the power position say this would not
be a loss. They argue that a study with inadequate power con-
tributes nothing and therefore should not be conducted. But
in fact such studies contain valuable information when com-
bined with others like them in a meta-analysis. In fact, very
precise meta-analysis results can be obtained based on stud-
ies that all have inadequate statistical power individually.

The information in these studies is lost if these studies are
never conducted.

The belief that such studies are worthless is based on two
false assumptions: (a) the assumption that every individual
study must be able to justify a conclusion on its own, without
reference to other studies, and (b) the assumption that every
study should be analyzed using significance tests. One of the
contributions of meta-analysis has been to show that no sin-
gle study is adequate by itself to answer a scientific question.
Therefore each study should be considered as a data point to
be contributed to a later meta-analysis. And individual stud-
ies should be analyzed using not significance tests but point
estimates of effect sizes and confidence intervals.

How, then, can we solve the problem of statistical power
in individual studies? Actually, this problem is a pseudoprob-
lem. It can be solved by discontinuing the significance test.
As Oakes (1986, p. 68) notes, statistical power is a legitimate
concept only within the context of statistical significance
testing. If significance testing is not used, then the concept of
statistical power has no place and is not meaningful. In par-
ticular, there need be no concern with statistical power when
point estimates and confidence intervals are used to analyze
data in studies and meta-analysis is used to integrate findings
across studies.

Our critique of the traditional practice of reliance on sig-
nificance testing in analyzing data in individual studies and in
interpreting research literatures might suggest a false conclu-
sion: the conclusion that if significance tests had never been
used, the research findings would have been consistent across
different studies examining a given relationship. Consider the
correlation between job satisfaction and job performance.
Would these studies have all had the same findings if re-
searchers had not relied on significance tests? Absolutely not:
The correlations would have varied widely (as indeed they
did). The major reason for this variability in correlations is
simple sampling error—caused by the fact that the small
samples used in individual research studies are randomly un-
representative of the populations from which they are drawn.
Most researchers severely underestimate the amount of vari-
ability in findings that is caused by sampling error. 

The law of large numbers correctly states that large random
samples are representative of their populations and yield
parameter estimates that are close to the real (population)
values. Many researchers seem to believe that the same law
applies to small samples. As a result they erroneously expect
statistics computed on small samples (e.g., 50 to 300) to be
close approximations to the real (population) values. In one
study we conducted (Schmidt, Ocasio, Hillery, & Hunter,
1985), we drew random samples (small “studies”) of N = 30
from a much larger data set and computed results on each
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N = 30 sample. These results varied dramatically from study
to study—and all this variability was due solely to sampling
error (Schmidt et al., 1985). Yet when we showed these data to
researchers they found it hard to believe that each study was a
random draw from the larger study. They did not believe sim-
ple sampling error could produce that much variation. They
were shocked because they did not realize how much varia-
tion simple sampling error produces in research studies.

A major advantage of meta-analysis is that it controls for
sampling error. Sampling error is random and nonsystematic—
over- and underestimation of population values are equally
likely. Hence averaging correlations or d values (standardized
mean differences) across studies causes sampling error to be
averaged out, producing an accurate estimate of the underlying
population correlation or mean population correlation. As
noted earlier, we can also subtract sampling error variance
from the between-study variance of the observed correlations
(or d values) to get a more accurate estimate of real variability
across studies. Taken together, these two procedures constitute
what we call bare bones meta-analysis—the simplest form of
meta-analysis. Bare bones meta-analysis is discussed in more
detail in a later section.

Most other artifacts that distort study findings are system-
atic rather than random. They usually create a downward
bias on the obtained study r or d value. For example, all vari-
ables in a study must be measured and all measures of vari-
ables contain measurement error. (There are no exceptions to
this rule.) The effect of measurement error is to downwardly
bias every correlation or d value. However, measurement
error can also contribute to differences between studies: If the
measures used in one study have more measurement error
than those used in another study, the observed rs or ds will be
smaller in the first study. Thus meta-analysis must correct for
both the downward bias and the artifactually created differ-
ences between different studies. Corrections of this sort are
discussed in this chapter under the heading “More Advanced
Forms of Meta-Analysis.”

ORGANIZATION OF REMAINDER OF
THIS CHAPTER

Different methodologists have developed somewhat different
approaches to meta-analysis (Glass, McGaw, & Smith, 1981;
Hedges & Olkin, 1985; Hunter, Schmidt, & Jackson, 1982;
Hunter & Schmidt, 1990b; Rosenthal, 1991). We first exam-
ine the Hunter-Schmidt methods, followed by an examina-
tion of the other approaches. Finally, we look at the impact of
meta-analysis over the last 20 years on the research enterprise
in psychology.

BARE BONES META-ANALYSIS

Bare bones meta-analysis corrects only for the distorting ef-
fects of sampling error. It ignores all other statistical and
measurement artifacts that distort study findings. For this rea-
son we do not recommend bare bones meta-analysis for use
in final integration of research literatures. Its primary value is
that it allows illustration of some of the key features of more
complete methods of meta-analysis. We illustrate bare bones
meta-analysis using the data shown in Table 21.1. Table 21.1
shows 21 observed correlations, each based on a sample of 68
U.S. Postal Service letter sorters. Each study presents the es-
timated correlation between the same aptitude test and the
same measure of accuracy in sorting letters by zip code. Val-
ues range from .02 to .39 and only 8 of the 21 (38%) are sta-
tistically significant. Both of these facts suggest a great deal
of disagreement among the studies.

We first compute the average correlation using the follow-
ing formula:

r =
∑

[Niri ]∑
Ni

= �̂ xy = .22 (21.1)

where r (the average observed correlation) estimates � xy , the
population mean correlation. Note that this formula weights
each correlation by its sample size—because studies with
larger Ns contain more information. (However, in this case all
N = 68, so all studies are weighted equally.) The mean value
of .22 is the meta-analysis estimate of the mean population
correlation.

We next compute the variance of the observed correlations
using the following formula:

S2
r =

∑⌊
Ni (ri − r)2⌋∑

Ni
= .0120

(21.2)

This formula also weights by sample size. The next step is to
compute the amount of variance in the observed correlations

TABLE 21.1 Validity Studies (N � 68 Each)

Observed Observed
Study Validity Study Validity

1 .04 12 .11
2 .14 13 .21
3 .31* 14 .37*
4 .12 15 .14
5 .38* 16 .29*
6 .27* 17 .26*
7 .15 18 .17
8 .36* 19 .39*
9 .20 20 .22

10 .02 21 .21
11 .23

*p < .05, two-tailed.
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expected across these studies due solely to sampling error
variance:

S2
e =

(
1 − r2)2

N − 1
= .0135 (21.3)

where N is the average sample size across studies.
Finally, we estimate the amount of between-study vari-

ance that is left after we subtract out expected sampling error
variance:

S2
�xy

= S2
r − S2

e (21.4)

where S2
�xy

estimates �2
�xy

, the population value.

S2
�xy

= .0120 − .0135 = −.0015

In this case there is slightly less variance in the observed r
than is predicted from sampling error. (This deviation from
zero is called second-order sampling error. Negative variance
estimates also occur in ANOVA and other statistical models
in which estimates are produced by subtraction; see Hunter &
Schmidt, 1990b, chap. 9). Hence we conclude that � xy = .22
and SD�xy = 0. That is, we conclude that sampling error ac-
counts for all the observed differences between the studies.
We conclude that the population �xy value underlying every
one of the studies is .22.

This example illustrates how meta-analysis sometimes re-
veals that all of the apparent variability across studies is illu-
sory. Frequently, however, there is considerable variability
remaining after correcting for sampling error. Often this re-
maining variability will be due to other variance-producing
artifacts that have not been corrected for. But sometimes
some of it might be “real.” Suppose the researcher hypothe-
sizes (e.g., based on evolutionary psychology theory) that the
results are different for males and females. He or she can then
check this hypothesis by subgrouping the studies into those
conducted on males and those conducted on females. If sex is
indeed a real moderator, then the mean correlations will be
different for males and females. The average within group
SD�xy will also be smaller than the overall SD�xy . Later in
this chapter we discuss other methods of checking for moder-
ator variables.

OTHER ARTIFACTS AND THEIR EFFECTS

Bare bones meta-analysis is deficient and should not be used
without further refinement in integrating research literatures.
It is deficient because there is no research literature in which
the only source of distortion in study findings is sampling

error. Because there are no scales that are free of measure-
ment error, the findings of every study are distorted by mea-
surement error—in both the independent variable measure
and the dependent variable measure. In addition, independent
of measurement error, no measure has perfect construct va-
lidity; all measures, even good ones, have at least some con-
struct deficiency (something left out) and some construct
contamination (something included that should not be). The
findings of most studies are also distorted by other artifacts.

Table 21.2 lists 10 of these additional artifacts. (For nota-
tional simplicity, we consider each of these as population val-
ues.) Measurement error in the independent and dependent
variable measures biases obtained correlations or d values
downward, with the amount of downward bias depending on

TABLE 21.2 Study Artifacts Beyond Sampling Error That Alter
the Value of Outcome Measures, With Examples From Personnel
Selection Research

1. Error of measurement in the dependent variable. Example:
Study validity will be systematically lower than true validity to the
extent that job performance is measured with random error.

2. Error of measurement in the independent variable. Example:
Study validity for a test will systematically understate the validity of
the ability measured since the test is not perfectly reliable.

3. Dichotomization of a continuous dependent variable. Example:
Turnover—the length of time that worker stays with the organization—
is often dichotomized into more than . . . or less than . . . , whereby the
cutoff point is some arbitrarily chosen interval such as 1 year or
6 months.

4. Dichotomization of a continuous independent variable. Example:
Interviewers are often told to dichotomize their perceptions into
acceptable versus reject.

5. Range variation in the independent variable. Example:
Study validity will be systematically lower than true validity to the
extent that hiring policy causes incumbents to have a lower variation
on the predictor than is true of applicants.

6. Attrition artifacts: Range variation in the dependent variable. Example:
Study validity will be systematically lower than true validity to the
extent that there is systematic attrition in workers on performance, as
when good workers are promoted out of the population or when poor
workers are fired for poor performance, or both.

7. Deviation from perfect construct validity in the independent variable.
Example:
Study validity will vary if the factor structure of the test differs from
the usual structure of tests for the same trait.

8. Deviation from perfect construct validity in the dependent variable.
Example:
Study validity will differ from true validity if the criterion is deficient
or contaminated.

9. Reporting or transcriptional error. Example:
Reported study validities may differ from actual study validities due to
a variety of reporting problems: inaccuracy in coding data, computa-
tional errors, errors in reading computer output, typographical errors by
secretaries or by printers. These errors can be very large in magnitude.

10. Variance due to extraneous factors. Example:
Study validity will be systematically lower than true validity if
incumbents differ in job experience at the time their performance
is measured.
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the size of the reliabilities of the measures. For example, if
both measures have reliability of .70, the downward bias
from this artifact alone will be 30%. In addition, differences
in reliability between studies will cause differences in find-
ings between studies.

Either or both of the continuous independent and depen-
dent variable measures may be dichotomized (typically at the
median). If both measures are dichotomized at the median or
mean, the underlying correlation will be reduced by the fac-
tor .80 × .80 or .64 (Hunter & Schmidt, 1990a).

Either or both of the variables may be affected by range
variation. For example, only the top 50% of test scorers
might be hired, producing a downward bias of around 30%
due to range restriction on the independent variable. In addi-
tion, those with poor job performance might be fired, produc-
ing range restriction on the dependent variable, resulting in a
further downward bias.

Deviation from perfect construct validity in the two mea-
sures produces an additional independent downward bias.
Construct validity is defined as the correlation between the
actual construct one is attempting to measure and true scores
on the scale one uses to measure that construct (Hunter &
Schmidt, 1990b). Although this correlation cannot be directly
observed, there is much empirical evidence to indicate it is
rarely perfect.

Errors in the data are not systematic in their effect on the
mean correlation or mean d value. The distortion produced in
the correlation can be in either direction. Across studies such
errors do have a systematic effect: They increase the amount of
artifactual variation. Sometimes data errors can be detected and
corrected, but usually this is not possible in meta-analysis.

An Example

Consider an example. Suppose the construct-level correlation
between two personality traits A and B is .60. (� AB = .60.)
This is the correlation that we as researchers are interested in,
the correlation between the two constructs themselves. Mea-
sure x is used to measure trait A and measure y is used to mea-
sure trait B. Now suppose we have the following situation:

a1 = .90 = the square root of the reliability of x; rxx = .81;
a2 = .90 = the square root of the reliability of y; ryy = .81;
a3 = .90 = the construct validity of x;
a4 = .90 = the construct validity of y;
a5 = .80 = the attenuation factor for splitting x at the median;
and
a6 = .80 = the attenuation factor for splitting y at the median.

This is not an extreme example. Both measures have ac-
ceptable reliability (.81 in both cases). Both measures have

high construct validity; for each measure, its true scores cor-
relate .90 with the actual construct. Both measures have been
dichotomized into low and high groups, but the dichotomiza-
tion is at the median, which produces less downward bias
than any other split.

The total impact of the six study imperfections is the total
attenuation factor A

A = (.90)(.90)(.90)(.90)(.80)(.80) = .42 (21.5)

Hence the attenuated study correlation—the expected ob-
served study correlation—is

�xy = .42� AB = .42(.60) = .25 (21.6)

That is, the study correlation is reduced to less than half the
value of the actual correlation between the two personality
traits.

This realistic example illustrates the power of artifacts
other than sampling error to severely distort study results.
These artifacts produce serious distortions and must be taken
seriously. This example contains six artifacts; the first four of
these are always present in every study. Dichotomization
does not occur in every study, but in many studies in which it
does not, other artifacts such as range restriction do occur,
and the overall attenuation factor, A, is often smaller than our
.42 here.

This example illustrates a single study. The different stud-
ies in a research literature will have different levels of arti-
facts and hence different levels of downward bias. Hence
these artifacts not only depress the overall mean observed
correlation, they also create additional variability in correla-
tions across studies beyond that created by sampling error.

MORE ADVANCED METHODS 
OF META-ANALYSIS

More advanced forms of meta-analysis correct for these arti-
facts. First, they correct for the overall downward bias pro-
duced by the artifacts. Second, they correct for the artifactual
differences between studies that these artifacts create. These
more advanced meta-analysis methods take two forms: meth-
ods in which each observed study correlation (or d value) is
corrected individually, and methods in which distributions of
artifact values are used to correct the entire distribution of ob-
served correlations (or d values) at one time. As discussed
later, both of these advanced meta-analysis methods are re-
ferred to as psychometric meta-analysis methods. These
methods are discussed in the following two sections.

schi_ch21.qxd  9/6/02  1:00 PM  Page 541



542 Meta-Analysis

Methods That Correct Each r or d Value Independently

We will describe this form of meta-analysis for correlations
but the same principles apply when the statistic being used is
the d value. The method that corrects each statistic individu-
ally is the most direct form of the more complete methods of
meta-analysis. In this method, each individual observed cor-
relation is corrected for each of the artifacts that have biased
it. This is most easily illustrated using our example from the
last section. In that example, the underlying construct-level
correlation is .60 (� AB = .60). But the total downward bias
created by the six artifacts operating on it reduced it to .25:

�xy = .42� AB = .42(.60) = .25 (21.7)

The total attenuating or biasing factor is .42. Now in a real
study if we can compute this total biasing factor, we can cor-
rect our observed value of .25 by dividing it by this factor:

� AB = .25/.42 = .60 (21.8)

A correction of this sort is applied to each of the observed
correlations included in the meta-analysis. This correction re-
verses the downwardly biasing process and restores the cor-
relation to its actual construct-level value. In the population
(that is, when N is infinite), this correction is always accurate,
because there is no sampling error. In real studies, however,
sample sizes are not infinite, so there is sampling error. The
effect of this sampling error is that corrections of this kind are
accurate only on the average. Because of sampling error, any
single corrected value may be randomly too large or too
small, but the average of such corrected values is accurate. It
is the average of these corrected values across all the studies
in the meta-analysis that is the focus of the meta-analysis. So
our estimate of � AB is accurate in expectation. There will be
no downward or upward bias in � AB .

Meta-analysis also has a second focus—on the variability
of these corrected correlations. The variance of these cor-
rected correlations is inflated by sampling error variance. In
fact, the corrections actually increase the amount of sampling
error variance. This sampling error variance is subtracted
from the variance of the corrected rs to estimate the real vari-
ance of the construct-level correlations:

S2
� AB

= S2
�̂ AB

− S2
e �̂ AB

(21.9)

In this equation, S2
�̂ AB

is the variance of the corrected correla-
tions. This variance contains sampling error, and the amount
of that sampling error is S2

e �̂ AB
. Hence the difference between

these two figures, S2
� AB

, estimates the real (i.e., population)
variance of � AB . The square root of S2

� AB
is the estimate of

SD� AB . Hence we have � AB and SD�AB as the product of the
meta-analysis. That is, we have estimated the mean and the
SD of the underlying construct-level correlations. This is a
major improvement over bare bones meta-analysis, which
estimates the mean and SD of the downwardly biased corre-
lations (� xy and SD�xy ) and hence does not tell us anything
about the correlation between actual constructs or traits.

If SD� AB is zero or very small, this indicates that there are
no moderators (interactions) producing different values of
� AB in different studies. Hence there is no need to test mod-
erator hypotheses. If SD� AB is larger, this variation may be
due to other artifacts—such as data errors—that you have not
been able to correct for. However, some of the remaining
variation may be due to one or more moderator variables. If
there is theoretical evidence to suggest this, these hypotheses
can be tested by subgrouping the studies and performing a
separate meta-analysis on each subgroup. It may turn out that
� AB really is different for males and females, or for higher
versus lower management levels. If so, the moderator hy-
pothesis has been confirmed. Another approach to moderator
analysis is correlational: The values of �̂ AB can be correlated
with study characteristics (hypothesized moderators). Multi-
ple regression can also be used. Values of �̂ AB can be re-
gressed on multiple study characteristics. In all forms of
moderator analysis, there are statistical problems in modera-
tor analysis that the researcher should be aware of. We dis-
cuss these problems later in this chapter.

What we have presented here is merely an overview of the
main ideas in this approach to meta-analysis. A detailed dis-
cussion can be found in Hunter and Schmidt (1990b). In that
book, chapter 3 discusses application of this method to corre-
lations and chapter 7 to d values. The actual formulas are
considerably more complicated than in the case of bare bones
meta-analysis and are beyond the scope and length limita-
tions of this chapter. Several computer programs have been
created for these methods. These programs are in the public
domain and are available to anyone. They are presented in the
appendix to Hunter and Schmidt (1990b) and are available on
request from the authors.

Meta-Analysis Using Artifact Distributions

Most meta-analyses do not use the method described in the
previous section. Most meta-analyses do not correct each r or
d statistic individually for the artifactual biases that have
affected it. Probably less than 10% of advanced-level meta-
analyses correct each r or d value individually. The reason for
this is that most studies do not present all of the information
on artifacts that is necessary to make these corrections. For
example, many studies do not present information on the
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reliability of the scales used. Many studies do not present in-
formation on the degree of range restriction present in the
data. The same is true for the other artifacts.

However, artifact information is usually presented sporad-
ically in the studies included in the meta-analysis. Some stud-
ies present reliability information on the independent variable
measures and some on the dependent variable measures.
Some present range restriction information but not reliability
information. In addition, information on artifact levels typical
of the research literature being analyzed is often available
from other sources. For example, test or inventory manuals
often present information on scale reliability. Information on
typical levels of range restriction can be found in the person-
nel selection literature. Using all such sources of artifact in-
formation, it is often possible to compile a distribution of
artifacts that is representative of that research literature; for
example, a distribution of interrater reliabilities of supervi-
sory ratings of job performance; a distribution of reliabilities
typical of spatial ability tests; or a distribution of reliabilities
of job satisfaction measures.

Artifact distribution meta-analysis is a set of quantitative
methods for correcting artifact-produced biases using such
distributions of artifacts. Correlations are not corrected indi-
vidually. Instead, a bare bones meta-analysis is first per-
formed and then the mean 

(
� xy

)
and SD

(
SD�xy

)
produced by

the bare bones analysis are corrected for artifacts other than
sampling error. The formulas for this form of meta-analysis
are even more complex than those used when each correla-
tion is corrected individually. These methods are presented in
detail in Hunter and Schmidt (1990b), in chapter 4 for corre-
lations and in chapter 7 for the d value statistic. Approxi-
mately 90% of advanced-level meta-analyses use artifact
distribution meta-analysis methods. Again, several public
domain computer programs are available for implementing
this method of meta-analysis.

In addition to methods developed by the present authors,
meta-analysis methods based on artifact distribution have
been developed by Callender and Osburn (1980) and Raju
and Burke (1983). Computer simulation studies have shown
that all of these methods are quite accurate. In data sets in
which artifact information is available for each correlation, it
is possible to apply both methods of advanced-level meta-
analysis to the same set of studies. That is, each correlation
can be corrected individually and artifact distribution based
meta-analysis can also be applied in a separate analysis. In
such cases, the meta-analysis results have been essentially
identical, as would be expected.

Moderator hypotheses may also be examined when using
artifact distribution meta-analysis. With this method of meta-
analysis, subgrouping of studies is the preferred method of

moderator analysis. Regression of study correlations onto
study characteristics (potential moderators) works less well
because the study correlations in this case have not been (and
cannot be) individually corrected for artifacts and hence the
correlations are (differentially) biased as indices of actual
study findings. Hence they lack construct validity as mea-
sures of true study correlations or effect sizes.

CLASSIFICATION OF META-ANALYSIS METHODS

Meta-analysis methods can be divided into three categories:
(a) methods that are purely descriptive (and do not address
sampling error); (b) methods that address sampling error but
not other artifacts; and (c) methods that address both sam-
pling error and other artifacts that distort findings in individ-
ual studies. Figure 21.1 illustrates this classification system
and references publications that explicate each type of
method.

Descriptive Meta-Analysis Methods

Glass (1976) advanced the first meta-analysis procedures and
coined the term meta-analysis to designate the analysis of
analyses (studies). For Glass, the purpose of meta-analysis is
descriptive; the goal is to paint a very general, broad, and
inclusive picture of a particular research literature (Glass,
1977; Glass et al., 1981). The questions to be answered are
very general; for example, does psychotherapy—regardless
of type—have an impact on the kinds of outcomes that ther-
apy researchers consider important enough to measure, re-
gardless of the nature of these outcomes (e.g., self-reported
anxiety, count of emotional outbursts, etc.)? Thus Glassian
meta-analysis often combines studies with somewhat differ-
ent independent variables (e.g., different kinds of therapy)
and different dependent variables. As a result, some critics
have criticized these methods as combining apples and or-
anges. However, Glassian meta-analysis does allow for sepa-
rate meta-analyses for different independent variables (e.g.,
different types of psychotherapy). But this is rarely done for
different dependent variables. Glassian meta-analysis has
three primary properties:

1. A strong emphasis on effect sizes rather than significance
levels. Glass believed the purpose of research integration
is more descriptive than inferential, and he felt that the
most important descriptive statistics are those that indicate
most clearly the magnitude of effects. Glassian meta-
analysis typically employs estimates of the Pearson r or
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Figure 21.1 Schematic illustrating methods of meta-analysis.

Methods That Address Both Sampling Error
and Other Artifacts (Psychometric Meta-analysis

Purely Descriptive Methods

Glassian Methods
(Glass, McGaw, & Smith, 1981)

Study Effects Methods
(Bangert-Drowns et al., 1983)

Methods That Address Sampling Error

Homogeneity Test-based Methods
(Hedges & Olkin, 1985;

Rosenthal & Rubin, 1982)

(Hunter & Schmidt, 1990b;
Hunter, Schmidt, & Jackson, 1982;

Schmidt & Hunter, 1977)

Bare Bones Methods
(Hunter & Schmidt, 1990b;

Hunter, Schmidt, & Jackson, 1982)

(Callender & Osborn, 1980) (Raju & Berke, 1983)

estimates of d. The initial product of a Glassian meta-
analysis is the mean and standard deviation of observed
effect sizes or correlations across studies.

2. Acceptance of the variance of effect sizes at face value.
Glassian meta-analysis implicitly assumes that the ob-
served variability in effect sizes is real and should have
some substantive explanation. There is no attention to sam-
pling error variance in the effect sizes. The substantive
explanations are sought in the varying characteristics of the
studies (e.g., sex or mean age of subjects, length of treat-
ment, and more). Study characteristics that correlate with
study effect are examined for their explanatory power. The
general finding in applications of Glassian meta-analysis
has been that few study characteristics correlate signifi-
cantly with study outcomes. Problems of capitalization on

chance and low statistical power associated with this step
in meta-analysis are discussed in Hunter and Schmidt
(1990b, chap. 2).

3. A strongly empirical approach to determining which as-
pects of studies should be coded and tested for possible
association with study outcomes. Glass (1976, 1977) felt
that all such questions are empirical questions, and he de-
emphasized the role of theory in determining which vari-
ables should be tested as potential moderators of study
outcome (see also Glass, 1972).

One variation of Glass’s methods has been labeled study
effects meta-analysis by Bangert-Drowns (1986). It differs
from Glass’s procedures in several ways. First, only one effect
size from each study is included in the meta-analysis, thus
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ensuring statistical independence within the meta-analysis. If
a study has multiple dependent measures, those that assess the
same construct are combined (usually averaged), and those
that assess different constructs are assigned to different meta-
analyses. Second, study effects meta-analysis calls for the
meta-analyst to make some judgments about study method-
ological quality and to exclude studies with deficiencies
judged serious enough to distort study outcomes. In review-
ing experimental studies, for example, the experimental treat-
ment must be at least similar to those judged by experts in the
research area to be appropriate, or the study will be excluded.
This procedure seeks to calibrate relationships between spe-
cific variables rather than to paint a broad Glassian picture of
a research area. In this sense it is quite different from Glassian
methods and is more focused on the kinds of questions that re-
searchers desire answers to. However, this approach is like
the Glass method in that it does not acknowledge that much of
the variability in study findings is due to sampling error vari-
ance. That is, it takes observed correlations and d values at
face value. Some of those instrumental in developing and
using this procedure are Mansfield and Busse (1977), Kulik
and his associates (Bangert-Drowns, Kulik, & Kulik, 1983;
Kulik & Bangert-Drowns, 1983–1984), Landman and Dawes
(1982), and Wortman and Bryant (1985). In recent years,
fewer published meta-analyses have used Glassian methods
or study effects meta-analyses.

Meta-Analysis Methods That Focus on Sampling Error

As noted earlier, numerous artifacts produce the deceptive
appearance of variability in results across studies. The arti-
fact that typically produces more false variability than any
other is sampling error variance. Glassian meta-analysis and
study effect meta-analysis implicitly accept variability pro-
duced by sampling error variance as real variability. There
are two types of meta-analyses that move beyond Glassian
methods in that they attempt to control for sampling error
variance.

Homogeneity Test-Based Meta-Analysis

The first of these methods is homogeneity test-based meta-
analysis. This approach has been advocated independently by
Hedges (1982b; Hedges & Olkin, 1985) and by Rosenthal
and Rubin (1982).

Hedges (1982a) and Rosenthal and Rubin (1982) pro-
posed that chi-square statistical tests be used to decide
whether study outcomes are more variable than would be
expected from sampling error alone. If these chi-square tests
of homogeneity are not statistically significant, then the

population correlation or effect size is accepted as constant
across studies and there is no search for moderators. Use of
chi-square tests of homogeneity to estimate whether findings
in a set of studies differ more than would be expected from
sampling error variance was originally proposed by Snedecor
(1946).

The chi-square test of homogeneity typically has low
power to detect variation beyond sampling error (National
Research Council, 1992). (Hedges and Olkin (1985) recom-
mend that if theory suggests the existence of moderators, a
moderator analysis should be conducted even if the homo-
geneity test is not significant. However, those using their
methods typically ignore this recommendation.) Hence the
meta-analyst will often conclude that the studies being exam-
ined are homogenous when they are not; that is, the meta-
analyst will conclude that the value of �xy or �xy is the same
in all the studies included in the meta-analysis when, in fact,
these parameters actually vary across studies. A major prob-
lem here is that under these circumstances, the fixed effects
model of meta-analysis is then used in almost all cases. Un-
like random effects meta-analysis models, fixed effects mod-
els assume zero between-study variability in �xy or �xy in
computing the standard error of the r or d, resulting in un-
derestimates of the relevant standard errors of the mean. This
in turn results in confidence intervals around the r or d that
are erroneously narrow—sometimes by large amounts. This
creates an erroneous impression that the meta-analysis find-
ings are much more precise than in fact they really are. This
problem also results in Type I biases in all significance tests
conducted r or d, and these biases are often quite large
(Hunter & Schmidt, 2000). As a result of this problem, the
National Research Council (1992) report on data integration
recommended that fixed effects models be replaced by ran-
dom effects models, which do not suffer from this problem.
We have also made that recommendation (Hunter & Schmidt,
2000). However, the majority of published meta-analyses
using the Rosenthal-Rubin methods and the Hedges-Olkin
methods have used their fixed effects models. For example,
most of the meta-analyses that have appeared in Psychologi-
cal Bulletin are fixed effects meta-analysis. Most of these
analyses employ the Hedges and Olkin (1985) fixed effect
meta-analysis model.

Both Rosenthal and Rubin and Hedges and Olkin have
presented random effects meta-analysis models as well as
fixed effects methods, but meta-analysts have rarely em-
ployed their random effects methods. The Hunter-Schmidt
methods, described earlier in this chapter, are all random
effects methods.

Hedges (1982b) and Hedges and Olkin (1985) extended
the concept of homogeneity tests to develop a more general
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procedure for moderator analysis based on significance
testing. It calls for breaking the overall chi-square statistic
down into the sum of within- and between-group chi-squares.
The original set of effect sizes in the meta-analysis is divided
into successively smaller subgroups until the chi-square sta-
tistics within the subgroups are nonsignificant, indicating that
sampling error can explain all the variation within the last set
of subgroups.

Homogeneity test-based meta-analysis represents an ironic
return to the practice that originally led to the great difficulties
in making sense out of research literatures: reliance on statis-
tical significance tests. As noted previously, the chi-square
test typically has low power. Another problem is that the chi-
square test has a Type I bias. Under the null hypotheses, the
chi-square test assumes that all between-study variance in
study outcomes (e.g., rs or ds) is sampling error variance; but
there are other purely artifactual sources of variance between
studies in effect sizes.As discussed earlier, these include com-
putational, transcriptional, and other data errors, as well as
differences between studies in reliability of measurement and
in levels of range restriction—and others, as discussed earlier.
Thus, even when true study effect sizes are actually the same
across studies, these sources of artifactual variance will create
variance beyond sampling error, sometimes causing the chi-
square test to be significant and hence to falsely indicate het-
erogeneity of effect sizes. This is especially likely when the
number of studies is large, increasing statistical power to de-
tect small amounts of such artifactual variance. Another prob-
lem is that even when the variance beyond sampling error is
not artifactual, it often will be small in magnitude and of little
or no theoretical or practical significance. Hedges and Olkin
(1985) recognized this fact and cautioned that researchers
should not merely look at significance levels but should eval-
uate the actual size of the variance; unfortunately, however,
after researchers are caught up in significance tests, the usual
practice is to assume that if it is statistically significant it is
important (and if it is not, it is zero). When the major focus is
on the results of significance tests, effect sizes are usually
ignored.

Bare Bones Meta-Analysis

The second approach to meta-analysis that attempts to con-
trol only for the artifact of sampling error is what we referred
to earlier as bare bones meta-analysis (Hunter & Schmidt,
1990a; Hunter et al., 1982; Pearlman, Schmidt, & Hunter,
1980). This approach can be applied to correlations, d-values,
or any other effect size statistic for which the standard error is
known. For example, if the statistic is correlations, r is first
computed. Then the variance of the set of correlations is

computed. Next the amount of sampling error variance is
computed and subtracted from this observed variance. If the
result is zero, then sampling error accounts for all the ob-
served variance, and the r value accurately summarizes all
the studies in the meta-analysis. If not, then the square root of
the remaining variance is the index of variability remaining
around the mean r after sampling error variance is removed.
Earlier in this chapter we presented examples of bare bones
meta-analysis.

Because there are always other artifacts (such as measure-
ment error) that should be corrected for, we have consistently
stated in our writings that the bare bones meta-analysis
method is incomplete and unsatisfactory. It is useful primar-
ily as the first step in explaining and teaching meta-analysis
to novices. However, studies using bare bones methods have
been published; the authors of these studies have invariably
claimed that the information needed to correct for artifacts
beyond sampling error was unavailable to them. In our expe-
rience, this is in fact rarely the case. Estimates of artifact val-
ues (e.g., reliabilities of scales) are usually available from the
literature, from test manuals, or from other sources, as indi-
cated earlier. These values can be used to create distributions
of artifacts for use in artifact distribution-based meta-analysis
(described earlier in this chapter).

Psychometric Meta-Analysis

The third type of meta-analysis is psychometric meta-analysis.
These methods correct not only for sampling error (an unsys-
tematic artifact) but for other, systematic artifacts, such as
measurement error, range restriction or enhancement, di-
chotomization of measures, and so forth. These other artifacts
are said to be systematic because, in addition to creating arti-
factual variation across studies, they also create systematic
downward biases in the results of all studies. For example,
measurement error systematically biases all correlations
downward. Psychometric meta-analysis corrects not only for
the artifactual variation across studies, but also for the down-
ward biases. Psychometric meta-analysis is the only meta-
analysis method that takes into account both statistical and
measurement artifacts. Two variations of these procedures
were described earlier in this chapter in the section titled
“More Advanced Methods of Meta-Analysis.” A detailed pre-
sentation of these procedures can be found in Hunter
and Schmidt (1990b) or Hunter et al. (1982). Callender and
Osborn (1980), and Raju and Burke (1983) also developed
methods for psychometric meta-analysis. These methods dif-
fer slightly in computational details but have been shown to
produce virtually identical results (Law, Schmidt, & Hunter,
1994a, 1994b).
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UNRESOLVED PROBLEMS IN META-ANALYSIS

In all forms of meta-analysis, there are unresolvable prob-
lems in the search for moderators. First, when effect size
estimates are regressed on multiple-study characteristics,
capitalization on chance operates to increase the apparent
number of significant associations for those study character-
istics that have no actual associations with study outcomes.
Because the sample size is the number of studies and many
study properties may be coded, this problem is often severe
(Hunter & Schmidt, 1990b, chap. 2). There is no purely sta-
tistical solution to this problem. The problem can be miti-
gated, however, by basing choice of study characteristics and
final conclusions not only on the statistics at hand, but also on
other theoretically relevant empirical findings (which may be
the result of other meta-analyses) and on theoretical consid-
erations. Results should be examined closely for substantive
and theoretical meaning. Capitalization on chance is a threat
whenever the (unknown) correlation or regression weight is
actually zero or near zero. When there is in fact a relation-
ship, there is another problem: Power to detect the relation is
often low (Hunter & Schmidt, 1990b, chap. 2). Thus, true
moderators of study outcomes (to the extent that such exist)
may have only a low probability of showing up as statisti-
cally significant. In short, this step in meta-analysis is often
plagued with all the problems of small-sample studies. Other
things being equal, conducting separate meta-analyses on
subsets of studies to identify a moderator does not avoid
these problems and may lead to additional problems of con-
founding of moderator effects (Hunter & Schmidt, 1990b,
chap. 13).

Although there are often serious problems in detecting
moderator variables in meta-analysis, there is no approach to
moderator detection that is superior to meta-analysis. In fact,
alternative methods (e.g., quantitative analyses within individ-
ual studies, narrative reviews of literatures) have even more
serious problems and hence are inferior to meta-analysis.
Moderator detection is difficult because a large amount of
information is required for clear identification of moderators.
Even sets of 50–100 studies often do not contain the required
amounts of information.

Another issue in meta-analysis that is widely regarded as
unresolved is the issue of judgments about which studies to
include in a meta-analysis. There is widespread agreement
that studies should not be included if they do not measure the
constructs that are the focus of the meta-analysis. For exam-
ple, if the focus is on the correlation between job performance
and the personality trait of conscientiousness, correlations
based on other personality traits should be excluded from that
meta-analysis. Correlations between conscientiousness and

measures of other dependent variables—such as tenure—
should also be excluded. In addition, it should be explicitly
decided in advance exactly what kind of measures qualify as
measures of job performance. For many purposes, only mea-
sures of overall job performance will qualify; partial mea-
sures, such as citizenship behaviors on the job, are deficient in
construct validity as measures of overall job performance.
Hence there is general agreement that meta-analysis requires
careful attention to construct validity issues in determining
which studies should be included.

Most meta-analysis studies published today contain multi-
ple meta-analyses. To continue our example from the previ-
ous paragraph, the meta-analysis of the relation between
conscientiousness and job performance would probably be
only one of several reported in the article. Others would in-
clude the relationship with job performance for the other four
of the Big Five personality traits. In addition, other meta-
analyses would probably be reported separately for other de-
pendent variables: citizenship behaviors, tenure, absenteeism,
and so on. That is, one meta-analysis is devoted to each com-
bination of constructs. Again, there appears to be little dis-
agreement that this should be the case. Hence the total number
of meta-analyses is much larger than the total number of
meta-analysis publications.

The disagreement concerns whether studies that do meet
construct validity requirements should be excluded on the
basis of other alleged methodological defects. One position is
that, in many literatures, most studies should be excluded a
priori on such grounds and that the meta-analysis should be
performed only the remaining, often small, set of studies.
This position reflects the myth of the perfect study, discussed
at the beginning of this chapter. The alternative that we advo-
cate is to include all studies that meet basic construct validity
requirements, and to treat the remaining judgments about
methodological quality as hypotheses to be tested empiri-
cally. This is done by conducting separate meta-analyses on
subgroups of studies that do and do not have the method-
ological feature in question and comparing the findings. If the
results are essentially identical, then the hypothesis that that
methodological feature affects study outcomes is discon-
firmed and all conclusions should be based on combined
meta-analysis. If the results are different, then the hypothesis
that that methodological feature is important is confirmed.
(This position takes it as axiomatic that any methodological
feature that has no effect on study findings is not important
and can be disregarded.) In our experience, most method-
ological hypotheses of this sort are disconfirmed. In any case,
this empirical approach helps to settle disputes about what
methodological features of studies are important. That is, this
approach leads to advances in methodological knowledge.
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THE ROLE OF META-ANALYSIS IN 
THEORY DEVELOPMENT

As noted at the beginning of this chapter, the major task in the
behavioral and social sciences, as in other sciences, is the de-
velopment of theory. A good theory is a good explanation of
the processes that actually take place in a phenomenon. For
example, what actually happens when employees develop a
high level of organizational commitment? Does job satisfac-
tion develop first and then cause the development of commit-
ment? If so, what causes job satisfaction to develop and how
does it have an effect on commitment? How do higher levels
of mental ability cause higher levels of job performance?
Only by increasing job knowledge? Or also by directly im-
proving problem solving on the job? The researcher is essen-
tially a detective; his or her job is to find out why and how
things happen the way they do. To construct theories, how-
ever, researchers must first know some of the basic facts, such
as the empirical relations among variables. These relations
are the building blocks of theory. For example, if researchers
know there is a high and consistent population correlation be-
tween job satisfaction and organization commitment, this will
send them in particular directions in developing their theo-
ries. If the correlation between these variables is very low and
consistent, theory development will branch in different direc-
tions. If the relation is highly variable across organizations
and settings, researchers will be encouraged to advance inter-
active or moderator-based theories. Meta-analysis provides
these empirical building blocks for theory. Meta-analytic
findings tell us what it is that needs to be explained by the the-
ory. Meta-analysis has been criticized because it does not di-
rectly generate or develop theory (Guzzo, Jackson, & Katzell,
1986). This is like criticizing typewriters or word processors
because they do not generate novels on their own. The results
of meta-analysis are indispensable for theory construction,
but theory construction itself is a creative process distinct
from meta-analysis.

As implied in the language used here, theories are causal
explanations. The goal in every science is explanation, and
explanation is always causal. In the behavioral and social
sciences, the methods of path analysis (e.g., see Hunter &
Gerbing, 1982) can be used to test causal theories when the
data meet the assumptions of the method. The relationships
revealed by meta-analysis—the empirical building blocks for
theory—can be used in path analysis or structural equation
modeling to test causal theories even when all the delineated
relationships are observational rather than experimental. Ex-
perimentally determined relationships can also be entered
into path analyses along with observationally based relations
by transforming d values to correlations. Path analysis can be

a very powerful tool for reducing the number of theories that
could possibly be consistent with the data, sometimes to a
very small number, and sometimes to only one theory
(Hunter, 1988). For examples, see Hunter (1983) and Schmidt
(1992). Every such reduction in the number of possible
theories is an advance in understanding.

META-ANALYSIS IN INDUSTRIAL-
ORGANIZATIONAL PSYCHOLOGY
AND OTHER APPLIED AREAS

There have been numerous applications of meta-analysis in
industrial-organizational (IO) psychology. The most extensive
and detailed application of meta-analysis in IO psychology
has been the study of the generalizability of the validities of
employment selection procedures (Schmidt, 1988; Schmidt &
Hunter, 1981). The findings have resulted in major changes in
the field of personnel selection. Validity generalization re-
search is described in more detail in the following section.

The meta-analysis methods presented in this chapter have
been applied in other areas of IO psychology and organiza-
tional behavior. Between 1978 and 1998, there have been ap-
proximately 80 published nonselection applications. The
following are some examples: (a) correlates of role conflict
and role ambiguity (C. D. Fisher & Gittelson, 1983; Jackson
& Schuler, 1985); (b) relation of job satisfaction to absen-
teeism (Hackett & Guion, 1985; Terborg & Lee, 1982);
(c) relation between job performance and turnover (McEvoy
& Cascio, 1987); (d) relation between job satisfaction and job
performance (Iaffaldono & Muchinsky, 1985; Petty, McGee,
& Cavender, 1984); (e) effects of nonselection organizational
interventions on employee output and productivity (Guzzo,
Jette, & Katzell, 1985); (f) effects of realistic job previews on
employee turnover, performance, and satisfaction (McEvoy
& Cascio, 1985; Premack & Wanous, 1985); (g) evaluation
of Fiedler’s theory of leadership (Peters, Harthe, & Pohlman,
1985); and (h) accuracy of self-ratings of ability and skill
(Mabe & West, 1982).

The applications have been to both correlational and
experimental literatures.As of the mid-1980s, sufficient meta-
analyses had been published in IO psychology that a review of
meta-analytic studies in this area was published. This lengthy
review (Hunter & Hirsh, 1987) reflected the fact that this lit-
erature had already become quite large. It is noteworthy that
the review denoted considerable space to the development
and presentation of theoretical propositions; this was possible
because the clarification of research literatures produced by
meta-analysis provides a foundation for theory development
that previously did not exist. It is also noteworthy that the
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findings in one meta-analysis were often found to be theoreti-
cally relevant to the interpretation of the findings in other
meta-analyses.Asecond review of meta-analytic studies in IO
psychology has since been published (Tett, Meyer, & Roese,
1994).

The examples cited here applied meta-analysis to research
programs. The results of such programs can sometimes be
used as a foundation for policy recommendations. But meta-
analysis can be applied more directly in the public policy
arena. Consider one example. The Federation of Behavioral,
Psychological, and Cognitive Sciences sponsors regular
science and public policy seminars for members of Congress
and their staffs. In one seminar, the speaker was Eleanor
Chelimsky, for years the director of the General Accounting
Office’s (GAO) Division of Program Evaluation and
Methodology. In that position she pioneered the use of meta-
analysis as a tool for providing program evaluation and other
legislatively significant advice to Congress. Chelimsky
(1994) stated that meta-analysis has proven to be an excellent
way to provide Congress with the widest variety of research
results that can hold up under close scrutiny under the time
pressures imposed by Congress. She stated that General
Accounting Office has found that meta-analysis reveals both
what is known and what is not known in a given topic area,
and distinguishes between fact and opinion without being
confrontational. One application she cited as an example was
a meta-analysis of studies on the merits of producing binary
chemical weapons (nerve gas in which the two key ingredi-
ents are kept separate for safety until the gas is to be used).
The meta-analysis did not support the production of such
weapons. This was not what officials in the Department of
Defense wanted to hear, and the Department of Defense dis-
puted the methodology and the results. But the methodology
held up under close scrutiny, and in the end Congress
eliminated funds for binary weapons. By law it is the respon-
sibility of the General Accounting Office to provide policy-
relevant research information to Congress. So the adoption of
meta-analysis by the General Accounting Office provides a
clear and even dramatic example of the impact that meta-
analysis can have on public policy.

As noted above, one major application of meta-analysis to
date has been the examination of the validity of tests and other
methods used in personnel selection. Meta-analysis has been
used to test the hypothesis of situation-specific validity. In per-
sonnel selection it had long been believed that validity was
specific to situations—that is, it was believed that the validity
of the same test for what appeared to be the same job varied
from employer to employer, region to region, across time
periods, and so forth. In fact, it was believed that the same test
could have high validity (i.e., a high correlation with job

performance) in one location or organization and be com-
pletely invalid (i.e., have zero validity) in another. This belief
was based on the observation that observed validity
coefficients for similar tests and jobs varied substantially
across different studies. In some such studies there was a sta-
tistically significant relationship, and in others there was no
significant relationship—which, as noted earlier, was falsely
taken to indicate no relationship at all. This puzzling variabil-
ity of findings was explained by postulating that jobs that ap-
peared to be the same actually differed in important but subtle
(and undetectable) ways in what was required to perform them.
This belief led to a requirement for local or situational validity
studies. It was held that validity had to be estimated separately
for each situation by a study conducted in that setting; that is,
validity findings could not be generalized across settings, situ-
ations, employers, and the like (Schmidt & Hunter, 1981). In
the late 1970s, meta-analysis of validity coefficients began to
be conducted to test whether validity might in fact be general-
izable (Schmidt & Hunter, 1977; Schmidt, Hunter, Pearlman,
& Shane, 1979); these meta-analyses were therefore called
validity generalization studies. If all or most of the study-to-
study variability in observed validities was due to sampling
error and other artifacts, then the traditional belief in situa-
tional specificity of validity would be seen to be erroneous, and
the conclusion would be that validity did generalize.

Meta-analysis has now been applied to over 500 research
literatures in employment selection, each one representing a
predictor–job performance combination. These predictors
have included nontest procedures, such as evaluations of
education and experience, employment interviews, and bio-
graphical data scales, as well as ability and aptitude tests. As
an example, consider the relation between quantitative ability
and overall job performance in clerical jobs (Hunter &
Schmidt, 1996). This substudy was based on 223 correlations
computed on a total of 18,919 people. All of the variance of
the observed validities was traceable to artifacts. The mean
validity was .50. Thus, integration of these of data leads to
the general (and generalizable) principle that the correlation
between quantitative ability and clerical performance is .50,
with no true variation around this value. Like other similar
findings, this finding shows that the old belief that validities
are situationally specific is false.

Today many organizations use validity generalization
findings as the basis of their selection-testing programs.
Validity generalization has been included in standard texts
(e.g., Anastasi, 1988) and in the Standards for Educational
and Psychological Tests (1999). A report by the National
Academy of Sciences (Hartigan & Wigdor, 1989) devoted a
chapter (chapter 6) to validity generalization and endorsed its
methods and assumptions.
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WIDER IMPACT OF META-ANALYSIS 
ON PSYCHOLOGY

Some have viewed meta-analysis as merely a set of improved
methods for doing literature reviews. Meta-analysis is actually
more than that. By quantitatively comparing findings across
diverse studies, meta-analysis can discover new knowledge
not inferable from any individual study and can sometimes
answer questions that were never addressed in any of the indi-
vidual studies contained in the meta-analysis. For example, no
individual study may have compared the effectiveness of a
training program for people of higher and lower mental abil-
ity; but by comparing mean d value statistics across different
groups of studies, meta-analysis can reveal this difference.
That is, moderater variables (interactions) never studied in any
individual study can be revealed by meta-analysis. But even
though it is much more than that, meta-analysis is indeed an
improved method for synthesizing or integrating research lit-
eratures. The premier review journal in psychology is Psycho-
logical Bulletin. In viewing that journal’s volumes from 1980
to 2000, the impact of meta-analysis is apparent. Over this
time period, a steadily increasing percentage of the reviews
published in this journal are meta-analyses, and a steadily
decreasing percentage are traditional narrative subjective re-
views. Most of the remaining narrative reviews published
today in Psychological Bulletin focus on research literatures
that are not well enough developed to be amenable to quanti-
tative treatment. Several editors have told us that it is not un-
common for narrative review manuscripts to be returned by
editors to the authors with the request that meta-analysis be
applied to the studies reviewed.

As noted above, most of the meta-analyses appearing in
Psychological Bulletin have employed fixed-effects methods,
resulting in many cases in overstatement of the precision of
the meta-analysis findings (Hunter & Schmidt, 2000). De-
spite this fact, these meta-analyses produce findings and con-
clusions that are far superior to those produced by the
traditional narrative subjective method. Many other journals
have shown the same increase over time in the number of
meta-analyses published. Many of these journals, such as
Journal of Applied Psychology, had traditionally published
only individual empirical studies and had rarely published
reviews up until the advent of meta-analysis in the late 1970s.
These journals began publishing meta-analyses because
meta-analyses came to be viewed not as mere reviews, but as
a form of empirical research in themselves. Between 1978
and 1997 Journal of Applied Psychology published 60 meta-
analysis-based articles. These 60 articles contained a total of
1,647 separate meta-analyses. As a result of this change, the

quality and accuracy of conclusions from research literatures
improved in a wide variety of journals and in a corresponding
variety of research areas in psychology. This improvement in
the quality of conclusions from research literatures has
expedited theory development in a wide variety of areas in
psychology.

The impact of meta-analysis on psychology textbooks has
been positive and dramatic. Textbooks are important because
their function is to summarize the state of cumulative knowl-
edge in a given field. Most people—students and others—
acquire most of their knowledge about psychological
theory and findings from their reading of textbooks. Prior to
meta-analysis, textbook authors faced with hundreds of
conflicting studies on a single question subjectively and arbi-
trarily selected a small number of their preferred studies from
such a literature and based the textbook conclusions on only
those few studies. Today most textbook authors base their
conclusions on meta-analysis findings—making their conclu-
sions and their textbooks much more accurate. It is hard to
overemphasize the importance of this development in ad-
vancing cumulative knowledge in psychology. 

The realities revealed about data and research findings by
the principles of meta-analysis have produced changes in our
views of the individual empirical study, the nature of cumu-
lative research knowledge, and the reward structure in the
research enterprise.

Meta-analysis has explicated the role of sampling error,
measurement error, and other artifacts in determining the ob-
served findings and statistical power of individual studies. In
doing this, it has revealed how little information there is in
any single study. It has shown that, contrary to previous be-
lief, no single primary study can provide more than tentative
evidence on any issue. Multiple studies are required to draw
solid conclusions. The first study done in an area may be
revered for its creativity, but sampling error and other arti-
facts in that study will often produce a fully or partially erro-
neous answer to the study question. The quantitative estimate
of effect size will almost always be erroneous. The shift from
tentative to solid conclusions requires the accumulation of
studies and the application of meta-analysis to those study
results.

Furthermore, adequate handling of other study imperfec-
tions such as measurement error—and especially imperfect
construct validity—may also require separate studies and
more advanced meta-analysis. Because of the effects of arti-
facts such as sampling error and measurement error, the data
in studies come to us encrypted, and to understand their mean-
ing we must first break the code. Doing this requires meta-
analysis. Therefore any individual study must be considered
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only a single data point to be contributed to a future meta-
analysis. Thus the scientific status and value of the individual
study is necessarily reduced. Ironically, however, the value of
individual studies in the aggregate is increased.

Because multiple studies are needed to solve the problem
of sampling error, it is critical to ensure the availability of all
studies on each topic. A major problem is that many good
replication articles are rejected by our primary research jour-
nals. Journals currently put excessive weight on innovation
and creativity in evaluating studies and often fail to consider
either sampling error or other technical problems such as
measurement error. Many journals will not even consider
what they see as mere replication studies or mere measure-
ment studies. Many persistent authors eventually publish
such studies in journals with lower prestige, but they must
endure many letters of rejection and publication is delayed
for a long period.

To us this clearly indicates that we need a new type of jour-
nal—whether paper-based or electronic—that systematically
archives all studies that will be needed for later meta-analyses.
The American Psychological Association’s Experimental
Publication System in the early 1970s was an attempt in this
direction. However, at that time the need subsequently created
by meta-analysis did not yet exist; the system apparently met
no real need at that time and hence was discontinued. Today,
the need is so great that failure to have such a journal system
in place is retarding our efforts to reach our full potential in
creating cumulative knowledge in psychology and the social
sciences. The Board of Scientific Affairs of the American
Psychological Association is currently studying the feasibility
of such a system.

Finally, we note that meta-analysis has had important
effects on other areas of research beyond psychology; finance,
marketing, economics, and medical research are examples.
The impact has been especially great in medical research (e.g.,
see Altman, Lau, Kupelnick, Mosteller, & Chalmers, 1992).
The following Web site provides information on meta-analysis
in medical research: http://www.update-software.com/ccweb/
cochrane/general.htm. The impact of meta-analysis in these
and other areas is discussed in Hunter and Schmidt (1990b,
1996) and Schmidt and Hunter (1995).

CONCLUSIONS

Until recently, psychological research literatures appeared
conflicting and contradictory.As the number of studies on each
particular question became larger and larger, this situation be-
came increasingly frustrating and intolerable. This situation

stemmed from reliance on defective procedures for achieving
cumulative knowledge: the statistical significance test in indi-
vidual primary studies in combination with the narrative
subjective review of research literatures. Meta-analysis princi-
ples have now correctly diagnosed this problem, and, more
important, have provided the solution. In area after area, meta-
analytic findings have shown that there is much less conflict
between different studies than had been believed, that coher-
ent, useful, and generalizable conclusions can be drawn from
research literatures, and that cumulative knowledge is possible
in psychology and the social sciences. These methods have
also been adopted in other areas such as medical research. A
prominent medical researcher, Thomas Chalmers (as cited in
Mann, 1990), has stated, “[Meta-analysis] is going to revolu-
tionize how the sciences, especially medicine, handle data.
And it is going to be the way many arguments will be ended”
(p. 478). In concluding his oft-cited review of meta-analysis
methods, Bangert-Drowns (1986, p. 398) stated:

Meta-analysis is not a fad. It is rooted in the fundamental values
of the scientific enterprise: replicabililty, quantification, causal
and correlational analysis. Valuable information is needlessly
scattered in individual studies. The ability of social scientists to
deliver generalizable answers to basic questions of policy is too
serious a concern to allow us to treat research integration lightly.
The potential benefits of meta-analysis seem enormous.
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Psychologists often study whether and, if so, when events
occur. Researchers investigating the course of eating disor-
ders, for example, have examined the age of initial onset
(Stice, Killen, Hayward, & Taylor, 1998), the time to first re-
covery (Herzog, Schellberg, & Deter, 1997), the time to re-
lapse among successfully treated individuals (Strober,
Freeman, & Morrell, 1997), and whether participation in a
treatment program shortens recovery time (Wilson et al.,
1999). Similar questions about event occurrence arise in nu-
merous fields of psychological research, including the study
of addictive behaviors (e.g., illicit drugs, smoking, gambling,
and crime), the onset and course of depression, the efficacy of
psychotherapy and other clinical interventions, and employee
turnover.

Research questions about event occurrence present unique
design and analytic difficulties. The core problem is that no
matter when data collection begins, and no matter how long
any subsequent follow-up lasts, some people may not experi-
ence the target event before data collection ends—many ado-
lescents will not develop an eating disorder, some who do

will not recover, and some who recover will not relapse.
Should a researcher assume that none of these people will
ever experience the focal event? All a researcher knows is
that by the end of data collection, usually an arbitrary point in
time, the event had not yet occurred. Statisticians say that
such observations are censored.

The prospect of censoring complicates research design; the
presence of censoring complicates statistical analysis. Some
researchers have responded to these complications with a vari-
ety of ad hoc strategies, none entirely satisfactory: (a) creating
a dichotomous outcome that contrasts individuals with ob-
served and censored event times (Condiotte & Lichtenstein,
1981); (b) restricting attention to noncensored cases (Lelliott,
Marks, McNamee, & Tobena, 1989); (c) deleting censored
cases (Litman, Eiser, & Taylor, 1979); or (d) using the censored
outcome as a categorical predictor of another outcome that
varies over time (Coelho, 1984). Other researchers avoid the
“when” question and ask only the “whether” question: Does
the event occur by a particular point in time (Grey, Osborn, &
Reznikoff, 1986) or by each of several successive points in
time (Glasgow, Klesges, Klesges, & Somes, 1988)?

As early as the 1970s, psychologists recognized the severe
limitations of these strategies, most notably their sensitivityThe order of the authors was determined by randomization.
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to the length of data collection (e.g., Hunt, Barnett, &
Branch, 1971; Nathan & Lansky, 1978; Sutton, 1979). But it
is only since the 1990s, with the widespread availability of
statistical software for analyzing event occurrence, that
psychologists have begun to use more appropriate methods.
The class of methods, known variously as survival analysis,
event history analysis, and hazard modeling, were originally
developed by biostatisticians modeling human lifetimes
(Cox, 1972; Kaplan & Meier, 1958). Over the years, im-
provements in survival methodology have come from biosta-
tisticians (e.g., Therneau & Grambsch, 2000), economists
(e.g., Heckman & Singer, 1985; Lancaster, 1990), and sociol-
ogists (e.g., Tuma & Hannan, 1984). Differences in terminol-
ogy aside, these techniques use similar mathematical roots to
reach similar goals: to help researchers simultaneously ex-
plore whether events occur (do people start using illicit
drugs, stop smoking, begin drinking again?) and, if so, when.
Using specific techniques within the broad class of methods,
researchers can describe patterns of occurrence, compare
these patterns among groups, and build statistical models of
the risk of occurrence over time.

Owing to its genesis in modeling human lifetimes, where
the target event is death, survival analysis is shrouded in dark
foreboding terms. But beyond the terminology lies a power-
ful methodology that appropriately uses data from all
observations, noncensored and censored cases alike. Data
collection can be prospective or retrospective, experimental
or observational. Time can be measured continuously or dis-
cretely. The only requirements are (a) that at every time point
of interest, each individual be classified into one of two or
more mutually exclusive and exhaustive states; and (b) that
the researcher know, for at least some of these individuals,
when the transition from one state to the next occurs.

In this chapter we present a nonmathematical introduction
to survival analysis. After describing the basic concepts, we
focus on two topics—study design and data analysis—and
for each we identify the key issues researchers face and pro-
vide guidelines for making informed decisions about them. In
the process, we review how psychologists have used the
methods to date and point towards new directions for their
application. In the final section we provide additional infor-
mation for readers who want to learn more.

THE CONCEPTS UNDERLYING
SURVIVAL ANALYSIS

The concepts underlying survival analysis differ markedly
from the familiar means, standard deviations, and correla-
tions of traditional parametric statistics. We develop these

concepts here using data reported by Stevens and Hollis
(1989), who evaluated the efficacy of supplementing a smok-
ing cessation program with follow-up support sessions
designed to help ex-smokers cope with abstinence. The re-
searchers randomly assigned 587 adults who successfully
completed a 4-day program to one of three conditions: (a) no
supplemental sessions, (b) 3 weeks of coping skills training,
or (c) 3 weeks of support sessions without skills training. For
1 year after quitting, participants returned a monthly postcard
noting their smoking status. Defining abstinence as smoking
no more than five cigarettes per month, Stevens and Hollis
asked whether the follow-up support helped people remain
abstinent and if it did not, when people were most likely to
relapse.

Survivor Function

Survival analysis begins with the survivor function. When
studying abstinence after smoking cessation, as in this exam-
ple, the population survivor function assesses the probability
that a randomly selected ex-smoker will remain abstinent
over time. Given a representative sample from a target popu-
lation, the sample survivor function estimates the population
probability that a randomly selected person will remain
abstinent longer than each time assessed—in this example,
1 month, 2 months, and so on—until everyone relapses or
data collection ends (whichever comes first).

The top panel of Figure 22.1 presents the sample survivor
function for the 198 people in Stevens and Hollis’s control
group. At the beginning of the study (the beginning of
“time”), the estimated survival probability is 1.00. As time
passes and people relapse, the sample survivor function
drops toward 0. In this study, 82% successfully abstain from
smoking (“survive”) more than 1 month following cessation,
66% abstain more than 2 months, 60% abstain more than
3 months, and so forth. By 12 months, when data collection
ends, 38% remain abstinent. These individuals have
censored relapse times, either because they never relapse or
because if they do, it will be after data collection ends. Be-
cause of censoring, sample survivor functions rarely reach
zero.

The sample survivor function helps us answer a descrip-
tive question: On average, how many months pass before the
abstinent smoker relapses? When the sample survivor func-
tion reaches 0.50, half the ex-smokers have relapsed, half
have not. The estimated median lifetime identifies this
midpoint, which indicates how much time passes before half
the sample experiences the target event. As shown in Fig-
ure 22.1, among ex-smokers without follow-up support, the
answer is 4 months. The median lifetime statistic incorporates
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Figure 22.1 Sample survivor (panel A) and hazard (panel B) functions
for 198 ex-smokers (based on data from Stevens and Hollis, 1989). Note:
We estimated the sample survivor function in this figure using summary
data kindly supplied by Dr. Victor J. Stevens (Stevens & Hollis, 1989,
Figure 1, p. 422) using the Kaplan-Meier product limit method
(Kalbfleisch & Prentice, 1980). We then smoothed the obtained discrete es-
timates using a spline function (after the recommendation of Miller, 1981).
The same method was used to create Figures 22.2, 22.3, and 22.4. Our in-
tentions were strictly pedagogic—we wished to use continuous-time sur-
vivor and hazard functions to introduce the concepts of survival analysis
before discussing the differences between continuous-time and discrete-
time methods.
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data from both the 123 uncensored individuals who relapsed
within the 12 months of data collection and the 75 censored
individuals who did not.

All survivor functions have a shape similar to that dis-
played in Figure 22.1—a negatively accelerating extinction
curve, a monotonically nonincreasing function of time. This
generalization was noted by Hunt and colleagues well before
the advent of modern survival methods (Hunt et al., 1971;
Hunt & Bespalec, 1974; Hunt & Matarazzo, 1970). After
finding similarly shaped survivor functions in nearly 100
studies of smoking, heroin, and alcohol cessation, Hunt et al.
(1971) presaged the utility of another plot (to which we now
turn) when they wrote that they “hoped to use the differences
in slope between individual curves as a differential criterion
to evaluate various treatment techniques” (p. 455).

Hazard Function

If a large proportion of successful abstainers suddenly relapses
in a given month, the survivor function drops sharply, as

happens in Figure 22.1 during each of the first few months
after smoking cessation. When this happens, ex-smokers are at
greater risk of relapse. Examining the changing slope of the
survivor function is one way to identify such “risky” time
periods. But a more sensitive way to assess the risk of event
occurrence is to examine the hazard function, a mathematical
function related to the survivor function that registers these
changing slopes of the (negative log) survivor function.

Mathematical definitions of hazard differ depending on
whether time is measured discretely or continuously. In dis-
crete time, events happen during finite intervals, such as
months, semesters, or years. In continuous time, events hap-
pen at precise instants, and event occurrence is recorded using
units such as days or weeks (or perhaps even minutes or
hours). If time is measured discretely, hazard is defined as the
conditional probability that an ex-smoker will relapse in a par-
ticular time interval, given that the person has not relapsed
prior to the interval.As the interval length decreases, the prob-
ability that an event will occur during any given interval
decreases as well. In the limit, when time is measured contin-
uously, we must modify the definition of hazard because the
probability that an event occurs at any “infinitely thin” instant
of time will approach zero (by definition). So continuous time
hazard is defined as the instantaneous rate of relapse, given
uninterrupted abstinence until that time. While hazard is al-
ways nonnegative, when time is measured discretely, it can
never exceed 1; when time is measured continuously, it can
assume any value greater than, or equal to, 0.

Like the survivor function, the hazard function can be
plotted against time, yielding a profile of the risk of relapsing
each month, given uninterrupted abstinence until that month.
The magnitude of each month’s hazard indicates the risk of
relapsing in that month—the higher the hazard, the greater
the risk. Each month’s hazard is calculated using data on
only those individuals still eligible to experience the event
during the month (the risk set); individuals who have already
relapsed are not included.

The lower panel of Figure 22.1 presents the sample hazard
function corresponding to the sample survivor function in the
top panel. The risk of relapse is high in each of the first few
months of the study and then declines over time. Ex-smokers
are at greatest risk of relapse immediately after they quit;
those who successfully abstain for several months are likely
to abstain for at least a year.

The hazard function is an invaluable analytical tool be-
cause it effectively portrays variation in risk of event occur-
rence over time. We identify the moments of this variation by
locating the hazard function’s distinctive peaks and troughs.
Peaks pinpoint periods of elevated risk; troughs pinpoint pe-
riods of low risk. We illustrate this approach in Figure 22.2.
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The hazard function in the top panel comes from Hor-
vath’s (1968) classic study of the duration of wars. Using an
extensive database describing 315 conflicts that occurred be-
tween 1820 and 1949, Horvath was able to assess how long
after initiation wars are likely to end. As in Figure 22.1, this
hazard function peaks immediately and declines thereafter.
Conflicts are most likely to end shortly after they begin.
Over time, as countries stridently maintain their position,
the risk of ending a war declines. Monotonically decreasing
hazard functions are common, especially when studying re-
currence and relapse. Whether the target event is substance
abuse (Hall, Havassy, & Wasserman, 1991), mental illness
(e.g., Mojtabai, Nicholson, & Neesmith, 1997), child abuse
(e.g., Fryer & Miyoshi, 1994), or incarceration (e.g., Harris
& Koepsell, 1996), risk of recurrence is highest immediately
after treatment, identification, or release. Monotonically de-
creasing hazard functions arise when studying other events
as well. Two contrasting examples are Hurlburt, Wood, and
Hough’s (1996) study of whether and when homeless indi-
viduals find housing and Diekmann, Jungbauer-Gans,
Krassnig, and Lorenz’s (1996) study of whether and when

drivers respond aggressively to being blocked by a double-
parked car.

The hazard function in the middle panel comes from
Capaldi, Crosby, and Stoolmiller’s (1996) study of the grade
of first heterosexual intercourse among 180 at-risk boys.
When data collection ended in 12th grade, 54 (30.0%) were
still virgins (censored). This hazard function is also monoto-
nic but in the opposite direction: It begins low and increases
over time. Few boys had heterosexual intercourse in 7th or
8th grade. Beginning in 9th grade, the risk of initiation in-
creases annually among those who remain virgins. In 9th
grade, for example, an estimated 15.0% of the boys who had
not yet had sex do so for the first time; by 12th grade, 31.7%
of the remaining virgins (admittedly only 45.1% of the origi-
nal sample) do likewise. Monotonically increasing hazard
functions are common when studying events that are ulti-
mately inevitable (or near universal). At the beginning of
time few people experience the event, but as time progresses,
the decreasing pool of individuals who remain at risk suc-
cumbs. Keifer (1988), for example, found this pattern when
characterizing the time it takes to settle a labor dispute, as did
Campbell, Mutran, and Parker (1987), who studied how long
it takes workers to retire. 

The hazard function in the bottom panel comes from
Bolger, Downey, Walker, and Steininger’s (1989) study of age
at first suicide ideation. Among 406 undergraduates, 287 re-
ported having previously thought about suicide; 119 (29.3%)
were censored (had not yet had a suicidal thought). The risk of
suicide ideation is low during childhood, peaks during ado-
lescence, and then declines to near (but not quite) early child-
hood levels in late adolescence. A similar hazard function was
found by Diekmann and Mitter (1983), who also used a young
adult sample to examine event occurrence retrospectively, but
of a very different type: shoplifting. They found that the age at
first shoplift varied widely, from age 4 to 16, with a peak
during early adolescence (ages 12 to 14). In a different con-
text, Gamse and Conger (1997) found a similar shape when
following the academic careers of recipients of a postdoctoral
research fellowship. The hazard function describing time to
tenure was low in the early years of the career, peaked in years
6 through 8, and declined thereafter.

What happens if the hazard function displays no peaks or
troughs? When hazard is flat, risk is unrelated to time. Under
these circumstances, event occurrence is independent of du-
ration in the initial state, implying that events occur (seem-
ingly) at random. Because of age, period, and cohort
effects—all of which suggest duration dependence—flat haz-
ard functions are rare in the social and behavioral sciences.
Two interesting examples, however, are whether and when
couples divorce following the birth of a child (Fergusson,
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Figure 22.2 Three illustrative hazard functions: (A) duration of wars
(based on data from Horvath, 1968); (B) first suicide ideation (based on data
from Bolger et al., 1989); (C) first heterosexual intercourse (based on data
from Capaldi et al., 1996).
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Horwood, & Shannon, 1984) and whether and when elemen-
tary school children shift their attention away from their
teacher (Felmlee & Eder, 1983).

Incidence and Prevalence: An Analogy for Hazard
and Survival

Because hazard and survival functions may be unfamiliar
concepts, we offer an epidemiological analogy to concepts
that some readers may find more familiar—incidence and
prevalence. Incidence measures the number of new events
occurring during a time period (expressed as a proportion of
the number of individuals at risk), while prevalence cumu-
lates these risks to the total number of events that have
occurred by a given time (also as a proportion; see, e.g.,
Kleinbaum, Kupper, & Morgenstern, 1982; Lilienfeld &
Lilienfeld, 1980). Incidence and prevalence correspond di-
rectly to hazard and survival: Hazard represents incidence,
and survival represents cumulative prevalence.

This analogy reinforces the importance of examining both
the survivor and hazard functions. Epidemiologists have long
recognized that while prevalence assesses the extent of a
problem at a particular point in time, incidence is the key to
disease etiology (Mausner & Bahn, 1974). Why? Because
prevalence confounds incidence with duration. Conditions
with longer durations may be more prevalent, even if they
have equal or lower incidence rates. To determine when peo-
ple are at risk, epidemiologists study incidence. And when
they study incidence, they are actually studying hazard.

DESIGN: COLLECTING SURVIVAL DATA

The conduct of survival analysis requires data summarizing
the behavior of a sample of individuals over time. Data can
be collected prospectively (as in Stevens and Hollis’s smok-
ing cessation study) or retrospectively (as in Bolger’s suicide
ideation study). The best studies tailor the time frame to
the target event. When studying the side effects of a nicotine
patch, 10-day or 10-week segments might suffice; but when
studying the link between personality traits and coronary
heart disease, even a 10-year window might not. In the
following sections we discuss nine questions that arise when
designing a study of event occurrence.

Whom Will You Study?

As with any statistical method, the full advantages of survival
analysis require a representative sample of individuals se-
lected from an appropriate target population. Although data

collected from convenience samples can be used, probabilis-
tic statements, population generalizations of sample sum-
mary statistics, or statistical inferences may be rendered
incorrect. Because some psychologists work with sociolo-
gists and epidemiologists accustomed to using probabilistic
sampling schemes, there are many excellent examples of sur-
vival analyses using data collected from representative sam-
ples (e.g., Andrade, Eaton, & Chilcoat, 1996; Harris &
Koepsell, 1996; Rosenbaum & Kandel, 1990). We hope this
standard will persist as survival methods find their way into
other substantive areas. 

A more problematic issue concerns the need to define
carefully the target population from which the sample will be
selected. Subtle variations in population definitions can inad-
vertently distort the distribution of time—the very quantity of
interest. Consider the tempting strategy of eliminating cen-
soring altogether by restricting the target population to only
those individuals with known event times. A simple example
from the research literature on the duration of foster care
arrangements illustrates the problems that can arise. When
studying discharge times for children in foster care, Milner
(1987) defined his target population as the 222 children in a
state agency who were released from care between 1984 and
1985 (thus disregarding those who were not discharged).
Among a random sample of 75 of these children, he found
that 37% had entered care within 5 months of discharge, 29%
had entered care within 6 to 11 months of discharge, 14% had
entered care within 12 to 24 months of discharge, and the
remaining 20% had entered care over 25 months before
discharge.

The estimated median time to discharge in this sample
was 6 to 11 months. Should we conclude that the “average”
child stayed in foster care for under a year? Although this
study used a probability sample from a well-defined target
population, we do not know the answer to this question be-
cause the target population is unsuitable for answering it.
Milner knew about discharge times only among children
already discharged; he ignored those who remained in care.
Children in foster care for long periods of time were most
likely to be excluded from his study. Determining how long
the average child stayed in care requires a random sample of
all children in care. It is likely that Milner’s sampling strat-
egy led to an underestimate of the average duration of foster
care in the full population.

Some definitions of the target population create more sub-
tle biases. Hidden biases are especially common in retrospec-
tive studies because a population defined at a particular point
in time excludes people who already experienced an event
that made it impossible for them to enter the target popula-
tion. If a researcher conducted a retrospective study of age at
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first cocaine use based on a random sample of high school
seniors, for example, he or she would necessarily exclude
students who had already died because of cocaine use or stu-
dents who had already dropped out of school. 

When a sample excludes individuals who have already ex-
perienced the event of interest before data collection began,
statisticians say that the sample is left truncated. Left trunca-
tion has received little attention in the methodological litera-
ture, perhaps because the nature of the problem—the omission
of any information—makes its difficult to evaluate the extent
or impact of the truncation. As Hutchison (1988a, 1988b)
noted, many methodologists ignore left truncation entirely or
fail to distinguish it from another methodological difficulty
discussed later (left censoring). To avoid the complications
arising from left truncation, we offer some design advice:
Whenever possible, define the target population using delim-
iters unrelated to time; if this is impossible, fully explore the
potential biases created by whatever definition you use.

What Is the Target Event?

At every time point of interest, each individual under study
must occupy one, and only one, of two or more states. The
states must be mutually exclusive (nonoverlapping) and ex-
haustive (of all possible states). Each individual is either
depressed or well, smoking or abstinent, unemployed or
working. The target event occurs when an individual moves
from one state to the next.

States must be defined precisely, with clear guidelines
indicating the specific behaviors, responses, or scores consti-
tuting each state. The definition of states is always difficult,
even when clinical definitions of event occurrence exist.
When reviewing the literature on the onset, recovery, relapse,
and recurrence of depression, for example, members of the
MacArthur Foundation Research Network on the Psychobi-
ology of Depression concluded that “one investigator’s re-
lapse is another’s recurrence” (Frank et al., 1991, p. 851). 

Fortunately for psychologists, the specification of criteria
for defining states precisely has received much attention in
recent years (see, e.g., Langenbucher & Chung, 1995; Lavori
et al., 1996). In the drug abuse literature, for example, it is
common to use multiple classification systems based on a
combination of biochemical assays, clinical judgment, and
self-reports. Many researchers who once relied solely on a
clinical criterion, such as total abstinence, for example, now
augment this definition with a less rigid one that permits tem-
porary lapses (Baer & Lichtenstein, 1988). Similarly, many
researchers who once relied solely on self-report now aug-
ment their definition with biochemical data (Swan, Ward, &
Jack, 1996).

Regardless of the source of data, researchers must strike a
balance between restrictive definitions, which lead to under-
estimates of the time to relapse, and less rigorous definitions,
which bias estimates toward late relapse. Brownell, Marlatt,
Lichtenstein, and Wilson (1986), for example, argued that re-
searchers routinely consider at least two definitions when
studying recurrence: lapse (a temporary slip that may or may
not lead to relapse) and relapse. Velicer, Proschaska, Rossi,
and Snow (1992) provided a helpful review of the issues aris-
ing in the definition of outcome in smoking cessation studies.

Why do we, as methodologists, dwell on these definitional
issues? We do so because of their serious methodological
ramifications. It is clear, for example, that some of the ob-
served variation in relapse rates reported in the literature is
attributable not to the differential effectiveness of various in-
terventions, but to variation in the definition of event states.
Consider the different conclusions that a research reviewer
could cull from just the first month of data on unaided smok-
ing cessation collected by Marlatt, Curry, and Gordon (1988).
By the end of the month, 23% of the sample had never actu-
ally quit (they smoked again within 24 hours), 36% had quit
for at least 24 hours but subsequently relapsed within the
month, 16% had been primarily abstinent but smoked one or
two cigarettes, and only 25% had been successfully absti-
nent. In no time at all, a research reviewer could reasonably
calculate at least three different “relapse” rates: by setting
aside individuals who never really quit, by pooling the pri-
marily abstinent individuals with the relapsers, or by pooling
them with the successfully abstinent individuals.

Given the important role of substantive issues in the defi-
nition of event states, we cannot review here all the measure-
ment considerations necessary for deriving reliable and valid
definitions of event states. Instead we offer more modest
general advice: Collect your data with as much precision as
possible so that you can appropriately code transitions from
one state to the next. With refined data, you can always
collapse individuals together to derive broader definitions;
with coarse categorized data, it is difficult (and often impos-
sible) to recoup more differentiated definitions. And when
describing your results, operationalize your definitions as
precisely as possible (specifying the criteria for onset, recov-
ery, relapse, and recurrence as clearly as possible in terms of
the number, intensity and duration of symptoms) so that
others can compare their findings to yours.

When Does “Time” Begin?

The problem of starting the clock is more complex than it
may appear. Because birth is handy and often meaningful,
it is a popular start time, especially in studies that track
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developmental sequences and milestones. Although it may
seem awkward to report it this way, any study that uses age as
the metric for time is actually using birth to denote time’s be-
ginning. So, for example, when Singer, Fuller, Keiley, and
Wolf (1998) examined the age at first entry into child care,
the beginning of time was the child’s birth.

The other common way of identifying the beginning of
time is to set it at the occurrence of a precipitating event—
one that places all individuals in the population at risk of ex-
periencing the target event. In a series of studies conducted as
part of the Fort Bragg Child and Adolescent Mental Health
Demonstration Project, the clock was started at different
points in time depending on the event being studied. When
assessing whether different types of care reduce inpatient
length of stay, Foster (1998) started the clock when patients
were first admitted to the hospital, but when assessing
whether aftercare services reduce inpatient readmissions,
Foster (1999) started the clock when patients were first re-
leased. The choice of precipitating event varies widely across
research questions. Some options include entry into a partic-
ular level of schooling (Rayman & Brett, 1995; Roderick,
1994), release from jail (Henning & Frueh, 1996), divorce
or separation (Wu, 1995), or report of child maltreatment
(Fryer & Miyoshi, 1994).

Consideration of the process under study usually leads to
a defensible decision. When it does not, an arbitrary time can
be used as long as that time is itself unrelated to event occur-
rence. Researchers conducting randomized clinical trials, for
example, typically use the date of randomization or interven-
tion (Hurlburt et al., 1996; Greenhouse, Stangl, Kupfer, &
Prien, 1991). But beware of the measurement imprecision
created when the chosen precipitating event only approxi-
mates the conceptual beginning of time. When modeling ill-
nesses, for example, the conceptual beginning of time is the
onset of the illness episode, yet medical researchers often use
the date of evaluation or diagnosis. Because the time between
onset and entry into treatment can vary greatly across indi-
viduals (Monroe, Simons, & Thase, 1991) and the magnitude
of this lag time may be an important predictor of a treat-
ment’s efficacy, use of these more easily measured dates may
actually add even more errors into the definition of event
occurrence.

What happens if the start date is unknown for some indi-
viduals under study? Statisticians say that such observations
are left censored (to distinguish them from right-censored ob-
servations in which the event times are unknown). Left cen-
soring presents challenges not easily addressed using even
the most sophisticated of survival methods. Little progress
has been made in this area since Turnbull (1974, 1976)
offered some basic descriptive approaches and Flinn and

Heckman (1982) and Cox and Oakes (1984) offered some
guidelines for fitting statistical models under a very restric-
tive set of assumptions. Most methodologists dismiss the
topic soon after introducing the terminology (see, e.g., Bloss-
feld, Hamerle, & Mayer, 1989, p. 29; Tuma & Hannan, 1984,
p. 135). The most common advice is that researchers should
define the beginning of time so that left censoring never
arises or set the left-censored spells aside from analysis
(Allison, 1984; Tuma & Hannan, 1984).

When Should You Collect Data?

Few researchers have the luxury of monitoring subjects con-
tinuously. Financial and logistical constraints usually de-
mand that researchers contact subjects at a finite number of
preselected intervals. Using these “chunky” data, researchers
then try to reconstruct pseudocontinuous event histories ret-
rospectively. Reconstruction can be made more effective if
researchers judiciously select the preselected intervals when
study subjects will be contacted. 

The collection of data in discrete time can add measure-
ment imprecision. If transitions occur in continuous time but
data are collected in discrete time, for example, a researcher
will never know an individual’s mental state at the moment of
transition. Such imprecision has serious consequences if in-
formation about the transition moment is critical for predict-
ing the timing of events, as when the coping skills of the
ex-smoker, gambler, drinker, eater, or drug abuser may deter-
mine whether the person succumbs to temptation. Shiffman
(1982) used an innovative design to overcome this restric-
tion; he interviewed 183 ex-smokers who called a smoking
cessation hotline because they were in crisis. His design may
be useful in other studies requiring data collected at the pre-
cise moment of transition.

Carefully constructed interview questions can improve
the quality of the event history data. Bradburn, Rips, and
Shevell (1987) provided strategies for helping respondents
construct temporal autobiographies. They recommended let-
ting respondents create their own time lines based on person-
ally salient anchors (birthdays, anniversaries, holidays) and
then sequentially placing other events (and symptoms) on this
time line (see Young, Watel, Lahmeyer, & Eastman, 1991, for
an application). In multiwave studies, bounded-recall probes
can enrich the quality of data describing behavior between
interviews.

Where should you target your limited data collection re-
sources? Although collection at equally spaced time intervals
is systematic, this strategy may omit information about the
periods of greatest interest. A simple but effective strategy
that maximizes information on the occurrence of the target
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event is to collect data more frequently when events are most
likely to occur.

Information on the anticipated shape of the hazard func-
tion provides helpful information for selecting times for data
collection. The idea is to collect data more frequently when
hazard is high and less frequently when hazard is low. This
allocation strategy was used effectively, for example, by
Hall, Rugg, Tunstall, and Jones (1984), who in their 1-year
prospective study of smoking abstinence following behav-
ioral skills training placed their four data-collection periods
at 3, 6, 26, and 52 weeks after treatment. If they had spaced
data-collection episodes equally, waiting until week 13 to
collect the first follow-up data, they would have been unable
to determine that the risk of relapse was highest in the few
weeks immediately following cessation. 

Can You Reconstruct Event Histories From
Retrospective Data Collection?

In 1837 William Farr wrote, “Is your study to be retrospective
or prospective? If the former, the replies will be general, vague,
and I fear of little value” (cited in Lilienfeld & Lilienfeld,
1980). His words remain true today. Whenever possible,
researchers should collect data prospectively. But in the study
of infrequent events—depression onset, initiation into opiate
drug use, child maltreatment—prospective data collection
may be infeasible. Many researchers therefore opt for a differ-
ent approach: Interview people and ask, “Has the event ever
occurred?” and if so, “When did it first occur?” Retrospective
data collection has been used successfully by researchers
studying the age at first use of many different addictive sub-
stances and remains a fruitful strategy for research (see, e.g.,
Adler & Kandel, 1983).

Researchers contemplating a retrospective data collection
effort should be forewarned, however, that their data will be
imperfect. Although rare events (e.g., suicide attempts or
hospitalization) may be remembered indefinitely and highly
salient events (e.g., initial use of drugs or first symptoms of
an illness) may be remembered for two or three years, habit-
ual events (e.g., ongoing symptoms and substance use) are
too embedded in an individual’s life to be remembered pre-
cisely (Bradburn, 1983; Sudman & Bradburn, 1982). The
longer the time period is, the greater the error. (And, as
noted earlier, if the target event can lead to death, the collec-
tion of retrospective data from a cohort ensures that sampling
will be biased by the omission of those who have already
succumbed.)

Three errors are common in retrospective data collection:
(a) memory failures, in which respondents forget events en-
tirely; (b) telescoping, in which events are remembered as

having occurred more recently than they actually did; and
(c) rounding, in which respondents drop fractions and report
even numbers or numbers ending in 0 or 5. These errors cre-
ate different biases: Memory failures lead to underreporting,
telescoping to overreporting, and rounding to both. Lin,
Ensel, and Lai (1996) presented an informative thorough
study of the reliability and validity of recall data.

If retrospective recall is the only alternative, is it worth the
effort? We believe it is. In their retrospective study of suicide
ideation, Bolger et al. (1989) successfully used several ap-
proaches to improve recall. Although studying a “threaten-
ing” event, they couched the study in less threatening terms,
that is, about the development of the concept of death and
suicide. They never asked about respondents’ mental health
or suicidal behavior—only about thoughts and knowledge
about others. Questionnaires were anonymous and self-
administered in a group setting. Respondents were college
students—close enough in age to the time period of interest
(adolescence) but old enough to be removed. 

How Can You Minimize Attrition?

Given the expense and difficulty of prospective data collec-
tion, researchers want to keep every case they can. It is well
known that statistical power decreases as sample size de-
creases and that generalizability may also suffer if attrition
is nonrandom. Hansen, Collins, Malotte, Johnson, and
Fielding (1985) clearly demonstrate that studies on drug
abuse prevention, for example, have been plagued by attri-
tion problems. In their review of this literature, Biglan et al.
(1991) noted several studies with attrition rates in excess
of 50%!

Researchers who are most successful at minimizing attri-
tion have used some of the following strategies: Explain to
respondents why you need to follow them; ask them to con-
tact you if they move; visit their homes and ask neighbors
for information about them; pay them for participation in
each interview; have them pay you an earnest deposit re-
fundable at the end of the last interview; offer lottery prizes
for those who successfully compete all required interviews;
mail a newsletter at regular intervals; record the names and
addresses of several relatives or friends not living with
them; record each respondent’s Social Security number;
convene reunion meetings; maintain contact at regular inter-
vals even if you are not recording data as frequently; send
birthday and seasonal greetings cards; and consult offi-
cial records (jail, hospital, welfare, driver registration).
Farrington, Gallagher, Morley, St. Ledger, and West (1990)
and M. Murphy (1990) offered many helpful strategies for
minimizing attrition.
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Despite diligent effort, most researchers lose some indi-
viduals to follow-up. Researchers attempting to improve
their study by using a long follow-up period face a further co-
nundrum: The longer the follow-up is, the greater the attri-
tion. At first sight, attrition seems nonproblematic for
survival analysis because it leads to additional right-censored
event times—a problem that survival analysis was designed
to handle. But censoring due to attrition may not be the non-
informative censoring for which survival methods are valid.
Individuals lost to follow-up can differ substantially from in-
dividuals who continue to participate. In their longitudinal
study of drug abusers, for example, Biglan et al. (1991) pre-
sented clear evidence that those who remain in the sample
differed from those who did not. 

What should a researcher do with the data on individuals
lost to follow-up? While multiple imputation methods offer
much promise (Little & Rubin, 1987), three simple strategies
can sometimes suffice. One is to assign each case a censored
event time equal to the length of time the person was
observed (without the event occurring). If an individual par-
ticipated for the first 6 months of a 12-month study before at-
trition, censor the event time at 6 months. A second approach
is to use a worst-case scenario: Assume that the event actu-
ally occurred when the case was lost to follow-up. Under this
strategy, the event time is not censored. The findings from
analyses carried out under both types of recoding can then be
contrasted with each other in a sensitivity analysis. Persis-
tence of findings obtained under multiple strategies, or ex-
plainable differences between the findings, reinforces the
strength of the analytic results. The third approach is to con-
duct a competing-risks survival analysis, in which study attri-
tion is treated as another event that competes to end an
individual’s lifetime (Singer & Willett, 1991).

The appropriateness of these alternative strategies de-
pends in part on the target behavior under study. Be espe-
cially careful when assuming that the event occurred at the
time when the observation is censored because this converts
a nonevent into an event. Of course, when studying relapse,
this conclusion may be sound because former drug abusers
are notoriously unfaithful subjects and those who are clean
are more likely to stay in touch. The key idea is to let reason
be your guide. Within 12 weeks after beginning a study of
221 treated alcoholics, opiate users, and cigarette smokers,
for example, Hall, Havassy, and Wasserman (1990) lost
73 people (one third of their sample) to follow-up, despite
valiant attempts to minimize attrition. To ascertain the impact
of attrition on their findings, the researchers conducted exten-
sive sensitivity analyses, including (a) coding of relapse as
occurring the week after the last interview completed and
(b) setting aside these cases from analysis. All the analytic

findings were similar in sign and magnitude, although the
standard errors of parameter estimates were higher under the
second strategy because of a loss of statistical power.

How Can You Deal With Repeated Events?

Many events of interest to psychologists are repeatable. In-
deed, with the exception of initial onset, most other events—
ongoing use, abuse, hospitalization, treatment, relapse,
employment, unemployment—can occur over and over
throughout an individual’s lifetime. When studying the tim-
ing of potentially repeatable events, make every attempt to
note the spell number under study because the natural course
of a first spell may differ from the natural course of second
and subsequent spells. So, too, the efficacy of treatment may
vary depending on how many prior spells the individual has
experienced.

Recognizing the difficulties associated with this issue,
Kupfer, Frank, and Perel (1989) designed a study to investi-
gate differential recovery patterns across multiple spells
when studying patients with recurrent depression. Separately
analyzing the time to stabilization in two consecutive
episodes, they found virtually identical median lifetimes
(between 11 and 12 weeks). But they also found that the effi-
cacy of treatment varied across spells: Early intervention in
the second episode, as opposed to the first episode, worked
particularly well.

We believe that the unidentified presence of multiple
spells in a single data set may help explain some of the major
puzzles in psychological research. Researchers studying ad-
diction relapse, for example, have noted renewed abstinence
on the part of formerly abstinent people who relapsed early
after quitting. They argue that previous treatment, even un-
successful treatment, may increase the probability of success
of subsequent treatments. Similarly, when reviewing the lit-
erature on depression, Klerman (1978) demonstrated that
some of the observed variation in relapse rates was attribut-
able to researchers’ failure to note how many prior episodes
of depression each subject had. 

For How Long Should You Collect Data?

Once the clock starts, it must eventually stop. Clocks in ret-
rospective studies stop on the date of interview; clocks in
prospective studies can, at least in theory, continue indefi-
nitely. As a practical matter, though, most prospective studies
follow a sample for a finite period of time. The length of data
collection determines the amount of right censoring (here-
after referred to as censoring). Because longer data collection
periods yield fewer censored observations, the simple maxim
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is the longer, the better. But beware—longer studies are more
expensive, have more missing data, and may lead to outdated
results.

When deciding on the length of follow-up, remember that
before you can determine when the event is likely to occur, it
must actually occur for enough people under study. If the tar-
get event never occurs during data collection, all observa-
tions are censored. The researcher has little information,
knowing only that it generally takes longer than this period
for the event to occur. 

There is no universally appropriate length of follow-up.
The answer depends on many factors. To decide on a rea-
sonable follow-up period, you must consider the shape of
the anticipated hazard function, the probable median life-
time, the sample size, and your proposed statistical analyses.
As we show later in the section on determining sample size,
a good rule of thumb is to follow participants long enough
for at least half of them to experience the target event during
data collection. This ensures sufficient information for esti-
mating a median lifetime and provides reasonable statistical
power.

What have researchers done in practice? Noting that ex-
smokers often start smoking again soon after quitting, McFall
(1978) suggested that smoking relapse studies use a 6- to
12-month follow-up. And in our review of studies on smok-
ing relapse published during the 1980s (Singer & Willett,
1991), we found that this guideline is widely accepted; the
modal follow-up period was 1 year, and this period yielded
an average censoring rate below 50%. However, Nathan and
Skinstad (1987) noted that “3- or 6-month post-treatment
follow-ups are likely to be insufficient . . . ; 2 years or more
are probably necessary to determine the long-term effects of
a treatment program” (p. 333). When studying infrequent
events, even 5 years of data collection may be insufficient. In
their review of the link between alcoholism and suicide, for
example, G. E. Murphy and Wetzel (1990) lamented the fact
that many of the available studies “are relatively short: less
than 10 years” (p. 387).

Before deciding on the length of data collection, be sure to
consider the substantive ramifications of your choice. It is
clear that variation across studies in the length of follow-up
explains some of the seemingly discrepant conclusions about
treatment efficacy that arise in the literature. Length of
follow-up has been identified as a major explanatory factor in
several literature reviews, including G. E. Murphy and
Wetzel’s (1990) review of suicidality among alcoholics. And
even when it has not been identified as a key explanatory
factor, its impact seems certain. In their review of 26 longitu-
dinal studies of teenage alcohol and other drug use, for
example, Flay and Petraitis (1991) found that the length

of follow-up varied from a low of 5 months to a high of
19 years. Although they did not investigate the link between
length of follow-up and study findings, we suspect that this
design feature may explain why some studies successfully
predicted subsequent outcomes while others did not.

Because of the effect of design on conclusions, a re-
searcher must always note the length of follow-up. Any
relapse rate cited must be linked to a specific time period.
What can we conclude, for example, from Seltzer, Seltzer,
and Sherwood’s (1982) statement that 65% of the adults with
mental retardation under study were not reinstitutionalized,
given that we do not know the time frame being referenced?
How can we know whether this percentage is low or high?
How can we compare this rate to those found in other stud-
ies? Even well-documented longitudinal studies using so-
phisticated analytic techniques occasionally omit this
important piece of information (Zatz, 1985). The length of
data collection is key to understanding the ultimate course of
survival.

How Many People Should You Study? 

Having specified in broad outline the design of a study, the
final step is to determine how many people to include in the
sample. Statisticians determine the minimum number of
people a researcher should study by conducting a statistical
power analysis (Cohen, 1990; Kraemer & Theimann, 1988).
This requires specification of the particular hypothesis to be
tested, the desired Type I and Type II error rates, and the
minimum effect size considered important; for survival
analysis, it also requires presaging the anticipated distribu-
tion of the hazard function and the proposed length of
follow-up.

Biostatisticians have derived many methods for determin-
ing sample size for survival analysis, each applicable under
different circumstances. Donner (1984) and Lachin (1981)
reviewed the literature; Freedman (1982) provided tables for
two group comparisons; Makuch and Simon (1982) provided
formulas for multiple group comparisons; and Rubinstein,
Gail, and Santner (1981), Moussa (1988), and Lachin and
Foulkes (1986) provided formulas for complex designs with
stratification, covariate information, or allowances for loss of
individuals to follow-up. In the presentation that follows, we
have computed minimum sample sizes using the computer
program of Dupont and Plummer (1990).

No single table or formula can cover all possible design
configurations. Here we provide ballpark estimates of sample
size, similar to those we have provided elsewhere for more fa-
miliar statistical analyses (Light, Singer, & Willett, 1990). Our
discussion does not replace consultation with a statistician
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before data collection, or in Kraemer and Pruyn’s (1990)
words:

Answers to questions as to what the optimal approach is depend
on the specific research question to be addressed and can and do
not have simple answers. How to demonstrate adequate power
and how to assess power when there are multiple outcomes are
questions that must be addressed, perhaps differently, in each
research study, and these questions require the participation of
experts at addressing such issues. (p. 1169)

Rather, we hope this discussion will provide researchers with
a better sense of the factors affecting the power of survival
analyses, a general sense of how many people they must study
to ensure a reasonable chance of detecting an effect that really
exists, and a language for talking with a statistical consultant.
The need for improved design is clear. As Kazdin and Bass
(1989) noted, too many studies of differences between alter-
native treatments lack sufficient statistical power to detect the
small-to-medium effect sizes likely to occur in practice.

To conduct a power analysis, you must first specify the
smallest effect size deemed important for detection. Although
biostatisticians have developed several measures of effect
size, perhaps the simplest is the ratio of median lifetimes in
the two groups, denoted by R. Letting m1 be the median life-
time in one group and m2 the median lifetime in the other,
R = m1/m2. When R = 1.25, the median lifetime of one
group is 25% longer than the median lifetime of the other;
when R = 1.50, the median lifetime of one group is 50%
longer; when R = 2.00, the median lifetime of one group is
twice as long (100%) as the other group. 

How can you specify the minimum detectable effect size in
advance of data collection? One way is to use prior research.
Consider a two-group experiment that might follow from
Stevens and Hollis’s smoking relapse study. The median sur-
vival time in the control group of this experiment was 4 months
(m2 = 4). If the median survival time in a new experimental
group is expected to be as high as 8 months (m1 = 8), the new
study can be designed to detect an R of 2.00; if the median sur-
vival time in the new experimental group is expected to be only
6 months (m1 = 6), the study should be designed to detect an
R of 1.50. In the absence of such prior information, Schoenfeld
and Richter (1982) suggested that R = 1.50 be used because a
50% increase in survival is “clinically important and biologi-
cally feasible” (p. 163).

After specifying the minimum detectable effect size, you
must specify the length of follow-up. Because the length of
follow-up can vary greatly across studies, we need a stan-
dardized measure that is applicable to a variety of settings
and metrics. We achieve this goal by dividing the length of

follow-up by the average anticipated median lifetime in the
two groups. More precisely, letting A = (m1 + m2)/2 be the
average median lifetime in the two groups, and T be the total
length of follow-up, our standardized measure of follow-up,
F, is T/A. If a study follows individuals to only half the aver-
age median lifetime, F = 0.5; if a study follows individuals
to the average median lifetime, F = 1.0; if a study follows
individuals for twice as long as the average median lifetime,
F = 2.0. Creation of a standardized measure of the length of
follow-up allows us to use the same power tables with stud-
ies of widely varying length. We need not worry whether
the average median lifetime is 6 min, 6 days, 6 months, or
6 years. If the average median lifetime (A) is 6 (in any of
these units), a follow-up (T) of 3 yields an F of 0.5; a follow-
up of 6 yields an F of 1.0; a follow-up of 9 yields an F of 1.5;
and a follow-up of 12 yields an F of 2.0. The particular time
units cancel each other out in the standardization.

Table 22.1 presents the minimum total sample sizes neces-
sary to achieve a power of .80 for a simple two-group compar-
ison at the .05 level (two-tailed). The rows of the table indicate
minimum detectable effect sizes (R); the columns indicate the
length of follow-up (F); and the cell entries indicate the mini-
mum total sample size used in the analysis (N ). Researchers
should inflate these sample-size estimates appropriately to
adjust for cases lost to follow-up. The calculations were made
assuming a flat hazard function—a restrictive assumption,
indeed, but the simplest, and the one that researchers generally
assume in the absence of more detailed information.

Examine the minimum sample sizes presented in
Table 22.1, focusing first on differences in effect size dis-
played across the rows. Small effects (R = 1.25) are difficult
to detect. Regardless of the length of follow-up, a study must
include many hundreds or well over a thousand individuals to
have a reasonable chance of detecting such effects. Medium-
sized effects (R = 1.50 to R = 1.75) can be detected with
moderate-sized samples; somewhere between 200 to 400 in-
dividuals will generally suffice, depending on the length of
follow-up. Large effects (R = 2.00) are relatively easy to

TABLE 22.1 Minimum Total Sample Size Needed to Detect
Differences in Survival Between Two Groups

Effect
Follow-up Period

Size 0.5 1.0 1.5 2.0 2.5

1.25 >2162 1260 976 840 766
1.50 654 382 296 254 232
1.75 344 200 156 134 122
2.00 224 130 102 88 80

Note. Assuming a two-tailed test at the 0.05 level, power of 0.80, exponen-
tially distributed survival times, all individuals followed for the same period
of time.
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detect, even using small samples. If the median lifetime in
one group is twice as long as the median lifetime in the other,
you have an 80% chance of detecting this difference using
only 100 to 200 individuals.

Table 22.1 can also be used for another purpose: to decide
on the length of data collection. Reexamine the table, focus-
ing now on the variation in sample sizes across the columns,
corresponding to follow-ups of widely differing lengths. The
great variation in minimum sample sizes for a given effect
size emphasizes the importance of following individuals
under study for as long as possible. 

Consider, for example, how the minimum sample size
needed to detect an R of 1.50 depends on the length of
follow-up. If you follow a sample only halfway to the aver-
age median lifetime, F = .50, you require 654 people to
detect the 50% difference in median lifetimes. But if you
follow people for longer periods of time, you need fewer
people. If you can extend the follow-up to the average me-
dian lifetime (F = 1.00), you can achieve the same power
of .80 with almost half as many individuals (N = 382). And
if you extend the follow-up further to twice the average me-
dian lifetime (F = 2.00), the same power can be achieved
with only a third as many individuals (N = 254).

The message for research design is clear. Much statistical
power can be gained by following people for longer periods
of time. Researchers would do well to follow people for at
least as long as the average median lifetime (F = 1.00). By
doubling the length of follow-up, you can achieve the same
statistical power with approximately one-third fewer individ-
uals. If the length of follow-up is less than the average me-
dian lifetime, only studies of many hundreds of individuals
will have adequate statistical power.

ANALYZING SURVIVAL DATA

Most researchers begin their analyses with exploratory and
descriptive approaches; they move on to fitting statistical
models and testing hypotheses only after a full exploration of
the data. In the following sections we present an array of
strategies for analyzing survival data, beginning with simple
descriptive approaches and moving on to statistical model
building.

How Can You Describe Survival Data?

There is much to be learned by straightforward eyeball
analysis. Inspection of sample survivor and hazard pro-
files and comparison of these profiles computed sepa-
rately for substantively interesting subsamples can be very
informative.

Figure 22.3 presents data from Wheaton, Hall, and
Roszell (1996), who examined the link between stressful
life experiences and the risk of psychiatric disorder. After
selecting a random sample of adults, ages 17 to 59, in
metropolitan Toronto, Canada, the researchers conducted a
structured interview that allowed them to determine whether,
and if so at what age (in years), each individual first experi-
enced a depressive episode. Among the 1,393 respondents,
387 (27.8%) experienced a first onset between ages 4 and
39. The figure presents the sample survivor and hazard
functions, by gender, describing the age at first depression
onset.

These sample survivor and hazard profiles contain a great
deal of information. At birth, all individuals are “surviving”:
Not one has yet experienced a depressive episode, so the
survival probabilities for both groups are 1.00. Over time, as
individuals experience depressive episodes, the survivor
functions drop. Because most adults do not experience a de-
pressive episode at any time in their lives, the functions do
not reach 0, ending in this sample at 0.77 for men and 0.62 for
women. By subtraction, we conclude that 23% of men and
38% of women have experienced a depressive episode at
some point before their sixties.

Figure 22.3 Sample survivor (panel A) and hazard (panel B) functions
describing risk of first depression onset for 1,303 adults (based on data from
Wheaton, Roszell, & Hall, 1996).
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The subsample hazard profiles disentangle these temporal
patterns and provide a more sensitive magnifying glass for
identifying when men and women are at risk of depression
onset. For both groups, the risk of experiencing an initial
episode of depression is relatively low in childhood, in-
creases during adolescence, and then peaks in the early twen-
ties. After this point, the risk of initial onset of depression
among those individuals who have not yet had a depressive
episode is much lower. By the early forties, it declines to
preadolescent levels for men, although it rises again for
women.

Over and above these temporal patterns, the figure also
suggests a sex differential: In general, women are at greater
risk than men of experiencing a depressive episode. When we
compare hazard profiles for two groups of people, we implic-
itly treat gender as a predictor of the entire hazard profile.
The comparison of profiles illustrates how the risk of onset is
related to gender. We could divide the sample in other ways
and treat these divisions as predictors of hazard as well.

Exploratory comparisons of sample survivor and hazard
profiles provide simple persuasive descriptions of when
events occur and how the timing of event occurrence varies
across groups. Descriptive statements can then be buttressed
by simple statistical tests of between-group differences. Lee
(1992) provided a compendium of tests for comparing sur-
vivor and hazard profiles among groups, including tests that
are the survival-analytic equivalent of the t test and one-way
analysis of variance. The most popular are the Wilcoxon and
log-rank tests of homogeneity of survivor function across
populations, the former test placing more weight on early
survival times, the latter on later survival times, when the test
statistic is computed.

Graphical displays and multigroup comparisons are
limited, however, because they do not help us address the
complex questions arising in prevention research. The exam-
ination of the effects of continuous predictors on hazard
would yield a cumbersome collection of profiles, one per pre-
dictor value. Simple bivariate methods are ill suited for ex-
ploring the effects of several predictors simultaneously, or for
evaluating the influence of interactions among predictors.
Borchardt and Garfinkel (1991) encountered these problems
in their study of the relationship between adolescents’ lengths
of stay in a psychiatric hospital and two categorical predic-
tors, diagnostic category (affective, organic, conduct) and
number of prescribed medications (none, one, two or more).
While the authors elegantly displayed survival profiles for
each of these two predictors separately, they did not examine
the joint effect of both variables simultaneously or the effects
of each after controlling statistically for the other. They did
not investigate the possibility of a two-way interaction

between the predictors. Nor did they extend their survival
analyses to explore the effects of other predictors, such as
funding sources, even though their preliminary exploration
suggested that such additional variables were associated with
length of stay. To conduct further analysis, researchers re-
quire a comprehensive approach to the modeling of event
occurrence, a topic to which we now turn.

How Can You Build Statistical Models of Hazard?

Statistical models of hazard express hypothesized population
relationships between entire hazard profiles and one or more
predictors. To clarify our representation of these models, ex-
amine the two sample hazard profiles in the bottom panel of
Figure 22.3 and think of sex as a dummy variable, FEMALE,
which can take on two values (0 for men, 1 for women). From
this perspective, the entire hazard function is the conceptual
outcome, and FEMALE is a potential predictor of that
outcome.

Ignoring minor differences in shape, now consider how the
predictor seems to affect the outcome. When FEMALE = 1,
the sample hazard function is higher relative to its location
when FEMALE = 0. Conceptually, then, the predictor
FEMALE somehow displaces or shifts one sample hazard
profile vertically relative to the other. A population hazard
model formalizes this conceptualization by associating this
vertical displacement with variation in predictors in much the
same way as an ordinary linear regression model associates
differences in mean levels of a continuous (noncensored)
outcome with variation in predictors.

The difference between a hazard model and a linear re-
gression model, of course, is that the entire hazard profile is
no ordinary outcome. The continuous-time hazard profile is a
profile of risks bounded by 0. Methodologists postulating a
statistical model to represent a bounded outcome as a func-
tion of a linear combination of predictors generally transform
the outcome so that it becomes unbounded. Transformation
prevents derivation of fitted values that fall outside the range
of theoretical possibilities—in this case fitted values of haz-
ard less than 0. When time is measured continuously, we
build statistical models of the natural logarithm of hazard.
When time is measured discretely, hazard is a conditional
probability bounded by both 0 and 1; we therefore use a logit
transformation—log[p/(1 − p)]—for the same reason.

The effect of the logarithmic transformation on hazard is
illustrated in Figure 22.4, which presents sample log-hazard
functions corresponding to the plots in the bottom panel of
Figure 22.3. The log transformation has its largest effect on
rates near 0, expanding the distance between values at this
extreme. Nevertheless, in the transformed world of log
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hazard, we recognize that the predictor FEMALE works as it
did before. When FEMALE = 1, the log-hazard function is
generally higher relative to its location when FEMALE = 0,
indicating that among individuals who have yet to experience
a depressive episode, women are at greater risk of doing so
than are men. Still ignoring the minor differences in the
shapes of the profiles, then, the predictor FEMALE essen-
tially displaces the log-hazard profiles vertically relative to
each other.

Inspection of the sample relationship between the predic-
tor FEMALE and the entire log-hazard profile in Figure 22.4
leads to a reasonable specification for a population model of
the hazard profile as a function of predictors. Letting h(t) rep-
resent the entire population hazard profile, a statistical model
that captures this vertical displacement relates the log trans-
formation of h(t) to the predictor FEMALE as follows:

log h(t) = �0(t) + �1 FEMALE (22.1)

The model parameter �0(t) is known as the baseline log-
hazard profile. It represents the value of the outcome (the en-
tire log-hazard function) in the population when the predictor
(FEMALE) is 0 (i.e., because of the way we have coded
FEMALE, it specifies the profile for men). We write the base-
line as �0(t), a function of time, and not as �0, a single term
unrelated to time (as in regression analysis), because the out-
come, log h(t), is a temporal profile. The model specifies that
differences in the value of FEMALE “shift” the baseline log-
hazard profile up or down. The slope parameter, �1, captures
the magnitude of this shift; it represents the vertical shift in
log-hazard attributable to a one-unit difference in the predic-
tor. Because the predictor in this example (FEMALE) is a di-
chotomy, �1 captures the differential risk of onset between
men and women. If the model were fit to these data, the ob-
tained estimate of �1 would be positive because women are
generally at greater risk of first depression onset.

Hazard models closely resemble familiar regression
models. Several predictors can be incorporated by including
additional variables expressed as linear (or nonlinear) func-
tions of additional unknown slope parameters on the right-
hand side of the equation. This model expansion allows
examination of one predictor’s effect while controlling statis-
tically for others’. Inclusion of cross-product terms enables
examination of statistical interactions between predictors. It
does not seem excessive to argue that hazard models provide
the powerful, flexible, and sensitive approach to analyzing
event occurrence that many psychologists should be using.
The goodness of fit of a hypothesized population model can
be evaluated with data, allowing inferences about population
relationships between hazard and predictors. As we show
later, reconstructed survivor and hazard functions and esti-
mated median lifetimes can depict the effects of predictors,
providing answers to research questions in the original metric
of interest—time.

Are the Hazard Profiles Proportional
or Nonproportional?

Simple hazard models like that in Equation 22.1 implicitly
assume that all the log-hazard profiles corresponding to suc-
cessive values of a predictor differ only by their relative ele-
vation (described here by �1). Under such models, but in the
antilogged world of raw hazard, all the hazard profiles are
simply magnifications or diminutions of each other; that is,
they are proportional. Under this proportionality assumption,
which in continuous-time survival analysis is called the
proportional-hazards assumption, the entire family of log-
hazard profiles represented by all possible values of the pre-
dictors share a common shape and are mutually parallel.
Singer and Willett (1991, 1993) drew an analogy between
this assumption and the assumption of homogeneity of
regression slopes in the analysis of covariance.

Proportional-hazards models are the most popular sur-
vival analysis approaches used today in part because all
major statistical packages now provide programs for estimat-
ing their parameters using methods initially developed by
Cox (1972). This ingenious strategy allows estimation of
parameters such as �1 without the specification or estimation
of the shape of the baseline hazard function, �0(t). For this
reason, analogous to traditional nonparametric methods
(which make no distributional assumptions), Cox regression
is called semiparametric.

However, the tremendous boon of the semiparametric
method—its ability to evaluate the effects of predictors
without estimating the shape of baseline hazard profile—is
also its principal disadvantage. The method is so general that

Figure 22.4 Sample log-hazard functions for men and women.
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it works for an unspecified baseline hazard profile of any
shape. Without needing to explore the baseline hazard, inves-
tigators can examine effects of predictors without exploring
absolute levels of risk. Because the baseline hazard function
can be easily ignored, researchers may fail to recognize sub-
stantively and statistically important information contained
only in the baseline hazard function.

What kinds of information can be found? The baseline
hazard function and, under the proportionality assumption,
its magnified and diminished cousins describe the pattern and
magnitude of risk over time; they indicate when the target
event will occur and how likely that occurrence is (as in Fig-
ure 22.2). The hazard profiles in Figure 22.3, for example,
show that women are still at greater risk of first depression
onset even in their forties. All the predictor does is magnify
or diminish this basic pattern of risk.

The ease with which the hazard function’s shape can be
ignored under the semiparametric method has a further ill
consequence: It promotes the unthinking and dubious accep-
tance of the proportional-hazards assumption. The ease with
which a researcher can fit a proportional-hazards model
makes it all too easy to examine effects of predictors without
examining the tenability of the underlying proportional-
hazards assumption. Notice, for example, that the sample
log-hazard profiles in Figure 22.4 are neither identical in
shape nor parallel, suggesting that the proportional-hazards
assumption might not be tenable.

We believe that the tenability of the proportional hazards
assumption must be viewed with some circumspection be-
cause those few researchers who have examined its tenability
have found clear evidence of its violation. In our own research
on age at entry into child care (Singer, Fuller, et al., 1998),
teacher turnover (Murnane, Singer, Willett, Kemple, & Olsen,
1991), and physician turnover (Singer, Davidson, Graham, &
Davidson, 1998), we have found that violations of the propor-
tionality assumption are the rule rather than the exception.

We raise this issue because violation of the proportional
hazards assumption is far more than a methodological nui-
sance. The magnitude and direction of the effects of predic-
tors may be estimated incorrectly if the hypothesized
statistical model inappropriately constrains the log-hazard
profiles to be parallel with identical shapes. Ignoring such
underlying failures can lead to incorrect substantive
conclusions. In an early informative paper, Trussel and
Hammerslough (1983) documented differences in interpreta-
tion that arise when the proportional-hazards assumption is
injudiciously assumed to be tenable in a study of child
mortality (compare their Tables 3 and 4, particularly the ef-
fects of gender, birth order, and age of mother at birth). So un-
certain is the veracity of the proportional-hazards assumption

that we always begin our own data analyses with the entirely
opposite view. Along with unicorns and normal distributions
(Micceri, 1989), we regard the proportional-hazards assump-
tion as mythical in any set of data until proven otherwise.
Before adopting a proportional-hazards model, researchers
should at least subdivide their sample by substantively impor-
tant values of critical predictors and inspect the shapes of the
sample hazard profiles within these subgroups. Arjas (1988),
Grambsch and Therneau (2000), Hosmer and Lemeshow
(1999), and Willett and Singer (1993) provided methods for
exploring the tenability of the proportionality assumption.
Finally, as we discuss next, researchers can easily adopt a
broader analytic approach—one that tests the proportional-
hazards assumption and fits nonproportional hazard models
if they are required.

What Types of Predictors Can Be Included 
in Hazard Models?

One important advantage of the hazard modeling framework
is that it permits the simultaneous study of both time-
invariant and time-varying predictors. As befits their label,
time-invariant predictors describe immutable characteristics
of individuals; the values of time-varying predictors, in
contrast, may fluctuate over time. When investigating the
monthly risk of initiating marijuana use in late adolescence,
for example, Yamaguchi and Kandel (1984) examined pre-
dictors of both types. In the study, 1,325 adolescents were
interviewed once in high school and reinterviewed 9 years
later at ages 24 to 25. In the follow-up interview, respondents
retrospectively reconstructed monthly charts of their drug
and life histories. The researchers examined the effects of
truly time-invariant predictors such as race whose values are
immutable over time, but other variables such as friends’ use
of marijuana, involvement in delinquent activities, and belief
that marijuana use is not harmful were also treated as time-
invariant predictors of the risk of initiation of marijuana use
because they were measured on a single occasion during the
initial high school interview. The researchers also examined
the effects of time-varying predictors such as current alcohol
use and current cigarette use whose monthly values were
obtained during life-history reconstruction at follow-up.
Using hazard models, the researchers were able to present
convincing evidence that the “current use of alcohol and cig-
arettes has strong effects on the initiation of marijuana use
among men and women” and “controlling for selected an-
tecedent behavioral, attitudinal, and environmental factors
measured in adolescence, . . . friends’ use of marijuana has
the strongest positive influence on initiation of marijuana”
(p. 675). It is interesting to note that when the initiation of
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prescribed psychoactive drug use was examined later in the
paper, Yamaguchi and Kandel found that “multiple factors
are involved in the progression to prescribed drugs, with
adolescent depressive symptomatology and use of other
illicit drugs important for both sexes, and maternal use of
psychoactive drugs, dropping out of school, and prior use of
marijuana of additional importance for women” (p. 673).
These same authors have also used hazard modeling to study
links between time-varying drug consumption and the risk of
premarital pregnancy (Yamaguchi & Kandel, 1985) and the
risk of job turnover (Kandel & Yamaguchi, 1987).

The hazard model in Equation 22.1 includes a single time-
invariant predictor, FEMALE. The value of this predictor
obviously remains constant over time. The variable �1 quan-
tifies the time-invariant effect of this time-invariant predictor
on the risk of initial depression onset. Hazard models like
that in Equation 22.1 can be easily extended to include time-
varying predictors. Such extensions can be particularly help-
ful in psychology, where the values of important predictors
vary naturally over time.

Hazard models with time-varying predictors closely
resemble the model in Equation 22.1. In Yamaguchi and
Kandel’s study of the risk of marijuana initiation, for exam-
ple, one possible population hazard model might include
(a) FEMALE and (b) ALCOHOL, a time-varying predictor
whose monthly values assess the number of drinks consumed
per month. Such a model might be

log h(t) = �0(t) + �1FEMALE + �2 ALCOHOL(t)
(22.2)

The parenthetical t in the predictor ALCOHOL(t) indicates
that the values of this predictor may vary over time. Unit
differences in ALCOHOL correspond to shifts in the log-
hazard profile of �2. Although the values of the predictor
ALCOHOL may differ over time, each one-unit difference
anywhere produces the same shift of �2 in the appropriate
part of the log-hazard profile. So although the model includes
a time-varying predictor, the per-unit effect of that predictor
on log hazard is constant over time.

Another way to understand the effects of time-varying
predictors is to regard the outcome in Equation 22.2—the
log-hazard profile—conceptually as a temporally sequenced
list (a vector) of marijuana initiation risks. The predictors
also can be viewed as an ordered list of values that for each
person describe the values of FEMALE and ALCOHOL over
time. Each element in the hazard list corresponds to an ele-
ment in each predictor’s list. For a time-invariant predictor,
such as FEMALE, all elements in each person’s predictor list
are identical: 1 for each girl, 0 for each boy. In contrast, for a

time-varying predictor such as ALCOHOL, the values in the
predictor list may differ from month to month. If an individ-
ual does not use alcohol initially, the early elements in the
ALCOHOL vector are 0; when alcohol use begins, the values
change. Each person has his or her own alcohol use pattern;
the number of patterns across individuals is limited only by
the number of possible values and occasions of measurement.
The hazard model simply relates the values in one list (the
hazard vector) to the values in the other (the predictor vec-
tor), regardless of whether the elements in the latter list are
identical to each other.

Time itself is the fundamental time-varying predictor.
Conceptually, at least, one might argue that it, too, should be
included as a time-varying predictor in Equation 22.2, map-
ping intrinsic changes in the risk of marijuana initiation over
time. Although intuitively appealing, this approach produces
complete redundancy in the model because this time-varying
effect is already captured by the baseline log-hazard function,
�0(t), which describes the chronological pattern of baseline
risk—the differences in log hazard attributable solely to time.
Estimation of the baseline hazard function is tantamount to
estimation of the main effect of time. This analogy reinforces
the need to examine the shape of the baseline hazard, for it
provides information about the effects of the fundamental
time-varying predictor, time itself.

Can Predictors in Hazard Models Interact With Time?

Not only can predictors themselves be time-invariant or time-
varying, but their effect on hazard can also be constant or
vary over time. By including a main effect of the predictor
FEMALE in Equation 22.2, we assume that the vertical dis-
placement associated with gender is the same at age 16 and
age 24 (and equal to �1). But the assumption of temporally
immutable effects may not hold in reality: The effects of
some predictors will vary over time. The gender differential
might decline as time passes and individuals mature. If so,
the distance between hazard profiles associated with different
values of the predictor FEMALE would narrow over time.

When the effect of one predictor on an outcome differs by
levels of another predictor, statisticians say that the two pre-
dictors interact. If the effect of a predictor like FEMALE on an
outcome like the risk of marijuana initiation differs across
time, we say that the predictor FEMALE interacts with time.
Predictors that interact with time have important substantive
interpretations, allowing researchers to build complex models
of the relationship between predictors and risk. If a predictor
affects primarily early risks, the hazard profiles will be widely
separated in the beginning of time and converge as time
passes. If a predictor affects primarily late hazards, it will have
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little effect at the beginning of time but will widen the distance
between hazard functions on each subsequent occasion.

One’s understanding of event occurrence can be vastly im-
proved by exploring whether the effects of predictors remain
constant or vary over time. As Verhulst and Koot (1991)
noted, “what may be a risk factor at one developmental phase
may not be at another” (p. 363). Some recent studies that look
for such interactions are indeed finding their presence. In
their study of the age at first suicide ideation, for instance,
Bolger et al. (1989) detected interactions between two key
predictors and time. Dividing time into two broad periods—
adolescence and preadolescence—they found that the effects
of respondent race and parental absence in childhood both
differed across these periods. With regard to race, during
preadolescence Caucasian children were less likely to con-
sider suicide than were non-Caucasian children, but during
adolescence they were more likely to do so; with regard to
parental absence, the authors found that during preadoles-
cence children who experienced a parental absence were
more likely to consider suicide than were those who did not
experience such absence, but during adolescence parental ab-
sence had little impact on the risk of suicidal thought. In ad-
dition, in a reanalysis of the National Institutes of Mental
Health Collaborative Study of Maintenance Treatment of
Recurrent Affective Disorders, Greenhouse et al. (1991)
found that the efficacy of selected antidepressants in prevent-
ing recurrence was pronounced only during the first few
weeks after treatment initiation. By including interactions
between predictors and time, researchers can better identify
the predictors of risk over time.

If a predictor interacts with time, the proportionality as-
sumption is violated, and models such as the proportional
hazards model introduced in Equations 22.1 and 22.2 do not
represent reality. The proportionality assumption is easily
tested by adding an interaction with time to the hazard model
and assessing the effect of this new predictor. If the assump-
tion holds, the interaction term will have no effect and can be
removed. If the interaction term proves to be an important pre-
dictor of the hazard profile, then a violation of the proportion-
ality assumption has been detected, and the interaction with
time must remain in the model to ensure the appropriate esti-
mation of predictor effects. We recommend that researchers
routinely examine the effects of such interactions in their haz-
ard models, just as they would routinely examine interactions
among other predictors in traditional linear models.

What Is Discrete-Time Survival Analysis?

The hazard models just posited, which assume that time can
take on any nonnegative value, represent the hazard profile as

a continuous function of time (as reflected, e.g., in the paren-
thetical inclusion of the symbol t in the expression for the
baseline hazard function, �0(t)). When data are collected in
discrete time, however, either because the events only occur,
or are only measured, at specific times—perhaps every week,
month, academic semester, or year—researchers should
consider a different class of survival methods known as
discrete-time survival analysis. The method is easy to apply,
facilitates the estimation of the baseline hazard function, en-
courages the testing of the proportionality assumption, and
enables researchers to fit hazard models using procedures
available in most statistical computer packages. For all these
reasons, we encourage its wider application to studying ques-
tions about time.

We describe the discrete-time survival analysis approach
in detail in two papers (Singer & Willett, 1993; Willett &
Singer, 1993) and in a forthcoming book (Singer & Willett, in
press); here, we simply give an overview. A researcher con-
ducts a discrete-time survival analysis by altering the data
structure, transforming the standard one-person, one-record
data set (the person data set) into a one-person, multiple-
period data set (the person-period data set). In the new
person-period data set, a dichotomous variable is created to
summarize the pattern of event occurrence in each discrete
time period for every person in the sample. If relapse into co-
caine use were being studied, for instance, in each discrete
time interval this variable (RELAPSE) would be coded 0 if
no relapse occurred and 1 if it did occur. So, for instance, an
ex-addict who relapsed in the sixth month after treatment
would have six lines of data in the new person-period data
set, and in each line RELAPSE would take on a value specific
to that interval—the first five being 0, the last being 1. The
researcher also creates a set of time indicators that index and
distinguish the discrete time intervals themselves.

Under the discrete-time approach, the relationship be-
tween the dichotomous event summary (RELAPSE) and pre-
dictors (including the time indicators) can be fit using a
modification of standard logistic regression programs. Inter-
actions among predictors, and between predictors and the
time indicators, are easily included by forming cross products
in the person-period data set and using them as predictors.
Adding these interactions to main-effects models facilitates
easy testing of the proportional-hazards assumption, and if
the assumption is violated, retention of the interactions in the
fitted model ensures the appropriate estimation of the effects.

The ability to use standard logistic regression soft-
ware to fit discrete-time hazard models brings this method-
ology within easy grasp of all empirical researchers. The
logistic regression parameter estimates, standard errors, and
goodness-of-fit statistics are exactly those required for
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testing hypotheses about the effect of predictors on the dis-
crete-time hazard profile (Singer & Willett, 1993). Allison
(1982) commented that these estimates are “consistent, as-
ymptotically efficient, and asymptotically normally distrib-
uted” and that, despite the apparent inflation of sample size
on creation of the person-period data set, the estimated stan-
dard errors are consistent estimators of the true standard
errors (p. 82).

Because of the frequency with which psychologists use
discrete-time data collection strategies, we encourage readers
to learn more about discrete-time survival methods. In the
Yamaguchi and Kandel (1984) study of drug use described
earlier, for example, participants reconstructed their life his-
tories on a month-by-month basis. Many other researchers
follow subjects at discrete points in time. Somers (1996)
assessed employee turnover in 1-month intervals; Singer,
Fuller, et al. (1998) assessed child care entry in 3-month
intervals; and Capaldi et al. (1996) assessed age at first inter-
course in annual intervals (grade in school).

How Can Fitted Models Be Interpreted?

Fitting statistical models is of little use unless the researcher
can interpret the resultant information clearly and persua-
sively. Interpretation includes at least three components:
identification of statistically significant effects, computation
of numerical summaries of effect size, and graphical display
of the magnitude and direction of the effects. In traditional
analysis of variance, for example, a researcher might first
determine whether the difference in average outcome be-
tween two groups is statistically significant; if it is, he or she
might then express one group’s advantage in standard devia-
tion units and provide data plots comparing the distribution
of the outcome across groups.

The interpretation of survival analysis must also include
the same three components. But because hazard models may
be difficult to conceptualize (describing, as they do, variation
in entire hazard profiles), we believe that graphical techniques
provide a better vehicle for reporting findings. Graphics can
help communicate complex and unfamiliar ideas about
whether an event occurs, and, if so, when. Yet even the most
effective graphical displays must be supported by documenta-
tion of parameter estimates and associated standard errors. So
we begin our discussion of interpretation with the computer
output commonly generated by statistical packages.

Computer output documenting the results of fitting hazard
models closely resembles output documenting the results of
other statistical techniques. Most programs output estimates
of the slope parameters, the standard errors of these

estimates, the ratio of each parameter estimate to its standard
error (a t statistic), and a p value based on the t statistic for
testing the null hypothesis that the corresponding parameter
is zero in the population (given that the other predictors are
in the model). Some programs output a chi-square statistic
in lieu of a t statistic; the accompanying p value assesses the
improvement in fit resulting from adding the predictor to a
reduced model containing all the other predictors. 

Researchers frequently provide tables of some, or all, of
these summary statistics in the accounts of their analyses
(see, e.g., Ilardi, Craighead, & Evans, 1997, Tables 3 and 4).
When you do so, however, do not ignore the sign and magni-
tude of the slope estimate by focusing on the associated p val-
ues. Although p values can help identify critical predictors,
they tell us nothing about the direction and relative magni-
tude of effects.

Because hazard models represent relationships between
the entire hazard profile and predictors, specifying an under-
standable effect size is not easy. One useful approach is to in-
terpret the parameter estimate associated with each predictor
in a way that is similar to interpreting a regression coefficient.
In continuous-time survival analysis the parameter estimate
represents a difference in elevation of the log-hazard profile
corresponding to predictor values one unit apart. The para-
meter estimate’s sign indicates the direction of the move-
ment, telling us whether positive differences in the value of
the predictor correspond to positive or negative differences in
the risk of event occurrence. We find it helpful to imagine the
profile on a log-hazard plot moving up (or down, if the esti-
mate is negative) for a one-unit difference in the predictor.
Predictors with larger parameter estimates produce larger
elevation differences per unit difference in the predictor. (In
discrete-time survival analysis, the conceptualization is iden-
tical, but the interpreter of the findings is dealing with differ-
ences in the elevation of the logit, rather than log, hazard
profile.)

Even after considerable experience with hazard models,
however, ready visualizations in the transformed world of log
hazard may remain tortured. A mathematically complex but
intuitively simple approach involves the transformation of
the outcome back into the more familiar metric of risk, an-
tilogging parameter estimates as necessary. Of course, a
researcher must use different transformations and interpreta-
tions depending on whether continuous- or discrete-time
models have been fitted.

We illustrate these ideas with the continuous-time hazard
model in Equation 22.1. Antilogging both sides, we have

h(t) = e�0(t)e�1FEMALE.
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Because FEMALE = 1 for women and 0 for men, the hazard
functions corresponding to these two groups are

Men: h(t) = e�0(t)

Women: h(t) = e�0(t)e�1 .

Notice that the risk profile for women is just the risk profile for
men multiplied by e�1 . This multiplicative rule applies to both
categorical and continuous predictors. Thus, in continuous-
time hazard models, antilogged parameter estimates yield nu-
merical multipliers of risk per unit difference in the predictor.
If the antilogged parameter estimate is greater than 1, risk is
higher in the reference group; if it is less than 1, risk is lower.
(Note that this is not an odds ratio; it is a risk ratio.)

This transformation strategy enabled Burton, Johnson,
Ritter, and Clayton (1996) to document the strong effect of
early marijuana use on the risk of initiating cocaine use. After
controlling statistically for selected family and demographic
covariates, the authors obtained a parameter estimate of
2.354 for a predictor indicating whether the respondent had
used marijuana by age 17 ( p < .0001). Antilogging this esti-
mate (e2.354 = 10.5), we find that the risk of initiating co-
caine is 10.5 times for those whose first use of marijuana
occurred at age 17 or younger, relative to those who had
never used marijuana.

Another way to interpret hazard-model parameter esti-
mates is in terms of percentage difference in risk. Doubling
the baseline risk (multiplying by a factor of 2) is equal to a
100% increase in risk; halving the baseline risk (multiplying
by a factor of .5) is equal to a 50% decrease. So in the cocaine
initiation study of Burton et al. (1996), multiplying the base-
line hazard by 10.5 corresponds to a 950% (!) increase in the
risk of initiation for those who use marijuana by age 17. The
general rule is simple: The percentage difference in risk per
unit difference in the predictor is 100(e� − 1). Some re-
searchers automatically include these estimates of e� (or
100(e� − 1)) in tables reporting parameter estimates, stan-
dard errors, t statistics, and p values.

Similar, but modified, interpretations can be made after
fitting discrete-time hazard models. Since discrete-time haz-
ard is the conditional probability that an event will occur in a
particular time interval given that it has not yet occurred
before the interval, the discrete-time hazard model, which
uses logit hazard as the outcome, expresses the relationship
between predictors and the log odds of event occurrence. Es-
timates of e� or 100(e� − 1) are therefore multipliers of, or
percentage increases or decreases in, the odds of an event
occurring (see, e.g., Singer, Fuller, et al., 1998).

As these illustrations document, numeric and algebraic
strategies are not the last word in the clear communication of

the findings of survival analysis. Apart from being arithmeti-
cally convoluted, they have at least two other drawbacks.
First, they ignore the shape of the baseline hazard function—
they indicate only the extent to which one risk profile is a
magnification or diminution of another. As argued earlier, the
shape of the hazard profile—the temporal placement of its
peaks and valleys—tells us much about the survival process
under investigation. Second, algebraic interpretations are
useful only if the proportionality assumption is met. If the ef-
fect of predictors differs over time, risk profiles will be no
longer parallel in log or logit space, so it makes little sense to
talk about one profile being rescaled to generate the other. If
the shapes of the risk profiles differ dramatically, algebraic
interpretations may not only oversimplify findings, but may
even misrepresent them completely.

Presenting fitted hazard plots, fitted survival plots, and es-
timated median lifetimes resolves these problems. Most com-
puter programs provide procedures for recovering fitted
profiles from parameter estimates. By appropriately substi-
tuting back into the hazard model, a researcher can generate
fitted hazard profiles at substantively interesting values of
the predictors for the range of time values spanning the pe-
riod of data collection. The use of fitted hazard profiles is
clear, comprehensive, and intuitively meaningful. Fitted pro-
files demonstrate the effect of predictors on risk and pinpoint
whether these effects rise, fall, or remain constant with the
passage of time. By presenting fitted hazard functions, we
need not struggle to describe effects using abstract scaling
factors and percentage increases that ignore important inter-
actions with time. 

We illustrate the advantages of this graphical approach in
Figure 22.5 using data from Hall et al. (1991), who studied
the risk of relapse to cocaine use among 104 former users
who participated in a treatment program. Among the many
predictors Hall and her colleagues studied, there was a strong
and statistically significant effect of the route of administra-
tion prior to entry into treatment (ROUTE), here divided into
two groups: those who used cocaine intranasally and all oth-
ers. Figure 22.5 presents fitted hazard and survivor functions
based on a discrete-time hazard model that included this sin-
gle predictor. Because we have fit a discrete-time hazard
model, we join the fitted values of the survivor function and
hazard function using line segments, rather than a smooth
curve.

Comparison of the two fitted hazard functions in Fig-
ure 22.5 demonstrates the large differential in risk of relapse
associated with route of administration. In every week after
treatment, intranasal users are far less likely to relapse than
are other users. These fitted functions have the same basic
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shape, and one appears to be a magnification of the other.
Strictly speaking, however, this apparent magnification of
one hazard profile to give the other is only approximate in the
discrete-time hazard model and only holds when hazard is
small (see Willett & Singer, 1993). Were we to replot these
hazard functions on a logit hazard scale, they would have a
constant vertical separation. The functions have been con-
strained to appear this way by the proportionality assump-
tion, which we tested and found to be met.

Fitted survivor functions and estimated median lifetimes
can be reconstructed from fitted hazard profiles in order to il-
lustrate the magnitude and direction of important effects.
We believe, however, that fitted hazard profiles are generally
more informative because they identify the specific times
when the events of interest are most likely to occur. It is usually
more difficult to discern differences between fitted survivor
profiles than between fitted hazard profiles because the sur-
vivor function is smoothed by the cumulation of risk over time.
The fitted survivor plots in the bottom panel of Figure 22.5
show the cumulative effects of the large weekly differentials in
risk. Unlike the fitted hazard functions that emphasize large
and consistent differences in risk, the fitted survivor functions
condense the effects of these weekly risk differentials together
to reveal a substantial difference between the groups. Focusing
on the last fitted survival probability, for example, we estimate
that 12 weeks after treatment ended, 63% of the intranasal
users remained abstinent as compared with 28% of other users.

A third perspective on the divergent relapse patterns of
these two groups comes from comparison of the estimated
median lifetimes displayed in the bottom panel of Fig-
ure 22.5: more than 12 weeks for intranasal users versus 5.1
weeks for all other users. Even though censoring prevents us
from estimating a median lifetime precisely for intranasal
users, the large difference between these average relapse
times powerfully communicates the analytic results.

When selecting predictor values for constructing fitted
plots like these, consider your original questions and analytic
findings. Questions to ask include: Which predictors did I
emphasize in my research questions? and Which predictors
were significantly associated with hazard? Use predictors
that are substantively and statistically important when gener-
ating the fitted profiles; lesser variables can be included as
controls by equating their value to their sample averages.

IS SURVIVAL ANALYSIS REALLY NECESSARY?

The methods of survival analysis provide a powerful and
flexible set of tools for studying many questions arising in
psychological research. Although increasing numbers of re-
searchers are using the methods, many others studying onset,
duration, recovery, recidivism, relapse, and recurrence have
yet to exploit this new analytic tool.

We believe that one reason why survival methods have not
yet been used widely when studying questions about event
occurrence is that many researchers still wonder whether the
methods are really necessary. Although this view is rarely ex-
pressed explicitly, reading between the lines suggests that
many researchers believe that traditional analytic approaches
will usually suffice.

We agree that some skepticism is healthy. Why bother
with complex methods if simpler methods will do? But the
problem when studying event occurrence is that simpler
methods will not always suffice. To illustrate this point, we
conclude by describing five ways in which traditional meth-
ods can obscure important information about event occur-
rence, information that is sensitively and assuredly revealed
by survival analysis methods. 

First, answers obtained by researchers using traditional
methods are inextricably linked to the particular time frame
chosen for data collection and analysis, yet these time frames
are rarely substantively motivated. Researchers comparing
6-month, 1-year, or 5-year relapse rates for individuals par-
ticipating in different treatment programs, for example, are
simply describing cumulative differences in behavior until
these times. All other variation over time in the risk of relapse
is lost. The literature is filled with examples of disparate risk

Figure 22.5 Fitted hazard functions (top panel) and survivor functions
(bottom panel) describing the risks of relapse for 104 former cocaine abusers
following treatment, by route of cocaine administration prior to treatment
(intranasal versus all others; based on data reported by Hall et al., 1991).
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profiles that lead to comparable relapse rates at specific
points in time (e.g., Figure 1 of Cooney, Kadden, Litt, &
Getter, 1991; Table 2 of Harackiewicz, Sansone, Blair,
Epstein, & Manderlink, 1987). Just because two groups of
subjects have identical relapse rates at one point in time does
not mean that they followed similar trajectories to get there;
most of those in one group might have relapsed in the first
month, whereas those in the other might have been equally
likely to relapse at all points in time. The 6-month, 1-year,
and 2-year cut points used in the past are convenient, but not
purposeful. By documenting variation in risk over time and
by discovering what predicts variation in risk, we can better
understand why people relapse. Traditional methods disre-
gard this information; with survival methods, variation in risk
becomes the primary analytic focus.

Disregard for variation in risk over time leads to a second
problem with traditional methods: Seemingly contradictory
conclusions can result from nothing more than variations in
the particular time frames studied. Had Stevens and Hollis
(1989) computed only 1-month and 12-month relapse rates
when evaluating the efficacy of their individually tailored
skills-training technique for preventing relapse to smoking,
for example, they would have reached opposite conclusions:
The 1-month rates would have shown that subjects in the
skills group were more likely to relapse (in comparison to
those in a discussion-oriented group), whereas the 1-year
rates would have shown that they were less likely. By
thoughtfully presenting sample survivor functions, they
showed that the effectiveness of the skills-training approach
revealed itself only after several months. Researchers
using traditional methods must constantly remind them-
selves that conclusions can change as the time frame
changes. While such caveats usually appear in the “Meth-
ods” section of an article, they often disappear by the “Dis-
cussion” section. In survival analysis, the time frame itself is
integral to the answer; it highlights, rather than obscures,
variation over time.

Third, traditional analytic methods offer no systematic
mechanism for incorporating censored observations in the
analyses. If all the censored observations occur at the same
point in time, traditional data analysis can collapse the sam-
pled individuals into two groups: those who experienced the
event before the censoring point and those who did not. In
their longitudinal study of unaided smoking cessation, for
example, Marlatt et al. (1988) compared ex-smokers who re-
lapsed and those who did not at each of four points in time:
1 month, 4 months, 1 year, and 2 years. But if the first days
and weeks following cessation are the hardest, individuals
who relapse soon after cessation may differ systematically
from those who relapse subsequently. Dichotomization

conceals such differences; survival methods, which focus on
the risk of event occurrence over time, bring such differences
to light.

If censoring does not occur at the same time point for
every individual under study (as when researchers follow co-
horts of patients admitted over time until a single fixed point
in time), traditional methods create a fourth problem: If cen-
soring times vary across people, the risk periods vary as
well. People followed for longer periods of time have more
opportunities to experience the target event than do those
followed for shorter periods of time. This means that
observed differences in rates of event occurrence might be
attributable to nothing more than research design. In
Goldstein, Black, Nasrallah, and Winokur’s (1991) study of
suicidality among 1,906 Iowans with affective disorders, the
follow-up period ranged from 2 to 13 years. As they note,
“The highly variable period of follow-up is also a potential
limitation, because those patients followed up for the short-
est periods may not have been given the opportunity for their
suicidal outcome to emerge” (p. 421). Had the researchers
used survival methods instead of logistic regression, they
would have been better able to address this concern because
each person who did not commit suicide would simply have
been censored at follow-up.

Fifth, traditional analytic methods offer few mechanisms
for including predictors whose values vary over time or for
permitting the effects of predictors to fluctuate over time. To
overcome this limitation, researchers studying the effects of
time-varying variables tend to use predictor values corre-
sponding to a single point in time, the average of predictor
values over time, or the rate of change in predictor values
over time. This is not necessary in survival analysis. The an-
alytic effort is identical whether including predictors that are
static over time or predictors that change over time; so, too, it
is easy to determine whether the effects of predictors are con-
stant over time or whether they differ over time. There is no
need to create a single-number summary of the temporal
behavior of a changing predictor. Traditional methods force
researchers into building static models of dynamic processes;
survival methods allow researchers to model dynamic
processes dynamically.

We encourage psychologists to investigate the design and
analytic possibilities offered by survival methods. When
these methods were in their infancy and statistical software
was either not available or not user-friendly, researchers rea-
sonably adopted other approaches. But experience in medi-
cine and elsewhere in the social sciences shows that these
methods, originally developed to model human lifetimes,
lend themselves naturally to the study of other phenomena
as well.
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Researchers rarely ask questions that they do not have the
analytic methods to answer. We suspect that many re-
searchers interested in the timing of events have modified
their questions because they did not know how to build
appropriate statistical models. We hope that our presentation
of survival analysis will help researchers reframe these mod-
ified questions and provide them with strategies for answer-
ing those questions as simply and as directly as possible.

WHERE TO GO TO LEARN MORE ABOUT
SURVIVAL ANALYSIS

In the body of this chapter, we have purposefully avoided the
discussion of technical statistical issues that arise in survival
analysis; indeed, we have gone to great pains to ensure that
the text is relatively free of technicality. Our goal has been to
make a strong case for the use of survival methods in psy-
chological research. For readers considering actually using
survival methods, this section provides references to written
materials that they might want to consult before embarking
on a study. 

Readers interested in acquiring a more sophisticated back-
ground in these methods can choose among a wide range of
published material, both in books and in scholarly journals.
Allison’s (1984) introductory monograph and his more recent
guidebook for conducting survival analysis using the SAS
statistical package (Allison, 1995) provide excellent starting
points for readers familiar with regression. These are well-
documented, accessible, and largely nontechnical introduc-
tions to a broad range of survival methods. Allison touches on
most of the important issues facing the user of survival analy-
sis, including discrete- versus continuous-time methods, the
proportional hazards model and partial likelihood estimation
(“Cox regression”), and the analysis of competing risks and
repeated events. 

Readers wishing to supplement these introductions with
greater technical detail should consult one of the several
standard texts. The two major classics are Kalbfleisch and
Prentice (1980) and Cox and Oakes (1984). In recent years,
different teams of biostatisticians have written several more
practically oriented books, including Hosmer and Lemeshow
(1999), Klein and Moeschberger (1997), and Therneau and
Grambsch (2000). We, too, are in the process of writing a
book on the analysis of longitudinal data that discusses both
survival methods and individual growth modeling (Singer &
Willett, in press).

Researchers collecting data in discrete time rather than
continuous time should learn more about discrete-time sur-
vival analysis. In addition, because discrete-time hazard

models are easy to apply, facilitate the recapturing of the
baseline hazard and survivor functions, can be estimated
with standard logistic regression software, and allow the
testing and, if necessary, the relaxation of the proportionality
assumption, even researchers with continuous-time data
might also want to explore this approach more fully. In a pair
of papers, we provide an overview of discrete-time methods
written for empirical researchers. Willett and Singer (1993)
is the place to start for those seeking a data analytic perspec-
tive; Singer and Willett (1993) offers a more mathematical
presentation.
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Time series analysis is a statistical methodology appropriate
for an important class of longitudinal research designs. Such
designs typically involve single subjects or research units
that are measured repeatedly at regular intervals over a large
number of observations. Time series analysis can be viewed
as the exemplar of a longitudinal design. A time series analy-
sis can help us to understand the underlying naturalistic
process, the pattern of change over time, or evaluate the
effects of either a planned or unplanned intervention. This
chapter discusses time series analysis as it is commonly
employed in psychological research, detailing both the past
history and future directions of the technique. Advances in
information systems technology make time series designs an
increasingly feasible method for studying important psycho-

logical phenomena. The chapter is divided into eight sections
that carry the reader from the theoretical underpinnings of the
methodology through applied examples of time series appli-
cations to new applications and directions within time series
analysis.

The second section provides a general overview and
describes the most prevalent methodology used in time series
analysis. This section provides an introduction to the major
concepts, issues, and terminology. The major classes of re-
search questions that can be addressed by time series analysis
are also discussed. These include process analysis, interven-
tion analysis, and the analysis of treatment effects over time.
Some general guidelines are suggested to aid in determining
when a time series study and analysis might offer specific
advantages over alternative methodologies.

The third section presents a more complete and technical
discussion of the class of time series known as autoregressive
integrated moving average (ARIMA) models. These models

Grants CA27821, CA63045, CA71356, and CA50087 from the
National Cancer Institute supported this work.
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consist of several parameters that describe and provide in-
sight into the basic process of a specific time series. Defini-
tions of parameters (p, d, q) and important terms (order,
dependency) within ARIMA models are given. A more tech-
nical discussion of the model identification process is also
presented. Simulated and applied examples of time series are
used to clarify this discussion.

The fourth section provides a detailed examination of
interrupted time series analysis. This aspect of time series
analysis is especially important when an intervention is the
focus in a research study. Typically an examination of the
effects of an intervention will be concerned with changes in
the overall level or the slope of the time series, or both the
level and the slope of the measured series. Statistical tests of
significance for the intervention parameters of interest are
also available. The provision of accurate statistical tests is
dependent on transforming the time series to remove the
dependency that is usually present in the data. Selection of
an appropriate transformation matrix is a crucial aspect of
interrupted time series analysis and several approaches to
transforming a time series are presented. The discussion and
mathematical treatment of interrupted time series analysis is
facilitated with simple examples of time series.

The fifth section examines issues related to the generaliza-
tion of results to a larger population than the single individual
or unit that may be the focus of a time series. Informal meth-
ods are contrasted with the more recent formal methodolo-
gies of pooled times series and meta-analysis. A description
of the various methodologies is provided along with the lim-
itations and benefits of the different methods.

The sixth section addresses the extension of traditional
univariate time series analysis to procedures that allow for
multivariate time series analysis. These multivariate tech-
niques are still evolving and are generally at the forefront
of current time series analysis development. Multivariate
applications of time series analysis may examine the role of
covariates, involve formal modeling within a structural equa-
tion modeling format, or examine patterns of intra-individual
differences across time within a dynamic factor analysis
model.

The seventh section reviews several important and diverse
issues that can affect the meaning and interpretation of a time
series analysis solution. The first discusses the cyclic or sea-
sonal nature of some time series. The second reviews missing
data and the effects of alternative methods of imputation
within time series analysis. The last examines various com-
putational issues within time series analysis.

The eighth section provides a summary discussion of the
material on time series analysis presented in this chapter and
some general observations on this methodology.

OVERVIEW OF TIME SERIES ANALYSIS

Modern time series analysis and related research methods
represent a sophisticated leap in the ability to analyze longi-
tudinal data gathered on single subjects or units. Early time
series designs, especially as used within psychology, relied
heavily on graphical analysis to describe and interpret results.
Although graphical methods are useful and still provide im-
portant ancillary information to the understanding of a time
series process, the ability to bring a sophisticated statistical
methodology to bear on this class of data has revolutionized
the area of single subject research.

ARIMA Models

Time series analysis had been more generally developed in
areas such as engineering and economics before it came into
widespread use within social science research. The prevalent
methodology that has developed and been adapted in psy-
chology is the class of models known as ARIMA models
(Box & Jenkins, 1976; Box, Jenkins, & Reinsel, 1994; Box &
Tiao, 1965, 1975). Time series analysis belongs to the class
of new methods of data analysis that require the use of mod-
ern high-speed computers. The estimation of the basic para-
meters cannot be performed by precomputer methods.

One of the major characteristics of the data in most time
series is the inherent dependency present in a data set that re-
sults from repeated measurements over time on a single sub-
ject or unit. All longitudinal designs must take the potential
relationship between observations over time into account.
For time series analysis, the dependency precluded the use
of traditional statistical tests. An important assumption for
statistical testing, the independence of the error in the data,
was usually not met. Methods of handling this dependence
appropriate for large sample procedures could not be used.
ARIMA models have proven especially useful within time
series analysis because they provide a basic methodology to
model the effects of dependency from the data series (Glass,
Willson, & Gottman, 1975; Gottman, 1973; Gottman &
Glass, 1978) and allow valid statistical testing.

Research Applications

As the methodology for time series analysis has evolved,
there has also been an emergence of interest among applied
researchers. Many behavioral interventions occur in applied
settings such as businesses, schools, clinics, and hospitals.
More traditional between-subject research designs may not
always be the most appropriate, or in some instances can be
very difficult if not impossible to implement in such settings.
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In some cases, data appropriate for time series analysis are
generated on a regular basis in the applied setting, like the
number of hospital admissions. In other cases, a complete un-
derstanding of the process that can explain the acquisition or
cessation of an important behavior may require the intensive
study of an individual over an extended period of time. The
advances in information systems technology have facilitated
the repeated assessment of individuals in natural settings.

Figure 23.1 (from Velicer, Redding, Richmond, Greeley,
& Swift, 1992) illustrates the type of data that would be ap-
propriate for time series analysis. The dependent variable is
the number of cigarettes smoked by a single individual, code
name ROD. The data were obtained twice a day over a period
of two months (N = 124 with 3 observations missing). Four
parameters were fit to the data: The level of the series was
estimated to be 7.30, the error variance was estimated to be
15.13, the slope of the series was not statistically significant
and estimated to be 0.0, and the dependence was estimated to
be −0.67. The first two parameters are directly analogous to
parameters estimated in traditional cross-sectional statistical
analysis. Because the slope is 0.0, the level of this series is the
same as the mean. In cases in which the slope is not equal to
zero, then the level is interpreted as an intercept would be in
a regression analysis. In this case, it is the same as the mean
and the average number of cigarettes consumed in a half day
was 7.30. (Both observation periods involved approximately
the same length of time when the smoker was awake.) The es-
timate of error variance represents the variability about the
level of the series. As in cross-sectional designs, this is em-
ployed in the denominator of a statistical test. The second two
parameters represent unique aspects of longitudinal designs.
The lagged correlation between the observations provides an
estimate of the dependence in the data. The high negative

autocorrelation indicates that if the smoker consumes an
excessive number of cigarettes during one time period, con-
sumption during the next time period is likely to be low. (In
the next section, the direction and magnitude of this parame-
ter will be related to different theoretical models of smoking
behavior.) The slope indicates if there is a pattern of system-
atic change over time. If the series is stable, as in this case, the
average consumption is neither increasing nor decreasing
over the time period studied.

Process Analysis

Several important classes of research questions can be inves-
tigated using ARIMA models applied to time series data. The
first class involves using ARIMA modeling to investigate the
naturalistic process of change across time. Investigations of
this type focus on the dependency parameter and attempt to
identify the underlying nature of the series from the depen-
dency parameter. Such process investigations are strongest
if they can be linked to a priori hypotheses or established
theories. Investigations of this type can lead to a basic under-
standing of the process under investigation and may provide
a foundation to attempt an intervention to alter the process
under investigation.

Intervention Analysis

A second important class of questions that can be investigated
involves the analysis of the effects of an intervention that is
applied to an individual subject or unit. Such an investigation
is commonly referred to as an interrupted time series analysis.
The interruption refers to the intervention that is applied at
some fixed point in a process. Repeated measurements are

1
0

6 11 16 21 26 31 36 41 46 51 56 61

Time

Australian Data [File ROD]

N
um

be
r 

of
 C

ig
ar

et
te

s

66 71 76 81 86 91 96 101106111116121

2

4

6

8

10

12

14

16

18

Figure 23.1 Smoking behavior measured on 124 occasions: an example of time series data for a
single individual (ROD; from Velicer, Redding, et al., 1992).
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Figure 23.2 Example of an interrupted time series example: the talking out example (from Hall et al.,
1971; Glass et al., 1975).
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taken before and after the intervention in order to provide a
sufficient number of data points to conduct a statistical analy-
sis to evaluate the effects of the intervention. Such investiga-
tions can be very useful in trying to understand causality
within the process and as a result of the intervention.

Figure 23.2 illustrates the “talking out” data from Glass
Willson, and Gottman (1975), an example of an interrupted
time series design. The Glass et al. (1975) text introduced
time series analysis to the behavioral sciences and includes
multiple numeric examples in the appendix that can be used
for practice examples. The original talking out data (Hall
et al., 1971) represented 40 daily observations of disruptive
behavior (talking out) in a second-grade class. The first 20
observations were the baseline and the second 20 observa-
tions occurred after an intervention involving praise and
access to a favorite activity had been implemented. The first
panel illustrates the observed data. The second panel illus-
trates the same data with the estimate of the level and change
in level parameters. A first-order moving averages model was
fit to the data. The level of the series before intervention was
estimated to be 19.24. After the intervention, the estimated
level of the series was changed by −14.29 to 4.95. The para-
meter estimate for the error variance was 4.47. The parameter

estimate for the dependence was −0.34. If the analysis
includes estimation of slope and change in slope, these para-
meters are found to be not significant. The analysis indicates
that the intervention resulted in a large and sustained decrease
in amount of inappropriate behavior in the classroom.

Analysis of Patterns Across Time

Time series analysis allows for a broadening of the range of
questions that can be asked in a study beyond a simple investi-
gation of whether the intervention has had an effect. Time
series analysis has some important advantages over other
methodologies in that it provides the opportunity to investigate
the pattern of intervention effects across time. These patterns
can be quite varied and some questions that can be investigated
in this context include (a) Are the effects of intervention
temporary or permanent?, (b) Does the intervention cause a
change in the slope of the behavior process as well as the over-
all level?, (c) Does the intervention cause a change in any
cycling that is present in the underlying behavior process?,
(d) Does the intervention cause the variance to change?, and
(e) Does the intervention cause a change in the nature of the
dependency that is present in the time series process?
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Caveats

There are also several difficulties and weaknesses associated
with standard time series analysis that must be recognized.
First, generalizability should not be inferred from a single
study. The researcher needs to engage in systematic replica-
tion in order to demonstrate generalizability. Second, the
traditional measures employed in cross-sectional studies in
many content areas may not be appropriate for time series
designs. For time series analysis, the best measures are those
that can be repeated a large number of times on a single sub-
ject at intervals of short duration. Third, within the context of
ARIMA models a large number of equally spaced observa-
tions are required for accurate model identification. Model
identification, discussed in detail in the next section, is an im-
portant and necessary step. Advances in time series analysis
over the last decade have attempted to address these prob-
lems, and these new methodological developments are dis-
cussed in a later section of this chapter.

MODEL IDENTIFICATION

Overview of ARIMA Modeling Procedures

Time series analysis, within the ARIMA model framework,
involves two important steps that can vary in importance,
depending on the goals of the analysis. The first step is model
identification, in which the researcher tries to identify which
underlying mathematical model is appropriate for the data.
Model identification focuses on the dependency parameters,
one of the types of parameters unique to longitudinal designs.
This step can sometimes be a very difficult, complicated, and
problematic task. Model identification can represent the pri-
mary goal of the analysis, especially if a researcher is trying
to identify the basic underlying process represented in a time
series data set, and perhaps link this process with important
theoretical underpinnings. 

When the goal of the analysis involves evaluating the ef-
fects of an intervention, as in interrupted time series analysis,
then model identification represents a first step. It is prelimi-
nary to estimating and testing pre- and postintervention para-
meters (Box, Jenkins, & Reinsel 1994; Box & Tiao, 1965,
1975; Glass et al., 1975; McCleary & Hay, 1980; Velicer &
Colby, 1997; Velicer & McDonald, 1984, 1991). After the
model identification step, the researcher moves on to the sec-
ond step and implements a specific transformation appropri-
ate for the identified model that reconfigures the dependent
observed variable into a serially independent variable. After
transformation, the dependent variable or effects of interven-
tion can then be evaluated by a generalized least squares
estimate of the model parameters.

There has been extensive research developing and com-
paring procedures to aid the model identification process
(Akaike, 1974; Beguin, Courieroux, & Monfort, 1980;
Bhansali & Downham, 1977; Glass et al., 1975; Grey, Kelly,
& McIntire, 1978; Hannan & Rissanen, 1982; Kashyap,
1977; McCleary & Hay, 1980; Parzen, 1974; Pukkila, 1982;
Rissanen, 1978, 1986a, 1986b; Schwartz, 1978; Tsay, 1984;
Tsay & Tiao, 1984). Unfortunately there is not yet a clear
consensus on a best method for this important task. A simula-
tion study by Velicer and Harrop (1983) studied the model
identification process. Some of the reasons for difficulty with
this step include the large number of data points required for
accurate identification, the complexity of the procedures, and
problems with accuracy and reliability of some methods,
even under ideal circumstances. Alternative procedures that
avoid formal model identification have been proposed
(Algina & Swaminathan, 1977, 1979; Simonton, 1977;
Swaminathan & Algina, 1977; Velicer & McDonald, 1984,
1991) and are discussed in a later section.

Definition of ARIMA Parameters

The ARIMA model represents a family of models character-
ized by three parameters (p, d, q) that describe the basic prop-
erties of a specific time series model. The value of the first
parameter, p, denotes the order of the autoregressive compo-
nent of the model. If an observation can be influenced only
by the immediately preceding observation, the model is of
the first order. If an observation can be influenced by both of
the two immediately preceding observations, the model is
of the second order. The value of the second parameter, d,
refers to the order of differencing that is necessary to stabilize
a nonstationary time series. This process is described as non-
stationary because values do not vary about a fixed mean
level; rather, the series may first fluctuate about one level for
some observations, and then rise or fall about a different level
at a different point in the series. And the value of the third
parameter, q, denotes the order of the moving averages
component of the model. Again, the order describes how
many preceding observations must be taken into account.
The values of each of the parameters (p, d, q) of the model
may be designated as Order 0, 1, 2, or greater, with a para-
meter equal to zero indicating the absence of that term from
the model. Higher-order models, four and above, are gener-
ally rare in the behavioral and social sciences (Glass et al.,
1975). Box, Jenkins, and Reinsel (1994) provide a more
complete discussion of these parameters.

The order of a time series parameter reflects how far into
the past one must go to predict a present observation and thus
refers to how many preceding observations must be taken
into account to accurately describe the dependency present
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in the data series. Accuracy in determining the exact order
can be quite difficult because higher-order autocorrelation
terms are generally closer to zero than terms of earlier order.
In effect, the higher-order terms become more likely to be
included within the interval that would include an error
estimate.

Dependency and Autocorrelation

In time series analysis, dependence is assessed by calculating
the values of the autocorrelations among the data points in
the series. In contrast to a correlation coefficient, which is
generally used to estimate the relationship between two
different variables measured at the same time on multiple
subjects, an autocorrelation estimates the relationships within
one variable that is measured at regular intervals over time on
only one subject.

The degree of dependency in a time series is determined
by the magnitude of the autocorrelations that can vary be-
tween −1.00 and 1.00, with a value of 0.00 indicating no
relationship. These values can be interpreted as the strength
of relationship between consecutive measurements. The ac-
curacy of estimation improves as the number of observations
increase. Generally, 50 or more observations provide reason-
ably accurate estimates (Box & Pierce, 1970; Glass et al.,
1975; Ljung & Box, 1978). In practical terms, the degree of
dependency indicates the extent to which an observation at
any point in time is predictable from one or more preceding
observations.

The direction of dependency in a time series refers to
whether an autocorrelation is positive or negative. The direc-
tion can be determined with a high degree of accuracy when
there is strong dependency in the data. As the degree of
dependency approaches zero, the direction becomes less
important. With strong dependency, the direction has clear
implications. When the sign of the autocorrelation is nega-
tive, a high level for the series on one occasion predicts a
lower level for the series on the next occasion. When the sign
is positive, a high level of the series on one occasion predicts
a higher level on the next occasion.

In calculating an autocorrelation, the data points of the
series are paired off in a lagged manner against each other.
Figure 23.3 illustrates this process using the first 20 observa-
tions for Lag 1, Lag 2, and Lag 3. Note that for Lag 1 in this
example, the second observation is paired with the first, the
third observation is paired with the second, and so on, until
the last observation is paired with the second from the last
observation. If we now calculate the correlation between
these paired observations, we will have calculated the Lag 1
autocorrelation. If we were to pair the third observation with

the first, the fourth observation with the second, and so on,
we could then calculate the Lag 2 autocorrelation. The lag of
an autocorrelation refers to how far in the past the depen-
dency among measurements is examined. In the behavioral
sciences, the size of the autocorrelation generally decreases
as the lag increases. An exception would be with seasonal or
cyclic data, which are relatively common and are discussed
in more detail in a later section. The interpretation of the
pattern of autocorrelations within a time series provides one
diagnostic step of the model identification process.

The calculation and interpretation of the pattern of the
related partial autocorrelations calculated at each lag is em-
ployed as a second diagnostic step to aid in the identification
of the specific ARIMA model that describes the process un-
derlying the time series. Partial autocorrelations are mathe-
matically complex and are not formally defined here. They
are estimated from a solution of the Yule-Walker equation
system, and the interested reader should examine Box,
Jenkins, and Reinsel (1994), Glass et al. (1975), or West and
Hepworth (1991) for a detailed description. The interpreta-
tion of partial autocorrelations is that of a measure of the
correlation between specific lags of the time series values
after the correlation at the intervening lags has been partialled
out or controlled for. Figure 23.4 illustrates the autocorrela-
tions and partial autocorrelations for the ROD data from
Figure 23.1.

Time Series Model Identification

Model identification ultimately seeks to determine whether au-
toregressive terms or moving average terms must be included

Figure 23.3 Illustration of arrangement of data to calculate autocorrela-
tions for first three lags using first 20 observations from ROD example.

Example. Lag 1

Time X X�1
1 6 --
2 10 6
3 4 10
4 13 4
5 4 13
6 11 4
7 4 11
8 6 4
9 4 6

10 15 4
11 5 15
12 14 5
13 5 14
14 13 5
15 5 13
16 10 5
17 3 10
18 14 3
19 3 14
20 16 3

Example. Lag 2

Time X X�2
1 6 --
2 10 --
3 4 6
4 13 10
5 4 4
6 11 13
7 4 4
8 6 11
9 4 4

10 15 6
11 5 4
12 14 15
13 5 5
14 13 14
15 5 5
16 10 13
17 3 5
18 14 10
19 3 3
20 16 14

Example. Lag 3

Time X X�3
1 6 --
2 10 --
3 4 --
4 13 6
5 4 10
6 11 4
7 4 13
8 6 4
9 4 11

10 15 4
11 5 6
12 14 4
13 5 15
14 13 5
15 5 14
16 10 5
17 3 13
18 14 5
19 3 10
20 16 3
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Figure 23.4 Correlogram of the autocorrelations and partial autocorrela-
tions for the ROD example.
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Lag

to fully describe the time series data. Taken together, the dis-
tributional pattern of the autocorrelations and partial autocor-
relations provides a visual basis for making these decisions.
However, accuracy using traditional visual analysis of the
autocorrelations and partial autocorrelations conventionally
requires the consensus of three raters. The listing and graphic
plots of the autocorrelations and the partial autocorrelations
are provided in the printed output of most time series analysis
programs. For example, if an autoregressive component is
predominant, the autocorrelations will decay slowly to zero
for increasing lags and the partial autocorrelations will drop
abruptly to zero when the appropriate lag (p) is reached. The
residuals of a first-order autoregressive model, i.e., an ARIMA
(1, 0, 0) model, with negative autocorrelation will bounce from
negative to positive and back. For the moving average compo-
nent, the autocorrelations will drop abruptly to zero when the
appropriate lag (p) is reached, and the partial autocorrelations
will drop slowly to zero. Models that demonstrate no depen-
dence will have autocorrelations and partial autocorrelations
of approximately zero and are called white noise models or
ARIMA (0, 0, 0) models. The data from an ARIMA (0, 0, 0)
model could be analyzed for slope and change in slope with a
standard analysis of variance. Table 23.1 provides a useful
heuristic into the interpretation of the most common patterns
and identifying the ARIMA model that best represents a par-
ticular time series.

Four different automated methods for order identification
have also been found useful in the model identification
process: (a) PMDL (predictive minimum descriptive length;
Rissanen, 1986a); (b) PLS (predictive least squares;
Rissanen, 1986b); (c) PLAV (predictive least absolute value;
Djuric & Kay, 1992); and (d) PDC (predictive density crite-
rion; Djuric & Kay, 1992). Two additional methods have
been considered less useful: (a) AIC (Akaike information
criterion; Akaike, 1974); and (b) MDL (minimum descriptive
length; Rissanen, 1978; Schwartz, 1978). A recent simulation
study that evaluated these six automated procedures (Djuric
& Kay, 1992) found that the AIC and MDL tended to overes-
timate the order of series. One drawback of all the automated
procedures is that they are not commonly available in stan-
dard computer packages.

Although the overall goal of the model identification
process seems straightforward—that is, to determine the spe-
cific values of the ARIMA (p, d, q) parameters that most
parsimoniously describe the time series—this can be a very
difficult task in practice because the different model families
are mathematically linked. For example, a first-order autore-
gressive model (1, 0, 0) can also be represented as an infinite
order moving averages model (0, 0, ∞), or this representa-
tion can be reversed such that a first-order moving averages
model (0, 0, 1) can also be represented as an infinite-order
autoregressive model (∞, 0, 0).

Illustrations of Alternative Time Series

Figure 23.5 illustrates four different types of models using
computer-generated data (N1 = N2 = 60). The first graph (A)
represents an ideal interrupted time series example initially at
Level = 5.0 with no error and an immediate Change in Level
of 2.0 units at the time of intervention. The next three graphs
represent an ARIMA (1, 0, 0) model (i.e., an Order 1 autore-
gressive model). The second graph (B) is the same model
with the same change in level but with a random error com-
ponent added. The variance of the random error is 1.00. There
is no autocorrelation in this model. The third graph (C) is a
model with the same change in level and error variance as (B)
but with a large negative autocorrelation (−0.80). The fourth
graph (D) is a model with the same change in level and error
variance but with a large positive autocorrelation (+0.80).
The impact of dependency can be easily observed. The nega-
tive dependency results in an exaggerated sawtooth graph
with increased apparent variability. The positive dependency
results in a smoother graph with decreased apparent vari-
ability. The inclusion of an intervention effect (the change
in level) illustrates how difficult it is to determine whether an
intervention had an effect by visual inspection alone.

TABLE 23.1 Relationship Between ARIMA Models and Auto- and
Partial Autocorrelation Patterns

Model Autocorrelations Partial Autocorrelations

ARIMA (p, 0, 0) Decays slowly = 0 after p
ARIMA (0, 0, q) = 0 after q Decays slowly
ARIMA (p, 0, q) Decays slowly Decays slowly
ARIMA (0, d, 0) Does not decay Does not decay
ARIMA (0, 0, 0) = 0 = 0
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588 Time Series Analysis

Figure 23.5 Computer-generated data for ARIMA (1, 0, 0) models for level = 5.0 and change in level = 2.0 for four time series illustrating different
degrees of dependency.
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Example of Model Identification and Theory Testing

To illustrate the use of model identification in theory testing,
in this section we present briefly the results of a study (Velicer,
Redding, et al., 1992) designed to determine which of three
models of nicotine regulation best represented most smokers.
These models seek to explain the mechanism that determines
how many cigarettes are smoked in any given time period. It
is posited that smoking rate controls the level of nicotine in
the systems. Three measures were employed in the study but
only one, number of cigarettes, is described here.

Nicotine Regulation Models

Three alternative models have been employed to account for
nicotine’s effectiveness in maintaining smoking: (a) the fixed

effect model, (b) the nicotine regulation model, and (c) the
multiple regulation model. Leventhal and Cleary (1980) pro-
vide a review of the literature and description of each of the
three models. Velicer, Redding, et al. (1992) identified each
of the three models with one of three broad classes of time
series models: (a) a positive dependency model, (b) a white
noise model (no dependency), and (c) a negative dependency
model.

The nicotine fixed effect model assumes that smoking
is reinforced because nicotine stimulates specific reward in-
ducing centers of the nervous system. These have been iden-
tified as either autonomic arousal or a feeling of mental
alertness and relaxation or both. Following this model, an
increase on one occasion should be followed by an increase
on the next occasion or a decrease on one occasion should
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Model Identification 589

be followed by decreased consumption on a subsequent
occasion if the same level of arousal is to be maintained. In
time series model terms, this would result in a positive
autocorrelation.

The nicotine regulation model assumes that smoking
serves to regulate or titrate the smoker’s level of nicotine. De-
partures from the optimal level (the set point) will stimulate
an increase or decrease in smoking to return to this optimal
nicotine level. Jarvik (1973) presents a review of a large body
of evidence that supports this model (also see Russell, 1977,
and Schachter, 1977). The model suggests that any increase
or decrease in smoking caused by events in a person’s envi-
ronment should be temporary. The person should immedi-
ately return to their personal set point when the environment
permits. In this model, only the set point or level is under
biological control. All variations are due to the environment.
This would result in a white noise model with an autocorrela-
tion of zero.

The multiple regulation model represents a more complex
model designed to overcome some of the problems of the
nicotine regulation model—specifically, how the nicotine set
point develops and how deviations from the set point gener-
ate a craving for cigarettes. Leventhal and Cleary (1980)
summarize some of the evidence that the nicotine regulation
model cannot adequately account for and suggest the multi-
ple regulation model as an alternative. This model is an elab-
oration of similar models by Tomkins (1966, 1968) and
Solomon and Corbit (1973, 1974; also see Solomon, 1980).
This model assumes that the smoker is regulating emotional
states. Drops in nicotine level stimulate craving. One way to
link craving to nicotine level is the opponent-process theory
(Solomon, 1980; Solomon & Corbit, 1973, 1974), which
posits that nicotine gives rise to an initial positive affect
reaction, which is automatically followed by a slave oppo-
nent negative affect reaction. The opponent state becomes
stronger with repeated activation and can be eliminated by re-
instating the initial positive state. External stimulus provides
an alternative source for craving. The theory would predict
that an increase (or decrease) in smoking rate caused by
events in a person’s environment should be followed by an
opposite decrease (or increase) in smoking rate. This would
result in a negative autocorrelation at Lag 1 and alternating
positive and negative autocorrelations at subsequent lags.

Participants

In order to achieve stable autocorrelations, time series analy-
sis requires a minimum of 50 data points (Box & Jenkins,
1976; Glass et al., 1975). The design of the study employed
10 smokers (4 male and 6 female), from whom measures

were collected twice daily for 2 months (62 days) for a max-
imum total of 124 observations.

Measure: Number of Cigarettes

Having participants monitor their own smoking behavior is
one of the most commonly employed measures in smoking
research (McFall, 1978; Velicer, Prochaska, Rossi, & Snow,
1992; Velicer, Rossi, Prochaska, & DiClemente, 1996). This
is an inexpensive and convenient means of gathering data.
The accuracy and reliability of data gathered through self-
monitoring are not always as high as that of data gathered
through other techniques. However, the advantages of using
self-monitoring typically outweigh the disadvantages.

Model Identification Procedures

Five procedures were employed for model identification:
(a) traditional visual analysis, (b) PMDL (Rissanen, 1986a),
(c) PLS (Rissanen, 1986b), (d) PLAV (Djuric & Kay, 1992),
and (e) PDC (Djuric & Kay, 1992). For the majority of cases,
all five procedures converged on the same answer. When
disagreement occurred, it was typically a difference of 1 in
order, and all models were reviewed. Disagreements typi-
cally involved a low autoregressive coefficient that was
approximately equal to the critical value for statistical signif-
icance. The more parsimonious fit (lower order) was em-
ployed when the evidence for the higher-order model was
weak.

Results

Seven of the participants were described by a first-order
autoregressive model with a moderate to high degree of
negative dependence (−.30 to −.80).All participants reported
on their smoking behavior in the morning and afternoon. The
data resulted in a very clear, easily identified model with a high
degree of autocorrelation. This pattern is consistent with the
multiple regulation model and the study was interpreted as
supporting that model.

Three of the participants did not show the same pattern.
One of the participants worked some weeks during the day
and some weeks at night. This individual also missed a
number of sessions and terminated prematurely. One partici-
pant was a very controlled smoker, smoking 15 cigarettes at
predetermined intervals. All three averaged less than a pack a
day. However, two subjects who demonstrated the pattern
of high negative dependence also smoked less than a pack
a day.
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The data for one participant (ROD) were presented in
Figure 23.1. Figure 23.6 presents the data graphically for
three additional subjects. Two of the participants (ROD and
RIC) were representative of the participants characterized by
a high negative dependence. The exaggerated sawtooth shape
of this type of time series is clearly observable. Two partici-
pants (ABE and WON) were representative of the three indi-
viduals who demonstrated either a zero or low positive
dependence. The time series graphs for these two participants
are much smoother and more regular.

Findings from this study were partially replicated in a
similar study conducted in Spain (Rosel & Elósegui, 1994).
This study of 29 smokers (9 men and 20 women) examined
daily records of cigarettes smoked over a 12-week period.
Virtually all of the data series (97%) were best described by
autoregressive-type models, and most (75%) of these were
Order 1 models; only one participant’s data represented a
white noise (i.e., no dependency) model.

Other findings from Rosel and Elósegui (1994) apparently
conflict with the Velicer, Redding, et al. (1992) results. The
data from the 29 smokers apparently supported the fixed-effect
model, with 21 participants’ data (73%) being described by

that model (i.e., their series had positive autocorrelations);
7 participants (24%) supported the nicotine regulation model
(i.e., no autocorrelation detected); and only 1 participant fit a
multiple-regulation model. One explanation for the differ-
ences between the two studies is the different time intervals
used. Velicer, Redding, et al. (1992) collected data twice each
day, whereas Rosel and Elósegui (1994) collected data only
once each day.Anegative autocorrelation at Lag 1, such as that
found in the Velicer, Redding, et al. (1992) study, would be a
positive autocorrelation at Lag 2, since r2

1 = r2 for an ARIMA
(1, 0, 0) model. A more direct comparison of the two studies
would be to compare the r2 value of the Velicer, Redding, et al.
(1992) with the r1 values of the Rosel and Elosegui (1994)
because these two statistics reflect the same time period. The
two are both positive and of comparable magnitude.

These apparently conflicting results highlight an important
methodological issue—what is the “correct” interval at which
to collect data? The answer to this question will depend on
one’s theoretical framework—for example, the hypothesized
influences on the behavior in question and the rate or cycle in
which a given influence affects that behavior. In this case, the
conclusion about the appropriate nicotine regulation model is
clearly affected by the choice of time interval between obser-
vations. Clearly, it is critical to pay attention to the time inter-
val when interpreting time series studies.

The other difference between the two studies was the
presence of a weekly cyclic in the Spanish study. Rosel and
Elósegui (1994) opined that “tobacco consumption is sus-
tained not only because of the effect of nicotine, but also be-
cause of the effect of personal and social demand variables,
which are reflected in weekly cyclical habits” (p. 1640).
Their study found that 45% of the sample fit different 7-day
lag models (i.e., weekly smoking patterns), which had not
been seen in the previous research. The findings of these two
studies are not necessarily at odds. Perhaps nicotine regula-
tion processes influence smoking on a more microlevel,
within broader cycles of personal and social influence. The
presence or absence of a 7-day cyclic might reflect cultural
differences. These two studies provide an excellent illustra-
tion of the potential contribution that can be made by the time
series approach to understanding the processes underlying an
addictive behavior.

INTERRUPTED TIME SERIES ANALYSIS

Often the goal of research with single subjects or units is to
determine the efficacy of a specific intervention. This can
be accomplished by employing various techniques that fall
under the nomenclature of interrupted time series analysis.
A simple example of an interrupted time series analysis is a

Figure 23.6 Three examples of smoking behavior illustrating different
patterns (from Velicer, Redding, et al., 1992).
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design that involves repeated and equally spaced observa-
tions on a single subject or unit followed by an intervention.
The intervention would then be followed by additional re-
peated and equally spaced observations of the subject or unit.
The intervention could be an experimental manipulation such
as a smoking cessation intervention for adolescents, or it
could be a naturally occurring event such as a national
change in the law regulating tobacco advertising. In order to
determine whether the intervention had an effect, an analysis
of the data series would first necessitate some preprocessing
of the data series to remove the effects of dependence. In ad-
dition to the traditional data transformation method, several
alternative procedures for removing dependency in the data
are also described in the following discussion. The actual sta-
tistical analysis used in an interrupted time series analysis
employs a general linear model analysis using a generalized
least squares or Aitken estimator (Aitken, 1934; Morrison,
1983; see Equation 23.12).

If the intervention effect is found to be statistically signifi-
cant, an important and related question concerns an evaluation
of the nature of the effect. One of the great advantages of time
series analysis is the ability to assess the pattern of the change
over time, which can involve both change in the mean level of
a measured dependent variable, change in the slope over time
of the dependent variable, or both. We present the most com-
mon variant forms of change over time and the methodology
to evaluate these forms of change within this section.

Box-Jenkins Intervention Analysis

The most common methodology employed to examine the
effects of a specific interrupted time series intervention is the
Box-Jenkins procedure. This methodology is described in
detail by Glass et al. (1975) and utilizes a two-step process.
As described in the previous section, the autocorrelations
and partial autocorrelations are calculated for various lags,
and this information is used for identification of the specific
ARIMA (p, d, q) model parameter values. Accurate model
identification is necessary to determine the specific transfor-
mation matrix to be used to remove the dependency from the
data series so that it meets the assumptions of the general lin-
ear model. The remainder of this section and parts of the next
two sections employ some matrix algebra to enhance the dis-
cussion of this and some other key aspects of time series
analysis within the context of the general linear model. The
general linear model is the general analytic procedure that
includes the statistical techniques of multiple regression,
analysis of variance, and analysis of covariance as special
cases. After transforming the data series to remove the de-
pendency in the data, the analysis follows standard estima-
tion and testing procedures, and can be analyzed with a

modified general linear model program in which the parame-
ters of interest are estimated and tested for significance.
Several variations on the procedure of choosing a data trans-
formation matrix have been proposed to eliminate the prob-
lematic model identification step, and are described later in
this section. 

A basic interrupted time series problem would be to deter-
mine whether the average level of the series has changed as a
result of the intervention. In such an analysis, two parameters
are estimated: L, the level of the series, and DL, the change in
level after intervention. A test of significance would then
examine the hypothesis of prime interest, H0: DL = 0. In
algebraic terms this can be expressed in terms of the general
linear model as

Z = Xb + a (23.1)

where Z is an N × 1 vector of observed variables, such that N
is the total number of observations, with the first zi observa-
tions occurring prior to the intervention, or

Z =




z1

z2

.

.

zi

.

.

zN




(23.2)

and X is an N × p design matrix (see Table 23.2, described in
the following discussion, for examples), where p is the
number of parameters estimated, b is the p × 1 vector of
parameters, or

b =
[

L
DL

]
(23.3)

and a is the N × 1 vector of residuals, or

a =




a1

a2

.

.

ai

.

.

aN




(23.4)

The general linear model is an approach to data analysis
that includes many familiar statistical procedures as special
cases. In a multiple regression analysis, the X matrix contains
the numeric observations for each of the p predictor variables
for the N subjects, the Z vector contains the criterion scores for
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TABLE 23.2 Examples of Common Design Matrices for Single 
Unit Analysis (N1 = N2 = 6)

(A) Immediate and constant (B) Immediate and constant
changes in level changes in level and slope

1 0 1 0 1 0
1 0 1 0 2 0
1 0 1 0 3 0
1 0 1 0 4 0
1 0 1 0 5 0
1 0 1 0 6 0
---------- ------------------------
1 1 1 1 7 1
1 1 1 1 8 2
1 1 1 1 9 3
1 1 1 1 10 4
1 1 1 1 11 5
1 1 1 1 12 6

(C) Decaying change in level (D) Delayed change in level
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
-------------- --------
1 1 1 0
1 .5 1 0
1 .25 1 0
1 .13 1 1
1 .07 1 1
1 .03 1 1

the N subjects, the b vector contains the regression weights,
and the a vector contains the error of prediction and represents
the difference between the actual score on the criterion and the
predicted score on the criterion. In an analysis of variance,
the X matrix would consist of indicator variables, such as the
numeric values 1 or 0, which indicate group membership, and
the Z vector contains the dependent variable observations.

For this example, the vector of parameters contains two
components, namely L, and DL. This design matrix is pre-
sented as (A) in Table 23.2.

The usual least squares solution, which minimizes the sum
of the squared errors, is

b = (X′X)−1X′Z, (23.5)

and a test of significance for the null hypothesis H0: bi = 0
(i.e., H0: DL = 0) is given by

tbi = bi/sbi (23.6)

where

s2
bi = s2

a Cii (23.7)

and s2
a is the estimate of the error variance and Cii is the ith

diagonal element of (X′X)−1. The test statistic would have a t
distribution with degrees of freedom N − p. This is the same
test of significance that is used for testing if the regression
weight for a predictor is significant in multiple regression.

Transformation of Time Series Data

The general linear model cannot be directly applied to time
series analysis because of the presence of dependency in the
residuals. It is necessary to perform a transformation on
the observed variable, Zt, to remove dependency, prior to the
statistical analysis. A transformation matrix T must be found,
yielding

Y = TZ, (23.8)

and

X∗ = TX (23.9)

The purpose of the model identification step is to deter-
mine the appropriate transformation of Z into Y. Table 23.3
presents mathematical descriptions and relevant comments
on six commonly identified ARIMA models. After model
identification, an estimation procedure is employed to deter-
mine the specific numeric values of � and � that will be used
in the appropriate transformation matrix. 

The particular ARIMA (p, d, q) model will determine the
specific content of the transformation matrix T. Because the
correction for dependency involves previous observations,
all transformation matrices will have a similar form, a lower
triangular matrix. For example, an ARIMA (1, 0, 0) model
with five observations would have the following transforma-
tion matrix

T =




1 0 0 0 0
�1 1 0 0 0
0 �1 1 0 0
0 0 �1 1 0
0 0 0 �1 1


 (23.10)

that indicates that only the previous observation is necessary
to explain the dependency in the data. For an ARIMA (2, 0, 0)
model with five observations, the transformation matrix
would be

T =




1 0 0 0 0
�1 1 0 0 0
�2 �1 1 0 0
0 �2 �1 1 0
0 0 �2 �1 1


 (23.11)
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TABLE 23.3 Common ARIMA Models

Label (p, d, q) Descriptive Formula Comment

White noise (0, 0, 0) Zt = L + at No dependency in the data

Autoregressive (1, 0, 0) Zt − L = �1(Zt−1 − L) + at Predicted from previous
Order One observations

Autoregressive (2, 0, 0) Zt − L = �1(Zt−1 − L) Predicted from previous two
Order Two + �2(Zt−2 − L) + at observations

Moving Averages (0, 0, 1) Zt − L = at − �1at−1 Proportion of previous shock
Order One affect observations

Moving Averages (0, 0, 2) Zt − L = at − �1at−1 − �2at−2 Proportion of two previous shocks
Order Two affect observations

Integrated Moving (0, 1, 1) Zt − Zt−1 = at − �1at−1 Stochastic drift and proportion of
Averages previous shock affect

observations

which indicates that the previous two observations are neces-
sary to explain the dependency in the data. Glass et al. (1975)
present an inductive derivation of the necessary transforma-
tion for these two models and other common models.

Given T, the estimate of the parameters, b, may be ex-
pressed as a generalized least squares problem—that is to say,

b = (X′T′TX)−1X′T′TZ = (X∗′X∗)−1X∗′Y. (23.12)

Parameters of Interest

For an interrupted time series analysis, there are typically
four parameters of interest, the level of the series (L), the
slope of the series (S), the change in level (DL), and the
change in slope (DS). The slope parameters represent one of
the other unique characteristics of a longitudinal design, the
pattern of change over time. Investigating the pattern of
change over time represents one of the real advantages of em-
ploying a longitudinal design.

Figure 23.7 illustrates eight different outcomes for a sim-
ple one-intervention design. In a typical experimental design,
only one follow-up assessment occurs after treatment. By in-
specting the different patterns of change over time, we can
see that selecting different points in time for the single
assessment would result in very different conclusions for four
of the examples (C, F, G, and H). For example, ignoring the
slope in C would lead the researcher to incorrectly conclude
that the intervention was effective. The evolutionary effect
(H) is a good example of where the intervention results in a
temporary negative effect, perhaps while a response pattern
is unlearned, followed by a positive effect. An early assess-
ment would conclude that the treatment had a negative effect;
a somewhat later assessment would find no treatment effect,
whereas an even later assessment would find a positive
treatment effect.

Alternative specifications of the design matrix permit the
investigation of different hypotheses concerning the nature
of the intervention. Table 23.2 presents some illustrative
examples for an N = 12 (n1 = n2 = 6) case. Only changes in
level and slope parameters are presented in Table 23.2 because
these are the most commonly examined effects in interrupted
time series designs. It should also be noted that other repre-
sentations for specific design matrices have been presented for
investigating these parameters. Huitema and McKean (2000)
present a detailed discussion of some of the issues related to
design specification for the analysis of interventions in time
series. As noted earlier, Table 23.2 (A) is the design matrix for
an immediate and constant treatment effect that tests for a
change in the level of the data series. Table 23.2 (B) is the
design matrix for testing both a change in level and a change in
slope. Table 23.2 (C) is the design matrix for examining a
decaying treatment effect. Table 23.2 (D) is the design matrix
for testing a delayed treatment effect. In addition to the designs
presented in Table 23.2, alternative time series designs can
provide an opportunity to examine additional change parame-
ters that may be impacted by the intervention (e.g., changes in
cycles, variance, and pattern or serial dependency). Although
less common, such alternative applications can help to more
fully elucidate the nature of the effects of an intervention.

Although it is the most prevalent time series methodology,
the Box-Jenkins approach to intervention analysis suffers
from a number of difficulties. First, gathering the number of
data points required for accurate model identification is often
prohibitive for research in applied settings. Second, even
with the required number of points in hand, correct identifi-
cation is problematic (Velicer & Harrop, 1983). Third, the
method is complex, making applications by the mathemati-
cally unsophisticated researcher difficult. Three alternative
approaches are described in the next section, all of which at-
tempt to avoid the problematic model identification step.
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Figure 23.7 Examples of eight different patterns of intervention effects.
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Alternative Approaches

Simonton (1977) proposed a procedure that avoids the prob-
lem of model identification by using an estimate of the
variance-covariance matrix based on pooling the observa-
tions across all subjects observed. This approach also re-
quires a basic assumption, namely that all series are assumed
to be an ARIMA (1, 0, 0) model. Although this assumption
seems to be theoretically indefensible, empirical investiga-
tions indicate that this procedure works well in a wide variety
of cases (Harrop & Velicer, 1985).

Algina and Swaminathan (1977, 1979; Swaminathan &
Algina, 1977) have proposed an alternative in which the sam-
ple variance-covariance matrix is employed as an estimator
for T′T in the modified least squares solution (see Equa-
tion 23.7). This approach, however, requires the assumption
that the number of subjects is greater than the number of
observations per subject. This is not a condition that is likely
to be met in most applied research settings, where time series
approaches are most appropriate.

Velicer and McDonald (1984) have proposed a third alter-
native. Instead of trying to determine the specific matrix, they
have proposed the use of a general transformation matrix
with the numerical values of the elements of T being esti-
mated for each problem. The rationale for a general matrix is
that all transformation matrices, T, have an identical form
and use a lower triangular matrix with equal subdiagonals.
Weight vectors with five nonzero weights were found to be
accurate for most cases. A greater number of weights can be
employed where indicated by appropriate diagnostics
(Velicer & McDonald, 1984). The accuracy of this approach
has been supported by two simulation studies (Harrop &
Velicer, 1985, 1990b), and it can be implemented with most
existing computer programs by specifying a high-order au-
toregressive model, such as an ARIMA (5, 0, 0) model.

GENERALIZABILITY ISSUES

One of the issues involved in time series analysis is generaliz-
ability. How can the results from a single individual or unit be
generalized to a larger population? Barlow and Herson (1984)
discuss the problem in terms of systematic replication. This
approach relies on logical inference rather than formal statis-
tical inference. In another context, this type of approach has
been characterized as a qualitative review. Typically, a quali-
tative review relies primarily on a count of the number of
studies that support a hypothesis (Light & Smith, 1971) and
the quality of the data is not weighted. Furthermore, the

judgment of the reviewer plays a critical role in the conclu-
sions reached. Two quantitative approaches have been devel-
oped that combine multiple replications of a time series study:
pooled time series designs and meta-analysis.

Pooled Time Series Analysis

Pooled time series analysis is a large topic with an extensive
literature. A complete coverage of the topic is beyond the
scope of this chapter. For a more complete coverage of this
topic, the reader should see Hsiao (1986) and Dielman
(1989). In this section, only one approach is described, an ex-
tension of the general transformation approach (Velicer &
McDonald, 1991). An advantage of this approach is that it
can be adapted with only minor alterations to implement ei-
ther the Box-Jenkins (1976; Glass et al., 1975) or Simonton
(1977) procedures. The method requires only the use of a
patterned transformation matrix. The specific choice of the
design matrix X and the number of units are dictated by the
particular questions of interest. The procedure will be illus-
trated by a two-unit example (K = 2), in which the design
employed involves only level and change in level (Design
Matrix A in Table 23.2).

The observations for all the units are represented in a sin-
gle vector. This vector contains the set of subvectors for the
individual units combined in the form of a single vector
rather than a matrix with multiple columns. In this case, the
vector Z is composed of a subvector of N observations (pre-
and postintervention) for each of the experimental units. For
example, where there are two experimental units or individu-
als, with n1 observations before intervention and n2 observa-
tions after intervention on both Unit 1 and Unit 2, the vector
could be represented as

Z =
[ Z1

—
Z2

]
=




z11

z21

·
Z N1

—
z12

z22

·
Z N2




(23.13)

Table 23.4 presents an example of the patterned general
transformation matrix that could be employed to transform
the serially dependent Zi variables to the serially independent
variables Yi. In this example, there are two experimental
units, each with four observations before intervention and
four observations after intervention. The wi entries represent
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the values of � and � required for any ARIMA (p, d, q)
model. For example, if an ARIMA (1, 0, 0) model was iden-
tified, the values would be w1 = �1 and w2 = w3 = w4 =
w5 = 0. Alternatively, if the general transformation approach
is employed, only the numeric values for w1, w2, w3, w4, and
w5 are estimated with no attempt to identify them as values of
� or �.

This transformation matrix will always take the form of a
partitioned matrix with repeating transformation matrices in
diagonal blocks and null matrices elsewhere. For six units,
this could be represented as

T =




T∗ O O O O O
O T∗ O O O O
O O T∗ O O O
O O O T∗ O O
O O O O T∗ O
O O O O O T∗


 (23.14)

where each T∗ is an N × N lower diagonal transformation ma-
trix (N = n1 + n2) and O is an N × N null matrix. The example
in Table 23.4 presents all the elements for a two-unit example.
The occurrence of the null matrices in all positions except the
diagonal reflects the assumption of independence of the dif-
ferent units.

The use of a properly parameterized design matrix will
permit comparisons between different units. Table 23.5 pre-
sents an illustrative example. Design Matrix A includes four
parameters that reflect level and change in level for both units
and the difference between the two units on preintervention
and postintervention change in level. If the last parameter
(i.e., the difference between the units on the postintervention

change in level) is not significant, Design Matrix B would be
adopted, reflecting no difference between the two units in in-
tervention effects (change in level). Differences between
units would seem likely to be fairly common for most prob-
lems. However, if no such differences exist, Design Matrix C
would be appropriate. Design Matrix D is appropriate if no
intervention effects or differences between units exist.

The procedure can be generalized to any number of units
and any choice of design matrix. Implicit is the assumption
that a common transformation matrix is appropriate for all

TABLE 23.4 Example of General Transformation Matrix (T) for Cross-Sectional Analysis 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W2 W1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
W3 W2 W1 1 0 0 0 0 0 0 0 0 0 0 0 0
W4 W3 W2 W1 1 0 0 0 0 0 0 0 0 0 0 0
W5 W4 W3 W2 W1 1 0 0 0 0 0 0 0 0 0 0
0 W5 W4 W3 W2 W1 1 0 0 0 0 0 0 0 0 0
0 0 W5 W4 W3 W2 W1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 W1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 W2 W1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 W3 W2 W1 1 0 0 0 0
0 0 0 0 0 0 0 0 W4 W3 W2 W1 1 0 0 0
0 0 0 0 0 0 0 0 W5 W4 W3 W2 W1 1 0 0
0 0 0 0 0 0 0 0 0 W5 W4 W3 W2 W1 1 0
0 0 0 0 0 0 0 0 0 0 W5 W4 W3 W2 W1 1

Note. k = 2; n11 = n12 = n21 = n22 = 4.

TABLE 23.5 Example of Design Matrix (X) for Cross-Sectional
Problem With Level and Change in Level Analysis

B. No Difference C. No Difference D. No
A. Full in Intervention in Individual Intervention
Model Effects Effects Effects

1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1

1 1 0 0 1 1 0 1 1 1
1 1 0 0 1 1 0 1 1 1
1 1 0 0 1 1 0 1 1 1
1 1 0 0 1 1 0 1 1 1

1 0 1 0 1 0 1 1 0 1
1 0 1 0 1 0 1 1 0 1
1 0 1 0 1 0 1 1 0 1
1 0 1 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
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units. This assumption seems reasonable if the nature of the
series is viewed as determined by an underlying process spe-
cific to the construct under investigation. As with any of the
analytic approaches, diagnostic indicators such as the Ljung
and Box test (1978) may be used to test the fit of the model
(see Dielman (1989) for a more extensive discussion of
testing model assumptions). The basic form of the design ma-
trix should be based on the analyses of the individual units, a
priori knowledge when available, or both.

The approach described here has a number of advantages.
First, it represents a direct extension of the general transfor-
mation approach developed by Velicer and McDonald
(1984). This approach avoids the problematic model identifi-
cation step and has received a favorable evaluation in several
simulation studies (Harrop & Velicer, 1985, 1990b).

Second, the approach described here can also be adapted
to two of the alternative methods of analysis. For the Glass
et al. (1975) approach, a specific transformation matrix cor-
responding to a particular ARIMA (p, d, q) model would
replace the general transformation matrix. Following the
Simonton (1977) approach, the ARIMA (1, 0, 0) transforma-
tion matrix would be used for all cases instead of the general
transformation approach.

Third, the approach is a simple direct extension of existing
procedures. It can be implemented by a slight modification of
existing computer programs. The problems of adaptation will
involve problems of size and speed created by the use of long
vectors and resulting large matrices instead of a more com-
plex analysis.

Meta-Analysis

An alternative procedure to combining data from several in-
dividuals or units is meta-analysis. Procedures for perform-
ing a meta-analysis have been well developed for traditional
experimental designs (Glass, McGaw, & Smith, 1981;
Hedges & Olkin, 1985; Hunter & Schmidt, 1990; Tobler,
1994). However, meta-analysis procedures have not been
widely applied to single-subject designs. Busk and Serlin
(1992) present a discussion of the problems of applying
meta-analysis to this area. Two problems are (a) primary re-
search reports have often relied on visual analysis (Parsonson
& Baer, 1992) rather than time series analysis, resulting in a
lack of basic statistical information in the published research
reports (O’Rourke & Detsky, 1989); and (b) alternative defi-
nitions of effect size must be developed that are appropriate
for time series data. Allison and Gorman (1992) and Busk
and Serlin (1992) review some alternative effect size calcula-
tions appropriate for time series designs.

MULTIVARIATE TIME SERIES ANALYSIS

Cross-Lagged Correlations

Time series analysis on a single dependent measure involves
many of the procedures common to multivariate statistics be-
cause two vectors of unknowns must be estimated simultane-
ously: the vector of parameters and the vector of coefficients
that represent the dependency in the data. However, when as-
sessing a single unit or subject on multiple occasions, two or
more variables can be observed on each occasion. The term
multivariate time series is used here to denote the observation
of more than one variable at each point in time. The variables
may be viewed conceptually as including both dependent and
independent variables or just dependent variables. If some of
the observed variables are appropriately viewed as indepen-
dent variables, the appropriate analysis is the time series
equivalent of an analysis of covariance. If the variables can
be viewed as a set of dependent variables—that is to say, mul-
tiple indicators of one or more constructs that form the out-
come space of interest—the appropriate analysis would be
the time series equivalent of a multivariate analysis, some-
times described as a dynamic factor analysis. The next two
sections discuss these two approaches in detail.

One of the unique aspects of any time series analysis
involving multiple variables observed on each occasion in-
volves the extension of the correlation coefficient. The cross-
lagged correlation coefficient for lag = 0 is calculated the
same way as the pairwise correlation coefficient, using the
number of observations over time in place of the number of
subjects as the basis. The term lag refers to the time relation-
ship between the two variables. Lag zero means that the
observation at time t on Zi is matched with the observation at
time t on Zj . However, the appropriate relationship between
the variables may involve one variable at time t and the other
variable at time t − 1; that is, there may be a delay between a
change in one variable and the associated change in the other
variable. If Zi lags Zj , the maximum correlation would occur
between Zi at time t + 1 and Zj at time t. Alternatively, Zi

could lead Zj, producing the maximum correlation between
Zi at time t − 1 and Zj at time t.

A critical decision for any multivariate time series analysis
is determining the appropriate lag between the set of observed
variables. There are generally three alternative methods.
First, the lag could be determined on the basis of theory. In
some areas, well-established theoretical models exist like the
supply and demand models in economics. Second, the lag
could be determined on the basis of previous empirical find-
ings. If a set of variables has been extensively investigated,
the accumulated empirical evidence could serve as a guide to
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the appropriate order of the lag. Third, the appropriate lag
could be estimated as part of the model estimation procedure.
This would involve calculating the cross-lagged correlations
for a reasonable set of lags—for example, from +5 to −5.
The lag that produces the highest numeric value for the corre-
lation would be assumed to be the appropriate lag.

Covariates

When two variables are observed on each occasion, one of
the variables (Zi) may be conceptualized as the dependent
variable and any additional variables (Xj, Xk, etc.) may be
viewed as covariates. A covariate should be related to the
dependent variable but be unable to be influenced by the in-
tervention. This analysis has been labeled a concomitant
variable time series analysis (Glass et al., 1975) and is a di-
rect analogue of the analysis of covariance. The covariate is
employed to statistically remove some variation from the de-
pendent measure, thus increasing sensitivity. The design ma-
trix and parameter vector are presented in Equation 23.15 for
a N1 = N2 = 4 observation example. The first two parameters
estimate the level and change in level, and the last parameter,
�, estimates the relationship between the covariate and
dependent variable.

Xb =




1 0 X1

1 0 X2

1 0 X3

1 0 X4

1 1 X5

1 1 X6

1 1 X7

1 1 X8




[ L
DL
�

]
(23.15)

Although similar to the analysis of covariance, there are
two problems that are unique to multivariate time series
analysis. First, the investigator must determine the appropri-
ate lag between the covariate(s) and the dependent variables.
This is the same issue as discussed with the cross-lagged cor-
relation above. Second, there may be dependency present in
the covariate. It may be necessary to transform the covariate
before performing the analysis. One application of this pro-
cedure is to control the effects of seasonality in the data
(discussed later in this chapter).

Time Series Analysis Using Structural
Equation Modeling

Time series data can be represented as a special case of
structural equation modeling (SEM). Although the use of
a structural equation modeling program to perform a time
series analysis is not recommended, conceptualizing time

series models in this manner can provide researchers who are
familiar with SEM representations a way to better understand
ARIMA models. This type of representation, initially de-
scribed by van Buuren (1997), also provides a bridge to
dynamic factor analysis described in the next section.

Figure 23.8 presents the representation of five basic
ARIMA models as SEM diagrams. In SEM, unobserved or
latent variables are represented as circles and observed or
manifest variables are represented as squares. The path coef-
ficients on direct or indirect paths between variables indicate
the strength of the relationships. For time series data, the
manifest variables are the dependent variables, Zt. The error
term is the latent variable and can be divided into two parts,
the unique or uncorrelated part, and the dependent or corre-
lated part. For an ARIMA (1, 0, 0) model, the path between Ft

and Zt is fixed at 1.00 and the path between Zt−1 and Zt is es-
timated by �1. This reflects the conceptualization of an au-
toregressive model as involving prediction from the
preceding observation. For an ARIMA (0, 0, 1), the relation-
ship between Zt−1 and Zt is set to 0 and the relationship be-
tween Ft−1 and Zt is estimated by �1. This reflects the
conceptualization of a moving averages model as retaining a
proportion of the previous shock or error term. The other
three panels of Figure 23.8 present the representations for
ARIMA (2, 0, 0), (0, 0, 2), and (1, 0, 1) models.
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Figure 23.8 Five different ARIMA models represented as structural equa-
tion models.
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Dynamic Factor Analysis

Another promising and relatively new statistical technique
for the analysis of multivariate time series employs dynamic
factor models. This method involves a merging of the longi-
tudinal data approaches employed in time series analysis
with the use of latent variables or factors to organize a set of
observed variables. This methodology represents a very so-
phisticated extension of P-technique factor analysis (Cattell,
1963, 1988). P-technique factor analysis represents a type of
time series analysis that utilizes common factor analysis
methodology to examine a multivariate data set collected on
a single individual on multiple occasions. However, strong
concerns have been raised about the appropriate use of P-
technique factor analysis. The major concern centers on the
typical dependent nature of data that are gathered on a single
individual on multiple occasions and the consequent viola-
tion of the underlying traditional factor analysis model with
P-technique factor analysis when such data are analyzed
(Wood & Brown, 1994). Empirically, one consequence of
using P-technique methodology with data with positive serial
correlations at the latent variable level would be a bias that
results in substantially lowered estimates of the factor load-
ings compared to the true loading values (Wood & Brown,
1994).

The recently developed dynamic factor analysis
(Hershberger, 1998; Hershberger, Molenaar, & Corneal, 1996;
Molenaar, 1985, 1987; Molenaar, De Gooijer, & Schmitz,
1992) permits serial dependency in the data and includes P-
technique factor analysis as a special case. Dynamic factor
analysis may prove especially useful to behavioral researchers
interested in questions of growth or change over time, and their
underlying processes, because complex serial relationships
among variables can be explored utilizing this methodology.
Practically, it can be difficult to apply this model. Wood and
Brown (1994) provide a detailed description of an implementa-
tion of the dynamic factor model, present an evaluation of this
approach, and provide a set of SAS macros that make this tech-
nique much more accessible to the research community.

One of the limitations to implementing a dynamic factor
analysis in practice is the number of observations required to
provide an adequate sample estimate of the population co-
variance matrices. Nesselroade and Molenaar (1999) propose
pooling short multivariate time series from a group of indi-
viduals and provide an interesting example of this methodol-
ogy using real data. Pooling has the advantage of utilizing
shorter data series that may be more easily gathered and that
are not typically examined using traditional time series
methods. Although promising, the method requires that a
pattern of correlations at the individual level be sufficiently

homogeneous such that the individuals can be treated as rep-
resenting a common model.

Despite improvements in both methodology and the dis-
semination of program modules developed by individual re-
searchers and available as shareware, conducting a dynamic
factor analysis is still a significant, difficult, and somewhat
ambiguous undertaking. Aspects of the analyses are still in
the development stage (Nesselroade & Molenaar, 1999;
Wood & Brown, 1994). Issues to be resolved include deter-
mining the correct number of factors to extract, determining
the correct lags between the variables in the final model, and
statistically testing whether a group of individuals can be
legitimately pooled. However, the use of multiple indicators
measuring one or more latent variables represents a very
promising means of extending the focus of time series analy-
sis from univariate to multivariate outcome spaces.

OTHER ISSUES

Cyclic Data

The presence of cyclic or seasonal data is a potential con-
founding variable in time series data. Daily data gathered on
individuals often have a weekly or monthly cycle. Three al-
ternative procedures have been proposed to deal with cyclic
data.

Deseasonalization

In some content areas, the cyclic nature of the data is well
known. For example, in the economic area, much of the data
is adjusted for seasonal effects before it is reported. These
seasonal adjustments, based on a priori information, remove
cyclic trends from the data prior to any time series analysis.

Statistical Control

An alternative method of adjusting for seasonal effects is to
find some variable that is sensitive to the same seasonal
effects as the dependent measure but cannot be affected by
the intervention in the case of an interrupted series. This vari-
able could then be used as a covariate. The cyclic effects
would be statistically controlled. Some of the problems in
using a covariate are discussed later in this chapter.

Combined Models

A third alternative approach involves the use of combined
models. McCleary and Hay (l980) discuss this approach in
detail. As an example, suppose we have a time series that is
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represented by a lag one moving averages model, that is a
(0, 0, 1) model

Zt − L = At − �1 At−1. (23.16)

Furthermore, assume that a seasonal component of Lag 7 is
present. This could be modeled as

Zt − L = At − �7 At−7. (23.17)

The time series would therefore be described as an
ARIMA (0, 0, 1) (0, 0, 1)7 model or

Zt − L = ( At − �1 At−1)( At − �7 At−7). (23.18)

Unlike the first two approaches, the combined model
approach presents difficulties for the extension of this proce-
dure to either pooled procedures or multivariate time series
approaches and would require longer series.

Missing Data

Missing data are an almost unavoidable problem in time
series analysis and present a number of unique challenges.
Life events will result in missing data even for the most con-
scientious researchers. In the model identification study on
nicotine regulation (Velicer, Redding, et al., 1992) described
previously, missing data were a relatively minor problem.
Four participants had no missing data—that is, all 124 obser-
vations were available. For four other participants, four or
fewer observations were missing. Only two participants
showed significant amounts of missing data (115 and 97
observations available).

Little and Rubin (1987) provide the most thorough theo-
retical and mathematical coverage of handling missing data
in time series analysis. However, the missing data problem
for time series designs has received little attention in the
applied behavioral sciences area. Rankin and Marsh (1985)
assessed the impact of different amounts of missing data for
32 simulated time series, modeled after 16 real-world data
examples. They concluded that with up to 20% missing data
there was little impact on model identification, but the impact
is pronounced when more than 40% is missing. 

In an extensive simulation study, Velicer and Colby (2001)
compared four different techniques of handling missing data
in an ARIMA (1, 0, 0) model: (a) deletion of missing obser-
vations from the analysis, (b) substitution of the mean of the
series, (c) substitution of the mean of the two adjacent obser-
vations, and (d) maximum likelihood estimation (Jones,
1980). Computer-generated time series data of length 100
were generated for 50 different conditions representing five

levels of autocorrelation (� = −.80, −.40, 0.0, .40, or .80),
two levels of slope (slope = 0 or a positive slope of 15°), and
five levels of proportion of missing data (0%, 10%, 20%,
30%, or 40%). Methods were compared with respect to the
accuracy of estimation for four parameters (level, error vari-
ance, degree of autocorrelation, and slope).

The choice of method had a major impact on the analysis.
The maximum likelihood procedure for handling missing data
outperformed all others. Although this result was expected,
the degree of accuracy was very impressive. The method pro-
vided accurate estimates of all four parameters in the ARIMA
(1, 0, 0) model, namely level, error variance, degree of auto-
correlation, and slope. Furthermore, the method provided
accurate parameter estimates across all levels of missing data,
even when 40% of the data had been randomly eliminated.
Imputing the mean of the series is an unacceptable method for
handling missing data. Whenever a slope parameter was in-
troduced into the data, the imputed mean method led to very
inaccurate estimates of all four parameters. Severe overesti-
mates of error variance and level were obtained, which would
result in very inaccurate tests of significance. These results
reflect the fact that this procedure ignores the ordinal position
of the observations. The other two ad hoc methods also pro-
duced inaccurate estimates for some of the parameters. The
mean of adjacent observations produced reasonable estimates
of level and slope. However, the method produced extremely
inaccurate estimates of the dependency parameter. Deletion
was generally accurate for the estimation of level and error
variance but was inaccurate for the longitudinal parameters.
Deletion led to an overestimate of the slope, and was also
inaccurate for moderate and high degrees of negative depen-
dency. The results of this study demonstrated that the maxi-
mum likelihood estimation method for handling missing data
represents a substantial improvement over the available ad
hoc procedures and should be employed in all analyses when
missing data occur.

The Velicer and Colby (2001) study investigated missing
data procedures when all assumptions were met. Colby and
Velicer (2001) extended this approach to cases where one of
three assumptions was violated: (a) the ARIMA model was
not correctly specified; (b) the pattern of missing data was
systematic, rather than random; and (c) the data were not
normally distributed. For the model misspecification study,
three alternative models were fitted to all data sets: the correct
model, an ARIMA (1, 0, 0) model, and an ARIMA (5, 0, 0)
model. For the systematically missing data study, three
conditions were investigated: missing at random, systemati-
cally missing with an odd-even pattern, and systematically
missing with a block of sequential data pattern. For the non-
normality study, two distributions were considered: normal
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and lognormal. The maximum likelihood method with the
ARIMA (5, 0, 0) model specified produced very accurate re-
sults across all conditions. It was generally as good or better
than the correct model identification. The maximum likeli-
hood with the ARIMA (1, 0, 0) model generally produced a
very good approximation. Violations of the distribution as-
sumptions had no effect.

Computational Issues

Analysis of time series data requires the use of a computer
program. Fortunately, a large number of programs have be-
come available in the last two decades. Harrop and Velicer
(1990a, 1990b) evaluated five programs: BMDP (Dixon,
1985), GENTS (Velicer, Fraser, McDonald, & Harrop, 1986),
ITSE (Williams & Gottman, 1982), SAS (SAS Institute,
1984), and TSX (Bower & Glass, 1974; Glass, Bower, &
Padia, 1974). Simulated data from 44 different ARIMA mod-
els were employed to assess the accuracy of the programs
(Harrop & Velicer, 1990b). Three programs produced gener-
ally satisfactory results (TSX, GENTS, and SAS). One was
inaccurate across a wide range of models (ITSE), and one
was occasionally inaccurate and occasionally failed to com-
plete the analysis (BMDP). The original ITSE contained in-
correct formulas and an amended version of this program,
ITSACORR, is available (Crosbie, 1993). The overall evalu-
ation of the computation features and quality of documenta-
tion was not very favorable (Harrop & Velicer, 1990a). Some
of the programs evaluated in the Harrop and Velicer (1990a,
1990b) studies have been substantially modified since inclu-
sion in the study and time series analysis has since been
added to widely used statistical packages, such as SPSS
Trends (SPSS, Inc., 1988) and SYSTAT (Wilkinson, 1986).
SAS remains one of the best programs, with extensive sup-
porting features. However, a new comparative evaluation of
time series programs is needed because the Harrop and
Velicer studies are dated.

Measurement Issues

One of the impediments to the widespread use of time series
in the behavioral sciences has been the problem associated
with obtaining appropriate quantitative measures on a large
number of occasions. Measures previously employed for
time series analysis include physiological and behavioral
measures such as blood pressure, the number of cigarettes
smoked per day, and the number of standard drinks per day.
Many of the measures that have been employed in cross-
sectional research studies are simply not appropriate for time
series designs. Assessment batteries were often lengthy and

could not be repeated regularly at short intervals. Assess-
ments have also typically required contact between the re-
searcher and the subject, placing a further burden on the
research and limited the number of assessments. Self-report
measures, repeated in close proximity, may elicit recall of the
subject’s previous response rather than an accurate assess-
ment of current status. However, advances in information
systems technology are overcoming some of these barriers.
This section reviews some of the sources of data appropriate
for time series designs and some of the advances in technol-
ogy that will improve access to this type of data.

Available Data

Some types of data appropriate for time series analysis are
gathered regularly by public or private agencies. For exam-
ple, information on stock market values, number of deaths
due to cancer, and incidents of violations of laws are gener-
ally available and can be employed to assess the effectiveness
of policy decisions. One of the more unusual examples of
this approach is Simonton’s (1998a) application of time
series analysis to a well-studied problem, the recurrent at-
tacks of mental and physical illness experienced by King
George III of Great Britain. Although this problem has long
been of interest to historians and psychiatrists, the approach
employed in this paper is unique and represents an innovative
new approach, which was labeled the historiometric method.
Simonton (1998a) proposes the reasonable hypothesis that
changes in stress level precipitated dietary changes such as
increased alcoholic consumption that in turn activated
changes in liver function that activated porphyria hepatica.
Using coded historic records, the study describes the pattern
of changes over time, proposes a causal mechanism that
explains the 9-month lag, and is consistent with the known
facts. (See Simonton, 1998b, Velicer & Plummer, 1998, and
Read & Nasby, 1998 for related commentary.)

Daily Diary Methods

Self-monitoring a target behavior by recording in a daily
diary is a commonly employed method of data collection.
Participants use a diary or calendar to record the extent to
which they engage in a target behavior for specific intervals
of time. Exact dates and amounts (i.e., for drinking behavior)
will be more accurate using daily recording than those ob-
tained by retrospective assessment. However, noncompliance
with daily diary methods is often a significant problem. Re-
searchers have attempted to overcome the lack of compliance
by combining the use of diaries with frequent appointments
at the laboratory to turn in data (e.g., every 12 hours; every
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day) but the utility of this approach is likely to be limited to
special populations (e.g., college students). For most popula-
tions, transportation and time constraints are likely to result
in lack of compliance. Daily telephone calls to participants
(or call-ins by participants) can help verify compliance with
minimal additional burden on participants.

Technologically Assisted Measurement

In order to assess individuals’ naturalistic behavior over ex-
tended periods of time, yet still retain more experimental con-
trol than daily diaries permits, researchers have employed
small computers that participants can carry with them. One of
the more extensively developed examples is ecological
momentary assessment (EMA) developed by Shiffman and
colleagues (Shiffman, 1998; Shiffman et al., 1997; Shiffman,
Paty, Gnys, Kassel, & Hickcox, 1996; Stone & Shiffman,
1994). In the experience sampling paradigm, participants are
supplied with a handheld computer that beeps them at random
intervals, prompting them to complete an assessment at that
time. In addition, participants may be instructed to initiate an
assessment on the computer in response to the occurrence of
some event (e.g., smoking a cigarette). This paradigm is a
high-tech version of self-monitoring; participants enter their
data into the computer’s interactive framework rather than
writing in a diary or log.

Data from EMA would generally be appropriate for time
series analysis. One caution, however, is that EMA can pre-
sent problems for time series analysis, depending on the ex-
tent to which the prompting beeps are nonrandomly spaced.
A potential solution is to treat the intervals in which no
assessment occurred as missing at random and use a missing
data procedure. With advances in information systems tech-
nology, variations on the EMA approach are being developed
that rely on two-way pagers and digital cell phones.

Telemetrics

One of the limitations of physiological monitors has been the
restriction of the subject to the confines in the laboratory.
Data produced under such settings has limited generalizabil-
ity to the natural environment. Recent advances in telemet-
rics have the potential to overcome these limitations.
Computers and monitoring devices can now be miniaturized
and can continually transmit information to a central source.
An example of this approach is provided by the use of so-
called wearable computers for such purposes as assessing
emotional intelligence (Healy & Picard, 1998; Picard, 1997;
Picard & Healey, 1997). Some of the wearable computers that
have been developed include sensors and transmitters that
are incorporated into articles of clothing—for example, an

earring that can assess blood volume pressure; rings,
bracelets, and shoes than can monitor galvanic skin re-
sponses; a jacket that can monitor the gestural signals of a
conductor; glasses that can record a graphical display of the
wearer’s facial expressions; and miniaturized cameras and
microphones embedded in clothing that can record what a
person is seeing and hearing. The combination of such
devices can also facilitate the collection of data to study the
relationship of physiological responses to environmental
cues within the detailed context of the individual’s personal
and objective environment. This is a rapidly evolving area,
with the first IEEE International Symposium on Wearable
Computers being held in 1997. These devices produce time
series data appropriate for analysis and are likely to be a pri-
mary area of application for multivariate time series proce-
dures as the emotional and physiological responses are
related to the environmental stimulus and context.

Time as a Critical Variable

One of the critical but often overlooked aspects of longitudi-
nal designs is the importance of the choice of the units of the
time variable. Time series analysis assumes that the observa-
tions are taken in equally spaced intervals. This is a critical
assumption. Unfortunately, there is very little information
available in the behavioral sciences to guide the choice of in-
terval size. Sometimes the interval is predetermined, such as
when existing data were employed. Other times the choice of
interval is determined by the convenience of the experi-
menter or the subject. As less obtrusive methods of data col-
lection become available, the choice of interval will be able
to better reflect the needs of the research question.

The interval employed could strongly influence the accu-
racy of the conclusions that can be drawn. For example, in
Figure 23.1, the choice of two 8-hour intervals (parts of the
day when the subject was awake) strongly influenced the
results. A negative autocorrelation of −.70 would become a
positive autocorrelation of .49 if the observations had oc-
curred once a day and .24 if assessed every 48 hours. In gen-
eral, longer intervals can be expected to produce lower levels
of dependency in the data. Perhaps this explains the basis for
Huitema’s (1985) problematic observation that autocorrela-
tions should be expected to be zero. (Time series should still
be employed if the dependency is near zero.) However, if a
cyclic component is present in the data of 30 days and data
gathering occurred several times a day for 28 days, the cyclic
component would be missed.

If the focus is on the functional relationship between two
variables, the time interval can also be critical. If a change in
x produces a change in y with a 48-hour lag, observation
taken at weekly intervals might erroneously conclude that the

schi_ch23.qxd  9/6/02  1:09 PM  Page 602



References 603

variables are not related and observations taken at 24-hour
daily intervals would detect the relationship. The longer in-
terval might detect that some relationship exists between the
two variables if accumulated across subjects, but would not
be able to determine the direction of relationship. Until we
have adequate theoretical models and accumulate empirical
finding for the variables of interest, shorter intervals will be
preferable to longer intervals because it is always possible to
collapse multiple observations. It is also important that any
statements about the presence or degree of a relation between
variables based on autocorrelations and cross-lagged correla-
tions always reference the interval employed in the study.

SUMMARY AND CONCLUSIONS

Time series analysis has a tremendous potential in the behav-
ioral sciences. Longitudinal data analysis methods have the
potential to address research questions that could not be ad-
dressed, or only addressed indirectly, by cross-sectional
methods. Time series analysis is one of the large number of
computational procedures that have been developed specifi-
cally for the analysis of longitudinal data during the last 30
years. In fact, time series analysis can be viewed as the
prototypical longitudinal method. All these recently devel-
oped procedures share the common characteristic of requir-
ing a high-speed computer to perform the analysis. For time
series analysis, advances in computer technology are also
producing more sources of data for which the method is ap-
propriate. The combination of computational advances and
new sources of data has increased the range of potential ap-
plications. Two of the early drawbacks to time series analy-
sis, the large sample size required for model identifications
and problems with generalizability have been largely over-
come in the last decade. There are clearly areas in which
more work is still needed, such as pooled time series analysis
and multivariate time series analysis. Time series analysis
should now be viewed as representing one of a number of po-
tential methods of data analysis available to all researchers,
rather than as a novel and difficult procedure. We are now
reaching the point in the behavioral sciences at which the
data analysis method will be matched to the research problem
rather than the research problems being determined by the
available methods of data analysis.
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Structural equation modeling (SEM) is a collection of statis-
tical techniques that allow a set of relationships between one
or more independent variables (IVs), either continuous or dis-
crete, and one or more dependent variables (DVs), either con-
tinuous or discrete, to be examined. Both IVs and DVs can be
either measured variables (directly observed) or latent vari-
ables (unobserved, not directly observed). Structural equation
modeling is also referred to as causal modeling, causal analy-
sis, simultaneous equation modeling, analysis of covariance
structures, path analysis, or confirmatory factor analysis. The
latter two are actually special types of SEM.

At the most basic level, SEM allows questions to be an-
swered that involve multiple regression analyses. At the sim-
plest level, a researcher posits a relationship between a single
measured variable (perhaps acceptance of risky behavior) and
other measured variables (perhaps gender, academic achieve-
ment, and weak institutional bonds). This simple model is just

a multiple regression model presented in diagram form in Fig-
ure 24.1. All four of the measured variables appear in boxes
connected by lines with arrows indicating that gender, acade-
mic achievement, and weak institutional bonds (the IVs) pre-
dict acceptance of risky behaviors (the DV). Lines with
arrows at each end indicate a covariance among the IVs. The
presence of a residual indicates imperfect prediction.

A more complicated model of acceptance of risky behav-
ior appears in Figure 24.2. In this model, Acceptance of
Risky Behavior is a latent variable (a factor) that is not di-
rectly measured but rather assessed indirectly, using two
measured variables: degree of endorsement with “It is OK to
drink” and “It is OK to smoke.” Acceptance of Risky Behav-
ior is, in turn, predicted by gender and by Weak Institutional
Bonds, a second factor that is assessed through two measured
variables: bonds to family and bonds to teachers. For clarity
in the text, initial capitals are used for names of factors and
lowercase letters for names of measured variables.

Figures 24.1 and 24.2 are examples of path diagrams. These
diagrams are fundamental to SEM because they allow the re-
searcher to diagram the hypothesized set of relationships—the
model. The diagrams are helpful in clarifying a researcher’s

The authors sincerely thank Wayne Velicer and four anonymous
reviewers for helpful comments on an earlier draft. This chapter was
supported in part by NIDA grant DA 01070-28.

schi_ch24.qxd  9/6/02  2:21 PM  Page 607
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Figure 24.1 Path diagram of a multiple regression model.

ideas about the relationships among variables, and they can be
directly translated into the equations needed for the analysis.

Path Diagrams and Terminology

Several conventions are used in developing SEM diagrams.
Measured variables, also called observed variables, indica-
tors, or manifest variables, are represented by squares or
rectangles. In the figure, they have verbal labels as well as
V designations. Factors have two or more indicators and are
also called latent variables, constructs, or unobserved vari-
ables. Factors are represented by circles or ovals in path
diagrams and are shown with verbal labels as well as F
designations. Relationships between variables are indicated
by lines; lack of a line connecting variables implies that no
direct relationship has been hypothesized. Lines have either
one or two arrows. A line with one arrow represents a hy-

pothesized direct relationship between two variables. The
variable with the arrow pointing to it is the DV. A line with an
arrow at both ends indicates a covariance between the two
variables with no implied direction of effect.

In the model of Figure 24.2, Acceptance of Risky Behav-
ior is a latent variable (factor) that is predicted by gender (a
measured variable) and Weak Institutional Bonds (a factor).
Notice the line with the arrow at both ends connecting Weak
Institutional Bonds and gender. This line with an arrow at
both ends implies that there is a relationship between the
variables but makes no prediction regarding the direction of
the effect. Also notice the direction of the arrows connecting
the Acceptance of Risky Behavior construct (factor) to its
indicators: The construct predicts the measured variables.
The implication is that the underlying construct, Acceptance
of Risky Behavior, drives the degree of agreement with the
statements “It is OK to drink” and “It is OK to smoke.” It is

Figure 24.2 Example of a structural equation model of Acceptance of Risky Behavior.
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impossible to measure this construct directly, so we do the
next best thing and measure indicators of Acceptance of
Risky Behavior. We hope that we are able to tap into adoles-
cents’ Acceptance of Risky Behavior by measuring several
observable indicators. In this example we use just two
indicators.

In Figure 24.2, bonds to family, bonds to teachers, degree
of endorsement of smoking and drinking, and the latent vari-
able, Acceptance of Risky Behaviors, all have one-way ar-
rows pointing to them. These variables are dependent
variables in the model. Gender and Weak Institutional Bonds
are IVs in the model; as such they have no one-way arrows
pointing to them. Notice that all the DVs, both observed and
unobserved, have arrows labeled E or D pointing toward
them. Es (errors) point to measured variables; Ds (distur-
bances) point to latent variables (factors). As in multiple
regression, nothing is predicted perfectly; there is always a
residual or error. In SEM the residual not predicted by the
IV(s) is included in the diagram with these paths. 

The part of the model that relates the measured variables
to the factors is sometimes called the measurement model. In
this example, the two constructs (factors), Weak Institutional
Bonds and Acceptance of Risky Behavior, and the indicators
of these constructs (factors) form the measurement model.
The hypothesized relationships among the constructs—in
this example, the one path between Weak Institutional Bonds
and Acceptance of Risky Behavior—is called the structural
model. Predictive relationships are examined in SEM. For
example, in this model we are interested in whether each
latent variable (Acceptance of Risky Behavior and Weak
Institutional Bonds) predicts the measured variables associ-
ated with it. Additionally, it is hypothesized that the latent
variable, Acceptance of Risky Behavior, is predicted by
Weak Institutional Bonds. Note that both models presented
so far include hypotheses about relationships among vari-
ables (covariances) but not about means or mean differences.
Mean differences associated with group membership can also
be tested within the SEM framework but are not demon-
strated in this chapter.

Advantages of Structural Equation Modeling

There are a number of advantages to the use of SEM. When
relationships among factors are examined, the relationships
are free of measurement error because the error has been es-
timated and removed, leaving only common variance. Relia-
bility of measurement can be accounted for explicitly within
the analysis by estimating and removing the measurement
error. Additionally, as was seen in Figure 24.2, complex

relationships can be examined. When the phenomena of in-
terest are complex and multidimensional, SEM is the only
analysis that allows complete and simultaneous tests of all
the relationships. In the social sciences we often pose hy-
potheses at the level of the construct. With other statistical
methods these construct-level hypotheses are tested at the
level of a measured variable (an observed variable with mea-
surement error). Mismatching the level of hypothesis and
level of analysis—although problematic, and often over-
looked—may lead to faulty conclusions. A distinct advantage
of SEM is the ability to test construct-level hypotheses at the
appropriate level.

Another critical advantage of SEM over the basic general
linear model or simple regression is that variables that are
dependent variables also can play the role of predictor vari-
ables in the model as a whole. So, in Figure 24.2 Acceptance
of Risky Behavior is a dependent variable with respect to
Weak Institutional Bonds and gender. Yet it is also a predic-
tor of “It is OK to drink” and “It is OK to smoke.” This fea-
ture uniquely allows SEM to model mediation effects. Here,
Acceptance of Risky Behavior is a mediator of the effect of
Weak Institutional Bonds and gender on degree of endorse-
ment with “It is OK to smoke” and “It is OK to drink.”

THREE GENERAL TYPES OF RESEARCH
QUESTIONS THAT CAN BE ADDRESSED WITH
STRUCTURAL EQUATION MODELING

Adequacy of Model

The fundamental question that is addressed through the use
of SEM techniques involves a comparison between a data
set, an empirical covariance matrix, and an estimated popu-
lation covariance matrix that is produced as a function of the
model parameter estimates. The major question asked by
SEM is, Is the covariance matrix that is estimated from the
model equal to the true population covariance matrix? Of
course, we do not have the true population covariance
matrix, so in practice the question is modified to, Does the
model produce an estimated population covariance matrix
that is consistent with the sample (observed) covariance
matrix? If the model is good the parameter estimates will
produce an estimated matrix that is close to the sample co-
variance matrix. In turn, the sample covariance matrix is as-
sumed to be representative of the population covariance
matrix, so it can be assumed that the model describes the
population. “Consistent” is evaluated primarily with the chi-
square test statistic and fit indices.
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Another question addressed regards adequacy of the fac-
tor structure. It is possible to estimate a model, with a factor
structure, at one time point and then test whether the factor
structure remains the same across time points. For example,
we could assess the strength of the indicators of children’s
Acceptance of Risky Behaviors (endorsement of smoking
and drinking) and Weak Institutional Bonds (bonds to family
and bonds to teachers) when children are 12 and then assess
the same factor structure when the children are 14, 16, and
18. Using this longitudinal approach we could assess whether
the factor structure, the construct itself, remains the same
across this time period or whether the relative weights of the
indicators change as children develop.

In addition to examining the factor structure longitudi-
nally, it is also possible to examine the rate of individual
change in a construct over time. Using latent growth curve
modeling we can test the hypothesis that children’s degree of
Acceptance of Risky Behavior changes at different rates. We
can also test hypotheses about the shape of change; that is, is
the change over time linear or quadratic? Other questions that
might be addressed with this approach could be, Do children
have the same rate of change in Acceptance of Risky Behav-
ior? or Are children’s initial starting levels of Acceptance of
Risky Behavior associated with their rate of change in the
construct?

Significance of Parameter Estimates

Model estimates for path coefficients and their standard
errors are generated under the implicit assumption that the
model fit is very good. If the model fit is very close, then the
estimates and standard errors may be taken seriously, and in-
dividual significance tests on parameters (path coefficients,
variances, and covariances) may be performed. Using the ex-
ample illustrated in Figure 24.2 we could test the hypothesis
that Weak Institutional Bonds predicts Acceptance of Risky
Behavior. This would be a test of the path coefficient between
the two latent variables, Acceptance of Risky Behavior and
Weak Institutional Bonds (the null hypothesis for this test
would be H0: � = 0, where � is the symbol for the path co-
efficient between an IV and a DV). This parameter estimate is
then evaluated with a z test (the parameter estimate divided
by the estimated standard error).

Comparison of Nested Models

In addition to evaluating the overall model fit and specific
parameter estimates, it is also possible to compare nested

models to one another statistically. Nested models are models
that are subsets of one another. Each model might represent a
different theory. These nested models are statistically com-
pared, thus providing a strong test for competing theories
(models). From the example in Figure 24.2, we could pose a
nested model that could be compared to the fuller model that
is illustrated. A possible nested model could remove the path
from Weak Institutional Bonds to Acceptance of Risky
Behavior. This nested model would hypothesize that gender
is the only predictor of Acceptance of Risky Behavior. To test
this hypothesis, the chi-square from the fuller model depicted
in Figure 24.2 would be subtracted from the chi-square for
the nested model that removed the path from Weak Institu-
tional Bonds to Acceptance of Risky Behavior. The corre-
sponding degrees of freedom for these two models would
also be subtracted. The difference in chi-squares, based on
the difference in degrees of freedom, would be evaluated for
significance using a chi-square table of significance. If the
difference is significant, the fuller model that includes the
removed path is needed to explain the data. If the difference
were not significant, the nested model, which is more parsi-
monious than the fuller model, would be accepted as the
preferred model. This would imply that Weak Institutional
Bonds is not needed when predicting Acceptance of Risky
Behavior.

A FOUR-STAGE GENERAL PROCESS 
OF MODELING

The process of modeling could be thought of as a four-stage
process: model specification, model estimation, model evalu-
ation, and model modification. In this section each of these
stages will be discussed and illustrated with an example based
on data collected as part of an ongoing Drug Abuse Resis-
tance Education (D.A.R.E.) evaluation (see Dukes, Ullman,
& Stein 1995, for a full description of the study). This exam-
ple uses data from students’ responses immediately following
completion of the D.A.R.E. program (see Dukes, Ullman, &
Stein, 1995).

Model Specification/Hypotheses

The first step in the process of estimating an SEM model is
model specification. This stage consists of (a) stating the
hypotheses to be tested in both diagram and equation form,
(b) statistically identifying the model, and (c) evaluating the
statistical assumptions that underlie the model. This section
contains discussion of each of these components using the
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Acceptance of Risky Behavior model (Figure 24.2) as an ex-
ample. The section concludes with discussion and illustration
of the computer process of model specification using the EQS
SEM software program.

Model Hypotheses and Diagrams

In this phase of the process, the model is specified; that is, the
specific set of hypotheses to be tested is given. This is done
most frequently through a diagram. The Acceptance of Risky
Behavior diagram given in Figure 24.2 is an example of
hypothesis specification. This example has five measured
variables: (a) FAMILY_S, the average of three responses to
statements about bonds to family, (b) TEACH_SC, the aver-
age of three responses to statements that query bonds to
teachers, (c) OKDRINK2, a Likert scale measure (1–5) of
degree of endorsement of the statement “It is OK to drink,”
(d) OKSMOKE2, a Likert scale (1–5) measure of degree
of agreement with the statement “It is OK to smoke,” and
(e) gender (boys = 1, girls = 2).

The example of Figure 24.2 contains some asterisks and
a 1. The asterisks indicate parameters (variances and covari-
ances of IVs and regression coefficients) to be estimated. The
variances of IVs are parameters of the model and are esti-
mated or fixed to a particular value. The number 1 indicates
that a parameter, either a path coefficient or a variance,
has been set (fixed) to the value of 1. (The rationale behind
“fixing” paths is discussed later in the section about
identification.)

Our example contains two hypothesized latent variables
(factors): Weak Institutional Bonds (WK_BONDS), and
Acceptance of Risky Behavior (ACCEPT_RISK). The Weak
Institutional Bonds (WK_BONDS) factor is hypothesized to
have two indicators, bonds to family (FAMILY_S) and bonds
to teachers (TEACH_SC). Weaker Institutional Bonds pre-
dicts weaker bonds to both family and teachers. Note that the
direction of the prediction matches the direction of the ar-
rows. The Acceptance of Risky Behavior (ACCEPT_RISK)
factor also has two indicators; degree of endorsement to two
statements, “It is OK to drink” (OKDRINK2) and “It is OK
to smoke” (OKSMOKE2). Greater Acceptance of Risky
Behavior predicts higher scores on both the alcohol- and
tobacco-use statements. This model also hypothesizes that
both Weak Institutional Bonds and gender are predictive of
Acceptance of Risky Behavior. Also notice the line with the
doubled-headed arrow that directly connects Weak Institu-
tional Bonds and gender. This path indicates a hypothesized
covariance between these variables. Note that this is a
covariance and that it does not imply directionality.

Bentler-Weeks Model Specification

The relationships in the diagram are directly translated into
equations, and the model is then estimated. The analysis pro-
ceeds by specifying a model as in the diagram and then trans-
lating the model into a series of equations or matrices. One
method of model specification is the Bentler-Weeks method
(Bentler & Weeks, 1980). In this method every variable in the
model, latent or measured, is either an IV or a DV. The para-
meters to be estimated are the (a) regression coefficients and
(b) variances and covariances of the independent variables in
the model (Bentler, 2001). In Figure 24.2 the regression
coefficients, variances, and covariances to be estimated are
indicated with an asterisk.

In the example, ACCEPT_RISK, OKSMOKE2,
OKDRINK2, FAMILY_S, and TEACH_SC are all DVs
because they all have at least one line with a single-headed
arrow pointing to them. Notice that ACCEPT_RISK is a
latent variable and also a DV. Whether a variable is observed
makes no difference as to its status as a DV or IV. Although
ACCEPT_RISK is a factor, it is also a DV because it has
arrows from both WK_BONDS and gender. The seven IVs in
this example are gender, WK_BONDS, D2, E1, E2, E4, E5.

Residual variables (errors) of measured variables are la-
beled E and errors of latent variables (called disturbances)
are labeled D. It may seem odd that a residual variable is
considered an IV, but remember the familiar regression
equation:

Y = X� + e, (24.1)

where Y is the DV and X and e are both IVs.
In fact, the Bentler-Weeks model is a regression model,

expressed in matrix algebra:

� = B� + ��, (24.2)

where, if q is the number of DVs and r is the number of IVs,
then � (eta) is a q × 1 vector of DVs, B (beta) is a q × q ma-
trix of regression coefficients between DVs, � (gamma) is a
q × r matrix of regression coefficients between DVs and
IVs, and � (xi) is a r × 1 vector of IVs.

In the Bentler-Weeks model only independent variables
have variances and covariances as parameters of the model.
These variances and covariances are in � (phi), an r × r ma-
trix. Therefore, the parameter matrices of the model are B, �,

and �. Unknown parameters in these matrices need to be
estimated. The vectors of dependent variables, �, and inde-
pendent variables, �, are not estimated.
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Notice that � is on both sides of the equation. This is
because DVs can predict one another in SEM. The diagram
and matrix equations are identical. Notice that the asterisks in
Figure 24.2 correspond directly to the asterisks in the matrices
and that these matrix equations correspond directly to simple
regression equations. In the matrix equations the number 1 in-
dicates that we have “fixed” the parameter, either a variance
or a path coefficient to the specific value of 1. Parameters are
generally fixed for identification purposes. Parameters can
be fixed to any number; most often, however, parameters are
fixed to 1 or 0. The parameters that are fixed to zero are also
included in the path diagram but are easily overlooked
because the zero parameters are represented by the absence of
a line in the diagram.

As stated earlier, what makes this model different from or-
dinary regression is the possibility of having latent variables
as DVs and predictors, as well as the possibility of DVs pre-
dicting other DVs. The latter occurs with nonzero elements in
B. When all elements in B are zero, no DVs are predicted by
other DVs, and the only coefficients needed are in �; these
give weights for the IVs in predicting the DVs. In such a case
the model is a set of regression equations, albeit possibly with
latent variables. But when B has nonzero elements, certain
DVs are predicted by other DVs, and the model is no longer
just regression-like. In the example, there are two nonzero
elements in B (a fixed 1 and a free parameter, *), so this is not
just a regression model. In more complex models (so-called
nonrecursive models), free parameters exist in some symmet-
ric elements of B, such as the 1,2 and the 2,1 elements (which
here would indicate that V1 predicts V2 while V2 also
predicts V1).

Carefully compare the diagram in Figure 24.2 with this
matrix equation. The 5 × 1 vector of values to the left of the
equal sign, the eta (�) vector, is a vector of DVs listed in the
following order, OKDRINK2 (V1), OKSMOKE2 (V2),
TEACH_SC (V4), FAMILY_S (V5), and ACCEPT_RISK
(F2). The beta matrix (B) is a 5 × 5 matrix of regression
coefficients among the DVs.

DVs that are associated with the rows of this matrix are in the
same order as earlier. The seven IVs that identify the columns
are, in the order indicated, GENDER (V3); WK_BONDS
(F1); the four E(errors) for V1, V2, V4, and V5; and the D(dis-
turbance) of F2. The 7 × 1 vector of IVs is in the same order.

The matrix equation summarizes compactly all the equa-
tions in the model. Each row of the matrix equation gives one
regression-like equation; with five rows there are five equa-
tions. To illustrate, the third row gives

V4 = 0V1 + 0V2 + 0V4 + 0V5 + 1F2 + 0V3
+ 0F1 + 0E1 + 0E2 + 1E4 + 0E5 + 0D2,

where the numbers in front of the variable names are coeffi-
cients taken from the row of B and � in turn and the variables
are the dependent and then the independent variables in the
sequence we have listed them. Therefore this equation sim-
plifies to V4 = 1F2 + 1E4, where 1 is a fixed path from F2 to
V4, and E4 to V4, in the model. (Later, Table 24.2 shows this
equation as one of the five equations in the EQS model file
setup.) The 7 × 7 symmetric phi matrix contains the vari-
ances and covariances that are to be estimated for the IVs,

� =

V3 or � 1

F1 or � 2

E1 or � 3

E2 or � 4

E4 or � 5

E5 or � 6

D2 or � 7




∗ 0 0 0 0 0 0
∗ 1 0 0 0 0 0
0 0 ∗ 0 0 0 0
0 0 0 ∗ 0 0 0
0 0 0 0 ∗ 0 0
0 0 0 0 0 ∗ 0
0 0 0 0 0 0 ∗




.

These equations form the basis of an EQS (a popular SEM
computer package) syntax file used to estimate the model. The
syntax for this model is presented in Table 24.1. As seen in the
table, the model is specified in EQS using a series of regres-
sion equations. In the /EQUATIONS section, as in ordinary
regression, the DV appears on the left side of the equation,
and its predictors are on the right-hand side. But unlike
regression, the predictors may be IVs or other DVs. Measured
variables are referred to by the letter V and the number corre-
sponding to the variable given in the /LABELS section.

The diagram for the example is translated into the Bentler-
Weeks model, with r = 7 and q = 5, as below,

� = B � + � �




V1 or �1

V2 or �2

V4 or �3

V5 or �4

F2 or �5


 =




0 0 0 0 1
0 0 0 0 ∗
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0







V1 or �1

V2 or �2

V4 or �3

V5 or �4

F2 or �5


 +




0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 ∗ 0 0 1 0 0
0 ∗ 0 0 0 1 0
∗ ∗ 0 0 0 0 1







V3 or � 1

F1 or � 2

E1 or � 3

E2 or � 4

E4 or � 5

E5 or � 6

D2 or � 7




.

The 5 × 7 gamma matrix (�) contains the regression coef-
ficients that are used to predict the DVs from the IVs. The five
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Errors associated with measured variables are indicated by
the letter E and the number of the variable. Factors are re-
ferred to with the letterF and a number given in the/LABELS
section. The errors, or disturbances, associated with factors
are referred to by the letter D and the number corresponding to
the factor. An asterisk indicates a parameter to be estimated.
Variables included in the equation without asterisks are con-
sidered parameters fixed to the value 1. The variances of IVs
are parameters of the model and are indicated in the /VAR
paragraph. In the /PRINT paragraph, FIT=ALL requests all
goodness-of-fit indices available. Take a moment to confirm
that the diagram relationships exactly match the regression
equations given in the syntax file.

Identification

In SEM a model is specified, parameters for the model are
estimated using sample data, and the parameters are used to
produce the estimated population covariance matrix. But
only models that are identified can be estimated. A model is
said to be identified if there is a unique numerical solution for
each of the parameters in the model. For example, say that

the variance of y = 10 and the variance of y = � + �. Any
two values can be substituted for � and � as long as they
sum to 10. There is no unique numerical solution for either �
or �; that is, there are an infinite number of combinations of
two numbers that would sum to 10. Therefore, this single
equation model is not identified. However, if we fix � to 0,
there is a unique solution for �, 10, and the equation is iden-
tified. It is possible to use covariance algebra to calculate
equations and assess identification in very simple models;
however, in large models this procedure quickly becomes un-
wieldy. For a detailed, technical discussion of identification,
see Bollen (1989). The following guidelines are rough but
may suffice for many models.

The first step is to count the number of data points and the
number of parameters that are to be estimated. The data in
SEM are the variances and covariances in the sample covari-
ance matrix. The number of data points is the number of
nonredundant sample variances and covariances:

Number of data points = p(p + 1)

2
, (24.3)

where p equals the number of measured variables. The num-
ber of parameters is found by adding together the number of

TABLE 24.1 EQS Syntax for Acceptance of Risky Behavior Model

/TITLE
basic one group model

/SPECIFICATIONS
DATA=’D:\EQS6\dare_kids.ESS’;
VARIABLES=5; CASES=4578; GROUPS=1; 
METHODS=ML,ROBUST;
MATRIX=RAW;
ANALYSIS=COVARIANCE;

/LABELS
V1=OKDRINK2; V2=OKSMOKE2; V3=GENDER2; V4=TEACH_SC; V5=FAMILY_S;
F1=WK_BONDS; F2=ACCEPT_RISK; 

/EQUATIONS
!ACCEPTANCE OF RISKY BEHAVIOR 
V1 = + 1F2 + 1E1; 
V2 = + *F2 + 1E2; 

!WEAK INSTITUTIONAL BONDS 
V4 = + *F1 + 1E4; 
V5 = + *F1 + 1E5; 
F2 = + *F1 + *V3 + 1D2; 

/VARIANCES
V3 = *; 
F1 = 1; 
E1,E2,E4,E5 = *; 
D2 = *; 

/COVARIANCES
F1,V3 = *; 

/PRINT
FIT=ALL;
TABLE=EQUATION;

/LMTEST
/WTEST
/END
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regression coefficients, variances, and covariances that are to
be estimated (i.e., the number of asterisks in a diagram). 

If there are more data points than parameters to be esti-
mated, the model is said to be overidentified, a necessary
condition for proceeding with the analysis. If there are the
same number of data points as parameters to be estimated, the
model is said to be just-identified. In this case, the estimated
parameters perfectly reproduce the sample covariance ma-
trix, the chi-square test statistic and degrees of freedom are
equal to zero, and the analysis is uninteresting because hy-
potheses about the model’s adequacy cannot be tested. How-
ever, hypotheses about specific paths in the model can be
tested. If there are fewer data points than parameters to be
estimated, the model is said to be underidentified, and para-
meters cannot be estimated. The number of parameters needs
to be reduced by fixing, constraining, or deleting some of
them. A parameter may be fixed by setting it to a specific
value or constrained by setting the parameter equal to another
parameter.

In the Acceptance of Risky Behavior example of Fig-
ure 24.2, there are 5 measured variables and thus 15 data
points: 5(5 + 1)/2 = 15 (5 variances and 10 covariances).
There are 12 parameters to be estimated in the hypothesized
model: 5 regression coefficients, 6 variances, and 1 covari-
ance. The hypothesized model has 3 fewer parameters than
data points, so the model may be identified.

The second step in determining model identifiability is to
examine the measurement portion of the model. The mea-
surement part of the model deals with the relationship be-
tween the measured indicators and the factors. It is necessary
both to establish the scale of each factor and to assess the
identifiability of this portion of the model.

To establish the scale of a factor, the variance for the fac-
tor is fixed to 1, or the regression coefficient from the factor
to one of the measured variables is fixed to 1. Fixing the re-
gression coefficient to 1 gives the factor the same variance as
the measured variable. If the factor is an IV, either alternative
is acceptable. If the factor is a DV, most researchers fix the
regression coefficient to 1. In the example, the variance of the
Weak Institutional Bonds factor was set to 1 (normalized)
while the scale of the Acceptance of Risky Behavior fac-
tor was set equal to the scale of the “It is OK to drink vari-
able” (OKDRINK2) measured variable.

To establish the identifiability of the measurement portion
of the model, look at the number of factors and the number of
measured variables (indicators) loading on each factor. If
there is only one factor, the model may be identified if the
factor has at least three indicators with nonzero loading and
if the errors (residuals) are uncorrelated with one another. If
there are two or more factors, again consider the number of

indicators for each factor. If each factor has three or more
indicators, the model may be identified if errors associated
with the indicators are not correlated, if each indicator loads
on only one factor, and if the factors are allowed to covary. If
there are only two indicators for a factor, the model may be
identified if there are no correlated errors, if each indicator
loads on only one factor, and if none of the covariances
among factors is equal to zero.

In the example, there are two indicators for each factor.
The errors are uncorrelated, and each indicator loads on only
one factor. Additionally, the covariance between the factors is
not zero. Therefore, this part of the model may be identified.
Please note that identification may still be possible if errors
are correlated or if variables load on more than one factor, but
it is more complicated.

The third step in establishing model identifiability is to ex-
amine the structural portion of the model, looking only at the
relationships among the latent variables (factors). Ignore the
measured variables for a moment; consider only the struc-
tural portion of the model that deals with the regression coef-
ficients relating latent variables to one another. If none of the
latent DVs predict each other (the beta matrix is all zeros),
the structural part of the model may be identified. The
Acceptance of Risky Behavior example has only one latent
DV, so this part of the model may be identified. If the latent
DVs do predict one another, look at the latent DVs in the
model and ask whether they are recursive or nonrecursive. If
the latent DVs are recursive, there are no feedback loops
among them and no correlated disturbances (errors) among
them. (In a feedback loop, DV1 predicts DV2 and DV2 pre-
dicts DV1; i.e., there are two lines linking the factors, one
with an arrow in one direction and the other with an arrow in
the other direction. Correlated disturbances are linked by sin-
gle curved lines with double-headed arrows.) If the structural
part of the model is recursive, it may be identifiable. These
rules apply also to path analysis models with only measured
variables. The Acceptance of Risky Behavior example is a
recursive model and therefore may be identified.

If a model is nonrecursive, there are feedback loops or
correlated disturbances among the DVs, or both. Two addi-
tional conditions are necessary for identification of nonrecur-
sive models, each applying to each equation in the model
separately. Looking at each equation separately, for identifi-
cation it is necessary that each equation has at least the num-
ber of latent DVs − 1 excluded from it. The second condition
is that the information matrix (a matrix necessary for calcu-
lating standard errors) is full rank and can be inverted. The
inverted information matrix can be examined in the output
from most SEM programs. If after examining the model the
number of data points exceeds the number of parameters
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estimated and both the measurement and structural parts of
the model are identified, there is good evidence that the
whole model is identified.

Sample Size and Power

Covariances are less stable when estimated from small sam-
ples. Structural equation modeling is based on covariances.
Parameter estimates and chi-square tests of fit are also very sen-
sitive to sample size. Therefore, SEM is a large sample tech-
nique. MacCallum, Browne, and Sugawara (1996) presented
tables of minimum sample size needed for tests of goodness of
fit based on model degrees of freedom and effect size.

Missing Data

Problems of missing data are often magnified in SEM due
to the large number of measured variables employed. The
researcher who relies on using complete cases only is often
left with an inadequate number of complete cases to estimate
a model. Therefore, adequate missing data computation is
particularly important in many SEM models. When there is
evidence that the data are missing at random (MAR; missing-
ness may depend on the IVs but not DVs) or missing com-
pletely at random (MCAR; missingness is unrelated to the
IVs or the DVs), a preferred method is to use the expectation
maximization (EM) algorithm to obtain maximum likelihood
(ML) estimates (R. J. A. Little & Rubin, 1987). Some of the
software packages now include procedures for estimating
missing data, including the EM algorithm. EQS 6 (Bentler,
2001) produces the EM-based ML solution automatically,
based on the Jamshidian-Bentler (1999) computations. It
should be noted that if the data are not normally distributed,
ML test statistics—including those based on the EM
algorithm—may be quite inaccurate.

Additionally, a missing data mechanism can be modeled
explicitly within the SEM framework. Treatment of missing
data patterns through SEM is not demonstrated in this chap-
ter, but the interested reader is referred to Allison (1987) or
Muthén, Kaplan, and Hollis (1987). All of these authors as-
sume that the data are multivariately normally distributed, a
very restrictive assumption in practice, as is discussed next.
The more general case on how to deal with missing data
when the parent distribution is possibly nonnormal is dis-
cussed in Yuan and Bentler (2000b). They provided a means
for accepting the EM-based estimates of parameters but cor-
recting standard errors and test statistics for nonnormality in
an approach reminiscent of Satorra-Bentler (1994). Their
approach has been uniquely incorporated into the EQS 6 pro-
gram (Bentler, 2001).

Multivariate Normality and Outliers

Most of the estimation techniques used in SEM assume mul-
tivariate normality. To determine the extent and shape of non-
normally distributed data, examine the data for evidence of
outliers, both univariate and multivariate, and evaluate the
skewness and kurtosis of the distributions for the measured
variables. If significant skewness is found, transformations
can be attempted; however, variables are often still highly
skewed or highly kurtotic even after transformation. Addi-
tionally, multivariate normality can be examined through the
use of Mardia’s coefficients of multivariate skewness and
kurtosis. Some variables, such as drug-use variables, are not
expected to be normally distributed in the population any-
way. If transformations do not restore normality, or if a
variable is not expected to be normally distributed in the pop-
ulation, an estimation method can be selected that addresses
the nonnormality.

Residuals

After model estimation, the residuals should be small and
centered around zero. The frequency distribution of the resid-
ual covariances should be symmetric. Residuals in the con-
text of SEM are residual covariances, not residual scores.
Nonsymmetrically distributed residuals in the frequency
distribution may signal a poorly fitting model; the model is
estimating some of the covariances well and others poorly.
Sometimes, one or two residuals remain quite large even
though the model fits reasonably well and the residuals ap-
pear to be symmetrically distributed and centered around
zero. Typically, more informative than the ordinary residuals
are the residuals obtained after standardizing the sample
covariance matrix to a correlation matrix and similarly trans-
forming the model matrix. In this metric, it is correlations
that are being reproduced, and it is easy to see whether a
residual is small and meaningless or too large for comfort.
For example, if a sample correlation is .75 and the corre-
sponding residual is .05, the correlation is largely explained
by the model. In fact, an average of these standardized root
mean square residuals (SRMS) has been shown to provide
one of the most informative guides to model adequacy (Hu &
Bentler, 1998, 1999).

The Computer Process

So far in this section we have outlined the components (spec-
ification of hypotheses, identification, and evaluation of as-
sumptions underlying the model) of the model specification
stage of the SEM process. Now we provide a brief tutorial on
the software (EQS) implementation of this stage.
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The first step of the model-fitting process, model specifi-
cation, is nicely summarized in the EQS syntax table seen
in Table 24.1. The data file is specified after the keyword
DATA =. The number of measured variables is given after
VARIABLES =, the sample size is indicated after CASES
=, and the number of samples is given after GROUPS =. The
estimation method, type of data matrix, and type of analysis
are also indicated. Labels are provided for each measured
(V) and latent (F) variable. As we stated previously, the
/EQUATIONS section specifies each predictive relationship
in the model. Notice that there are as many equations as DVs.
The asterisks indicate parameters to be estimated. Note that
in the equation for V1 the parameter estimating the relation-
ship between V1, F2 has been fixed to one for identification.
The scale of the F2 latent variable (Acceptance of Risky
Behavior) has been set equal to the variance of “It is OK to
drink” (OKDRINK2). The next section, /VARIANCES,
specifies the variances to be estimated. Notice that the vari-
ance of F1, Weak Institutional Bonds, has been fixed to 1 for
identification purposes.

Model Estimation Techniques and Test Statistics

After the model specification component is completed, the
population parameters are estimated and evaluated. In this
section we discuss several popular estimation techniques and
provide guidelines for selection of the appropriate estimation
technique and test statistic. As with the prior section we con-
clude with a computer procedure section that provides imple-
mentation guidelines using EQS.

The goal of estimation is to minimize the difference
between the observed and estimated population covariance
matrices. To accomplish this goal, a function, F, is minimized
where

F = (s − �(�))′W(s − �(�)), (24.4)

where s is the vector of data (the observed sample covariance
matrix stacked into a vector); � is the vector of the estimated
population covariance matrix (again, stacked into a vector);
and (�) indicates that � is derived from the parameters
(the regression coefficients, variances, and covariances) of
the model. W is the matrix that weights the squared differ-
ences between the sample and estimated population covari-
ance matrix.

In factor analysis the observed and reproduced correlation
matrices are compared. This idea is extended in SEM to in-
clude a statistical test of the differences between the observed
covariance matrix and the estimated population covariance
matrix that is produced as a function of the model. If the

weight matrix, W, is chosen correctly, at the minimum with
the optimal �̂ , F multiplied by (N − 1) yields a chi-square
test statistic.

The trick is to select W so that the sum of weighted
squared differences between observed and estimated popula-
tion covariance matrices has a statistical interpretation. In an
ordinary chi-square, the weights are the set of expected fre-
quencies in the denominator of the chi-square test statistic. If
we use some other numbers instead of the expected frequen-
cies, the result might be some sort of test statistic, but it
would not be a chi-square statistic; that is, the weight matrix
would be wrong.

In SEM, estimation techniques vary by the choice of W.
Unweighted least squares (ULS) estimation does not stan-
dardly yield a chi-square statistic or standard errors though
these are provided in EQS. Nor does it usually provide the
best estimates, in the sense of having the smallest possible
standard errors, and hence it is not discussed further (see
Bollen, 1989, for further discussion of ULS).

Maximum likelihood (ML) is usually the default method
in most programs because it yields the most precise (smallest
variance) estimates when the data are normal. Generalized
least squares (GLS) has the same optimal properties as ML
under normality. When the data are symmetrically but not
normally distributed, an option is elliptical distribution theory
(EDT; Bentler, 1990; Shapiro & Browne, 1987), which allows
different variables to be nonnormal but symmetric in different
ways. Another option in EQS is heterogeneous kurtosis (HK)
theory (Kano, Berkane, & Bentler, 1990), which allows dif-
ferent variables to be nonnormal but symmetric in different
ways. The asymptotically distribution free (ADF) method has
no distributional assumptions and hence is most general
(Browne, 1984), but it is impractical with many variables and
inaccurate without very large sample sizes.

Satorra and Bentler (1988, 1994, in press) and Satorra
(2000) have also developed an adjustment for nonnormality
that can be applied to the ML, GLS, EDT or HK chi-square
test statistics. Briefly, the Satorra-Bentler scaled � 2 is a
Bartlett-type correction to the chi-square test statistic. EQS
also corrects the standard errors for parameter estimates to
adjust for the extent of nonnormality (Bentler & Dijkstra,
1985).

The performance of the chi-square test statistic derived
from these different estimation procedures is affected by sev-
eral factors, among them (a) sample size; (b) nonnormality of
the distribution of errors, factors, and errors and factors; and
(c) violation of the assumption of independence of factors
and errors. The goal is to select an estimation procedure that,
in Monte Carlo studies, produces a test statistic that neither
rejects nor accepts the true model too many times. Several
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studies provide guidelines for selection of appropriate esti-
mation methods and test statistics. The following sections
summarize the performance of estimation procedures exam-
ined in Monte Carlo studies by Hu, Bentler, and Kano (1992)
and Bentler and Yuan (1999). 

Hu et al. (1992) varied sample size from 150 to 5,000, and
Bentler and Yuan (1999) examined samples sizes ranging
from 60 to 120. Both studies examined the performance of
test statistics derived from several estimation methods when
the assumptions of normality and independence of factors
were violated.

Estimation Methods/Test Statistics and Sample Size

Hu and colleagues found that when the normality assumption
was reasonable, both the ML and the Scaled ML performed
well with sample sizes over 500. When the sample size was
less than 500, GLS performed slightly better. Interestingly,
the EDT test statistic performed a little better than ML at
small sample sizes. It should be noted that the EDT estimator
considers the kurtosis of the variables and assumes that all
variables have the same kurtosis although the variables need
not be normally distributed. (If the distribution is normal,
there is no excess kurtosis.) The HK method, which allows
varying kurtosis, performed similarly. Finally, the ADF esti-
mator was poor with sample sizes under 2,500.

In small samples in the range of 60 to 120, when the num-
ber of subjects was greater than the number, ( p∗), of nonre-
dundant variances and covariances in the sample covariance
matrix—that is, p∗ = [p( p + 1)]/2, where p is the number
of variables—Bentler and Yuan found that a test statistic
based on an adjustment of the ADF estimator and evaluated
as an F statistic was best. This test statistic (Yuan & Bentler,
1999a) adjusts the chi-square test statistic derived from the
ADF estimator as

Tl = [N − ( p∗ − q)]TADF

[(N − 1) ( p∗ − q)]
, (24.5)

where N is the number of subjects, q is the number of para-
meters to be estimated, and TADF is the test statistic based on
the ADF estimator.

Estimation Methods and Nonnormality

When the normality assumption was violated, Hu et al. found
that the ML and GLS estimators worked well with sample
sizes of 2,500 and greater. The GLS estimator was a little bet-
ter with smaller sample sizes but led to acceptance of too
many models. The EDT and HK estimators accepted far too
many models. The ADF estimator was poor with sample

sizes under 2,500. Finally, the scaled ML performed about
the same as the ML and GLS estimators and better than the
ADF estimator at all but the largest sample sizes. (This is
interesting in that the ADF estimator has no distributional
assumptions and, theoretically, should perform quite well
under conditions of nonnormality.) With small samples sizes
the Yuan-Bentler test statistic performed best.

Estimation Methods and Dependence

The assumption that errors are independent underlies SEM
and other multivariate techniques. Hu et al. also investigated
estimation methods and test statistic performance when the
errors and factors were dependent but uncorrelated. Factors
were dependent but uncorrelated by creating a curvilinear
relationship between the factors and the errors. Correlation
coefficients examine only linear relationships; therefore,
although the correlation is zero between factors and errors,
they are dependent.

ML and GLS performed poorly, always rejecting the true
model. ADF was poor unless the sample size was greater than
2,500. EDT was better than ML, GLS, and ADF but still
rejected too many true models. The scaled ML was better
than the ADF estimator at all but the largest sample sizes. The
scaled ML performed best overall with medium to larger
samples sizes, and the Yuan-Bentler performed best with
small samples.

Some Recommendations for Choice of Estimation
Method/Test Statistic

Sample size and plausibility of the normality and indepen-
dence assumptions need to be considered in selection of the
appropriate estimation technique. ML, Scaled ML, or GLS
estimators may be good choices with medium to large
samples and evidence of the plausibility of the normality
assumptions. The independence assumption cannot be rou-
tinely evaluated. The Scaled ML is fairly computer intensive.
Therefore, if time or cost is an issue, ML and GLS are better
choices when the assumptions seem plausible. ML estima-
tion is currently the most frequently used estimation method
in SEM. In medium to large samples the scaled ML test sta-
tistic is a good choice with nonnormality or suspected depen-
dence among factors and errors. In small samples with
nonnormality the Yuan-Bentler test statistic seems best. The
test statistic based on the ADF estimator (without adjust-
ment) seems like a poor choice under all conditions unless
the sample size is very large (>2,500). Similar conclusions
were found in studies by Fouladi (2000), Hoogland (1999),
and Satorra (1992).
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Computer Procedure and Interpretation

The model in Figure 24.2 is estimated using ML estimation
and the Satorra-Bentler Scaled chi-square test statistic be-
cause the data are not normally distributed, thus violating
multivariate normality. In this model Mardia’s normalized
multivariate kurtosis estimate is 224.25. This can be inter-
preted like a z score. Therefore, the probability level associ-
ated with a normalized estimate of 224.25 is less than .001.
Output for the model estimation and chi-square test statistic
is given in Table 24.2.

Several chi-square test statistics are given in the full
output. In this severely edited output, only the chi-squares
associated with the Satorra-Bentler scaled chi-square are
given. The INDEPENDENCE MODEL CHI-SQUARE =
757.123, with 10 dfs tests the hypothesis that the measured
variables are orthogonal. Therefore, the probability associated
with this chi-square should be small, typically less that .05.
The model chi-square test statistic is labeledCHI-SQUARE =
14.3775 BASED ON 3 DEGREES OF FREEDOM. This chi-
square tests the hypothesis that the difference between the
estimated population covariance matrix and the unstructured
population covariance matrix (as represented by the sample
covariance matrix) is not significant. Ideally, the probability
associated with this chi-square should be large, greater than
.05. In Table 24.2 the probability associated with the model
chi-square equals p = .00243. Strictly interpreted, this indi-
cates that the estimated model-based population covariance
matrix and the unstructured population covariance matrix,
viewed through the sample covariance matrix, do differ sig-
nificantly; that is, the model does not fit the data. However, the
chi-square test statistic is strongly affected by sample size.

The function minimum multiplied by N − 1 equals the chi-
square. Therefore, we will examine additional measures of fit
before we draw any conclusions about the adequacy of the
model.

Model Evaluation

In this section we examine three aspects of model evaluation.
First, we discuss the problem of assessing fit in a SEM model.
We then present several popular fit indices. The section con-
cludes with a discussion of evaluating direct and indirect
parameter estimates.

Evaluating the Overall Fit of the Model

The model chi-square test statistic is highly dependent on
sample size; that is, the model chi-square test statistic is
(N − 1)Fmin, where N is the sample size and Fmin is the value
of Fmin, Equation 24.4, at the function minimum. Therefore,
the fit of models estimated with large samples, as seen in the
Acceptance of Risky Behavior model with N = 4,578, is
often difficult to assess. Fit indices have been developed to
address this problem. There are five general classes of fit in-
dices: comparative fit, absolute fit, proportion of variance
accounted for, parsimony adjusted proportion of variance ac-
counted for, and residual-based fit indices. A complete dis-
cussion of model fit is outside the scope of this chapter;
therefore we will focus on two of the most popular fit indices:
the comparative fit index (CFI; Bentler, 1990) and a residual-
based fit index, the root mean square error of approximation
(RMSEA; Browne & Cudeck 1993; Steiger, 2001; Steiger &

TABLE 24.2 Test Statistic and Fit Indices for Acceptance of Risky Behavior Model

GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST

INDEPENDENCE MODEL CHI-SQUARE =        757.123 ON      10 DEGREES OF FREEDOM

INDEPENDENCE AIC =   737.12323     INDEPENDENCE CAIC =   663.51316
MODEL AIC =  8.37746            MODEL CAIC =   -13.70556

SATORRA-BENTLER SCALED CHI-SQUARE =   14.3775 ON      3 DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS      .00243

FIT INDICES
-----------
BENTLER-BONETT NORMED FIT INDEX =     .981
BENTLER-BONETT NON-NORMED FIT INDEX =     .949
COMPARATIVE FIT INDEX (CFI)         =     .985
BOLLEN   (IFI) FIT INDEX            =     .985
MCDONALD (MFI) FIT INDEX            =     .999
ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA)  =     .030
90% CONFIDENCE INTERVAL OF RMSEA (        .016,        .046)
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Lind, 1980). See Ullman (2001) and Hu and Bentler (1999)
for more detailed discussions of fit indices.

One type of model fit index is based on a comparison of
nested models. Nested models are models that are subsets of
one another. At one end of the continuum is the uncorrelated
variables or independence model: the model that corresponds
to completely unrelated variables. This model would have
degrees of freedom equal to the number of data points minus
the variances that are estimated. At the other end of the con-
tinuum is the saturated (full or perfect) model with zero de-
grees of freedom. Fit indices that employ a comparative fit
approach place the estimated model somewhere along this
continuum, with 0.00 indicating fit equivalent to that of the
independence model (i.e., that no covariances are being
explained) and 1.00 indicating perfect fit.

The normed fit index is the easiest index to understand. It
summarizes the improvement in chi-square going from the
independence model to the model of interest, relative to the
starting point. That is, NFI = (757.1 − 14.4)/757.1 = .98,
indicating excellent fit. This index underestimates fit in small
samples. The comparative fit index (CFI: Bentler, 1990) as-
sesses fit relative to other models, as the name implies, and
uses an approach based on the noncentral chi-square distrib-
ution with the noncentrality parameter, �i . If the estimated
model is perfect, �i = 0 and the larger the value of �i , the
greater the model misspecification:

CFI = 1 − �est. model

�indep. model
(24.6)

Clearly, the smaller the noncentrality parameter, �i , is for
the estimated model relative to the �i , for the independence
model, the larger the CFI and the better the fit. The τ value
for a model can be estimated by

�̂ indep.model = � 2
indep. model − dfindep. model

�̂ est. model = � 2
est. model − dfest. model

, (24.7)

where �̂ est. model is set to zero if negative.
For the example,

�indep. model = 757.123 − 10 = 747.123 and

�est. model = 14.3775 − 3 = 11.3775 so that

CFI = 1 − 11.3775

747.123
= .985

CFI values greater than .95 are often indicative of good-
fitting models (Hu & Bentler, 1999). The CFI is normed to
the 0–1 range and does a good job of estimating model fit
even in small samples (Hu & Bentler, 1998, 1999).

The RMSEA (Steiger, 2001; Steiger & Lind, 1980) esti-
mates the lack of fit in a model compared to a perfect or
saturated model by 

estimated RMSEA =
√

�̂

Ndf model
, (24.8)

where �̂ = �̂ est. model, as defined in Equation 24.7. As noted
earlier, when the model is perfect, �̂ = 0, and the greater the
model misspecification, the larger �̂ . Hence, RMSEA is a
measure of noncentrality relative to sample size and degrees
of freedom. For a given noncentrality, large N and df imply a
better fitting model (i.e., a smaller RMSEA). Values of .06 or
less indicate a close-fitting model (Hu & Bentler, 1999). Val-
ues larger than .10 are indicative of poor-fitting models
(Browne & Cudeck, 1993). Hu and Bentler (1999) found that
in small samples the RMSEA overrejected the true model
(i.e., its value was too large). Because of this problem, this
index may be less preferable with small samples. As with the
CFI the choice of estimation method effects the size of the
RMSEA.

For the example, �̂ = 11.3775; therefore,

RMSEA =
√

11.3775

(4277)(3)
= .03

Both the CFI and RMSEA values of .98 and .03, respectively,
well exceed guideline cutoff values for evidence of good fit,
CFI .95 and RMSEA .06. Thus we can conclude that we have
adequate evidence that the model fits the data despite the
significant chi-square.

Interpreting Parameter Estimates: Direct Effects

The model fits, but what does it mean? The hypothesis is that
the observed covariances among the measured variables arose
because of the linkages between variables specified in the
model. We conclude that we should retain our hypothesized
model because the fit indices provide evidence of good fit.

Next, researchers usually examine the statistically signifi-
cant relationships within the model. Table 24.3 contains
edited EQS output for evaluation of the regression coeffi-
cients for the example. If the unstandardized parameter esti-
mates are divided by their respective standard errors, a z
score is obtained for each estimated parameter that is evalu-
ated in the usual manner:

z = parameter estimate

std error for estimate
. (24.9)

Because of differences in scales, it is sometimes difficult to
interpret unstandardized regression coefficients; therefore,
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researchers often examine standardized coefficients. Both the
standardized and unstandardized regression coefficients for
the final model are in Table 24.3 and Figure 24.3. In Fig-
ure 24.3 the standardized coefficients are in parentheses.
In the section labeled MEASUREMENT EQUATIONS WITH
STANDARD ERRORS AND TEST STATISTICS in
Table 24.3, for each dependent variable there are five pieces
of information: the unstandardized coefficient is given on the
first line; the standard error of the coefficient, given the as-
sumption of normality, is given on the second line; and the
test statistic for the coefficient, given normality, is given on
the third line. The fourth line contains the standard error after

adjustment for nonnormality (Bentler & Dijkstra, 1985), and
the fifth line gives the test statistic after adjustment for the
nonnormality. For example, for FAMILY_S (V5) predicted
from Weak Institutional Bonds (F1), if normal theory
methods are used,

.406

.018
= 22.026, p < .05,

with an adjustment to the standard error for the nonnormality:

.406

.023
= 17.404, p < .05.

TABLE 24.3 Parameter Estimates, Standard Errors, Test Statistics, and Standardized Solution for
Hypothetical Example

MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)

OKDRINK2=V1   =      1.000 F2     +    1.000 E1 

OKSMOKE2=V2   =      1.584*F2     +    1.000 E2 
.109

14.499@
(  .159) 
( 9.949@ 

TEACH_SC=V4   =       .490*F1     +    1.000 E4 
.021

22.929@
( .027) 
( 18.287@ 

FAMILY_S=V5   =       .406*F1     +    1.000 E5 
.018

22.026@
( .023) 
( 17.404@ 

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @.
(ROBUST STATISTICS IN PARENTHESES)

ACCEPT_R=F2   =      -.013*V3     +    .181*F1  +  1.000 D2 
.012             .013 

-1.036           13.870@ 
(  .012)       (   .018) 
(-1.065)       (  10.110@ 

STANDARDIZED SOLUTION:                           R-SQUARED

OKDRINK2=V1  =   .533 F2  + .846 E1                 .284 
OKSMOKE2=V2  =   .760*F2  + .650 E2                   .577 
TEACH_SC=V4  =   .572*F1  + .820 E4                  .327 
FAMILY_S=V5  =   .517*F1  + .856 E5   .268 
ACCEPT_R=F2  =  -.021*V3  + .583*F1 + .811 D2                  .342 
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It could be concluded that bonds to family (FAMILY_S)
is a significant indicator of Weak Institutional Bonds
(WK_BONDS); the weaker the Weak Institutional Bonds is,
the weaker the bonds to family (unstandardized coefficient =
.406). Bonds to teachers (TEACH_SC) is a significant indi-
cator of Weak Institutional Bonds (unstandardized coeffi-
cient = .49). Endorsement of smoking (OKSMOKE2) is a
significant indicator of Acceptance of Risky Behavior
(ACCEPT_RISK), and greater Acceptance of Risky Behav-
ior predicts stronger agreement with the acceptability of
smoking (unstandardized coefficient = 1.584). Because the
path from ACCEPT_RISK to OKDRINK2 is fixed to 1 for
identification, a standard error is not calculated. If this stan-
dard error is desired, a second run is performed with the
OKSMOKE2 path fixed to 1 instead.

As seen in Table 24.3, the relationships between the con-
structs appears in the EQS section labeled CONSTRUCT
EQUATIONS WITH STANDARD ERRORS AND TEST

STATISTICS. Weak Institutional Bonds significantly pre-
dicts greater Acceptance of Risky Behavior (unstandardized
coefficient = .181). Gender does not predict Acceptance of
Risky Behavior (unstandardized coefficient = −.013).

Indirect Effects

A particularly strong feature of SEM is the ability to test not
only direct effects between variables but also indirect effects.
Mediational hypotheses are not well illustrated in the Accep-
tance of Risky Behavior example, so a better example is
shown in Figure 24.4. Imagine that students are assigned to
one of two teaching methods for a statistics class (coded 0
and 1). Final exam scores are recorded at the end of the quar-
ter. The direct effect of teaching method on exam score is
path a. But is it reasonable to suggest that mere assignment
to a teaching method creates the change? Perhaps not.
Maybe, instead, the teaching method increases a student’s

Figure 24.3 Example with unstandardized and standardized coefficients.

Figure 24.4 Path analysis with indirect effect.
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motivational level, and higher motivation leads to a higher
grade. The relationship between the treatment and the exam
score is mediated by motivation level. Note that this is a dif-
ferent question than is posed with a direct-effect “Is there a
difference between the treatment and control group on exam
score?” The indirect effect can be evaluated by testing the
product of paths b and c. This example uses only measured
variables and is called path analysis; however, mediational
hypotheses can be tested using both latent and observed vari-
ables and can involve quite long chains of mediation across
many variables. A more detailed discussion of indirect effects
can be found in Baron and Kenny (1986); Collins, Graham,
and Flaherty (1998); MacKinnon, Krull, and Lockwood
(2000); and Sobel (1987).

Model Modification

There are at least two reasons for modifying a SEM model: to
test hypotheses (in theoretical work) and to improve fit (espe-
cially in exploratory work). Structural equation modeling is a
confirmatory technique; therefore, when model modification
is done to improve fit, the analysis changes from confirma-
tory to exploratory. Any conclusions drawn from a model that
has undergone substantial modification should be viewed ex-
tremely cautiously. Cross validation should be performed on
modified models whenever possible.

The three basic methods of model modification are the
chi-square difference, Lagrange multiplier (LM), and Wald
tests. All are asymptotically equivalent under the null hy-
pothesis but approach model modification differently. In this
section each of these approaches is discussed with reference
to the Acceptance of Risky Behavior example, and examples
will be shown where relevant.

Chi-Square Difference Test

If models are nested (i.e., models are subsets of each other),
the chi-square value for the larger model is subtracted from
the chi-square value for the smaller, nested model, and the
difference, also a chi-square, is evaluated with degrees of
freedom equal to the difference between the degrees of free-
dom in the two models. In the Acceptance of Risky Behavior
model we could test whether gender predicted Acceptance
of Risky Behavior using the chi-square difference test. The
model chi-square from the full model would be subtracted
from the chi-square from a model estimated without the
path from gender to Acceptance of Risky Behavior. This
smaller model has one more degree of freedom and is nested
within the larger model. If the chi-square difference test is

significant, we could conclude that gender does predict Ac-
ceptance of Risky Behavior. Notice that we did not delete the
gender variable from the model, just the path. Had we
deleted the variable the data would be different, and the mod-
els would not be nested.

At least two potentially problematic issues arise that are
specific to the use of chi-square difference tests. Because of
the relationship between sample size and chi-square, it is
hard to detect a difference between models when sample
sizes are small. Additionally, and perhaps somewhat less im-
portant given current computer capabilities, two models must
be estimated to use the chi-square difference test.

Lagrange Multiplier Test

The LM test also compares nested models but requires esti-
mation of only one model. The LM test asks whether the
model would be improved if one or more of the parameters in
the model that are currently fixed were estimated. Or, equiv-
alently, what parameters should be added to the model to
improve the model’s fit?

The LM test applied to the Acceptance of Risky Behavior
example indicates that if a path were added predicting bonds
to teachers (TEACH_SC) from gender, the expected drop in
chi-square value would be 12.617. This is one path, so the
chi-square value of 12.617 is evaluated with 1 df. The p level
for this difference is p < .001, implies that over and above
the covariance between gender and Weak Institutional Bonds
there is a unique, significantly nonzero relationship between
gender and bonds to teachers. If the decision is made to add
the path, the model is reestimated. In this example the deci-
sion is made not to add this path.

The LM test can be examined either univariately or multi-
variately. There is a danger in examining only the results of
univariate LM tests because overlapping variance between
parameter estimates may make several parameters appear as
if their addition would significantly improve the model. All
significant parameters are candidates for inclusion by the re-
sults of univariate LM tests, but the multivariate LM test
identifies the single parameter that would lead to the largest
drop in model chi-square and calculates the expected change
in chi-square. After this variance is removed, the next para-
meter that accounts for the largest drop in model chi-square is
assessed, similarly. After a few candidates for parameter ad-
ditions are identified, it is best to add these parameters to the
model and repeat the process with a new LM test, if neces-
sary. Ideally, with this set of procedures a new sample should
be used each time to avoid capitalizing on chance variation in
the data and to replicate the findings.
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Wald Test

While the LM test asks which parameters, if any, should be
added to a model, the Wald test asks which, if any, could be
deleted. Are there any parameters that are currently being
estimated that could, instead, be fixed to zero? Or, equiva-
lently, which parameters are not necessary in the model? The
Wald test is analogous to backward deletion of variables in
stepwise regression, where one seeks a nonsignificant change
in R2 when variables are left out.

When the Wald test is applied to the example, the only
candidate for deletion is the regression coefficient predicting
Acceptance of Risky Behavior (ACCEPT_RISK) from gen-
der. If this parameter is dropped, the chi-square value in-
creases by 1.134, a nonsignificant change ( p = .287). The
model is not significantly degraded by deletion of this para-
meter. The decision is made to keep the path because this
path was central to the hypothesis. However, if the goal is de-
velopment of a parsimonious model, it might also be reason-
able to drop the path. Notice that unlike the LM test,
nonsignificance is desired when using the Wald test. When
only a single parameter is evaluated, the Wald test is just the
square of the z test given previously (1.134 = 1.0652).

Some Caveats and Hints on Model Modification

Because both the LM test and Wald test are stepwise proce-
dures, Type I error rates are inflated with the exception of
the Scheffe-like procedure suggested by Hancock (1999).
There are, as yet, no available adjustments as in analysis of
variance (ANOVA). A simple approach is to use a conserva-
tive probability value (say, p < .01) for adding parameters
with the LM test. Cross validation with another sample is also
highly recommended if modifications are made. If numerous
modifications are made and new data are not available for
cross validation, compute the correlation between the esti-
mated parameters from the original, hypothesized model and
the estimated parameters from the final model using only
parameters common to both models. If this correlation is high
(> .90), relationships within the model have been retained
despite the modifications.

Unfortunately, the order that parameters are freed or esti-
mated can affect the significance of the remaining parame-
ters. MacCallum (1986) suggested adding all necessary
parameters before deleting unnecessary parameters. In other
words, do the LM test before the Wald test.

A more subtle limitation is that tests leading to model
modification examine overall changes in chi-square, not
changes in individual parameter estimates. Large changes in
chi-square are sometimes associated with very small changes

in parameter estimates. A missing parameter may be statis-
tically needed, but the estimated coefficient may have an
uninterpretable sign. If this happens, it may be best not to
add the parameter although the unexpected result may help
to pinpoint problems with one’s theory. Finally, if the hy-
pothesized model is wrong, tests of model modification, by
themselves, may be insufficient to reveal the true model.
In fact, the “trueness” of any model is never tested directly,
although cross validation does add evidence that the model
is correct. Like other statistics, these tests must be used
thoughtfully. 

If model modifications are done in hopes of developing a
good-fitting model, the fewer modifications there are, the
better, especially if a cross-validation sample is not avail-
able. If the LM test and Wald tests are used to test specific
hypotheses, the hypotheses will dictate the number of
necessary tests.

MULTIPLE GROUP MODELS

The example shown in this chapter uses data from a single
sample. It is also possible to estimate and compare models
that come from two or more samples, called multiple group
models (Jöreskog, 1971; Sörbom, 1974). The basic null hy-
pothesis tested in multiple group models is that the data from
each group are from the same population with the hypothe-
sized model structure. For example, if data are drawn from a
sample of boys and a sample of girls for the Acceptance of
Risky Behavior model, the general null hypothesis tested is
that the two groups are drawn from the same population. If
such a restrictive model were acceptable, a single model and
model-reproduced covariance matrix would approximate the
two sample covariance matrices for girls and boys. Typically,
identical models do not quite fit, and some differences
between models must be allowed.

The analysis begins by developing good-fitting models in
separate analyses for each group. The models are then tested
in one overall analysis with none of the parameters across
models constrained to be equal. This unconstrained multiple-
group model serves as the baseline against which to judge
more restricted models. Following baseline model estima-
tion, progressively more stringent constraints are specified by
constraining various parameters across all groups. When pa-
rameters are constrained, they are forced to be equal to one
another. In EQS, an LM test is available to evaluate whether
the constraint is acceptable or needs to be rejected. The same
result can be obtained by a chi-square difference test. The
goal is not to degrade the models by constraining parameters
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across the groups; therefore, you want a nonsignificant chi-
square. If a significant difference in chi-square is found be-
tween the models at any stage, the LM test can be examined
to locate the specific parameters that are different in the
groups. Such parameters should remain estimated separately
in each group; that is, the specific across-group parameter
constraints are released. 

Hypotheses are generally tested in a specific order. The
first step is usually to constrain the factor loadings (regres-
sion coefficients) between factors and their indices to equal-
ity across groups. In our hypothetical two-group model of
Acceptance of Risky Behavior this would be equivalent to
testing whether the factor structure (the measurement model)
of Weak Institutional Bonds and Acceptance of Risky Behav-
ior is the same for girls and boys. If these constraints are rea-
sonable, the chi-square difference test between the restricted
model and the baseline model will be nonsignificant for both
groups. If the difference between the restricted and nonre-
stricted models is significant, we need not throw in the towel
immediately; rather, results of the LM test can be exam-
ined and some equality constraints across the groups can be
released. Naturally, the more parameters that differ across
groups, the less alike the groups are. Consult Byrne,
Shavelson, and Muthén (1989) for a technical discussion of
these issues.

If the equality of the factor structure is established, there
are options in terms of the order in which to proceed to test
the equality of the samples. Often a reasonable second step is
to ask whether the factor variances and covariances are equal.
If these constraints are feasible, the third step examines
equality of the factor regression coefficients. Again, in our
hypothetical two-group model this is equivalent to testing
whether the coefficient predicting Acceptance of Risky
Behavior from Weak Institutional Bonds is the same for girls
and boys. If all of these constraints are reasonable, the last
step is to examine the equality of residual variances across
groups, an extremely stringent hypothesis not often tested. If
all of the regression coefficients, variances, and covariances
are the same across groups, it is concluded that these two
samples arise from the same population. An example of mul-
tiple group modeling of program evaluation that utilizes a
Solomon Four-Group design can found in Dukes, Ullman,
and Stein (1995).

Until this point we have discussed modeling only variances
and covariances. Means and intercepts can also be modeled
using SEM techniques. Mean structures can be employed in
single group models; however, modeling means and intercepts
is perhaps most commonly done in the context of a multiple
group model. In the next section we discuss incorporating a
mean structure within an SEM model. Following this brief

discussion we present a second example that incorporates a
completely different type of model that utilizes a mean and
covariance structure.

Incorporating a Mean and Covariance Structure

Modeling means in addition to variances and covariances re-
quires no modification of the Bentler-Weeks model. Instead a
constant, a vector or 1s, (labeled V999 in EQS) is included in
the model as an independent variable. As a constant, this in-
dependent “variable” has no variance and no covariances with
other variables in the model. Regressing a variable (either
latent or measured) on this constant yields an intercept para-
meter. The model-reproduced mean of a variable is equal to
the sum of the direct and indirect effects for that variable.
Therefore, if a variable is predicted only from the constant,
the intercept is equal to the mean; otherwise, the mean is a
function of path coefficients. In the hypothetical two-group
Acceptance of Risky Behavior model, using a mean structure
we could test the hypothesis that boys and girls have different
average levels of Acceptance of Risky Behavior.

Another type of model that incorporates a mean structure
is a latent growth curve model. Using intercept parameters,
growth curve models allow questions to be examined about
individual rate of change and average level of construct.
These are outside the scope of this chapter, but the interested
reader may want to consult Curran (2000), Duncan, Duncan,
Strycker, Li, and Alpert (1999), Khoo and Muthén (2000),
McArdle (1986), McArdle and Epstein (1987), and Mehta
and West (2000).

MULTILEVEL MODELS: AN EXTENSION OF A
BASIC MULTIPLE GROUP MODEL

A completely different type of multiple group model is called
a multilevel model. In this analysis, separate models are de-
veloped for different levels of nested data. For example, you
might be interested in evaluating an intervention given to
several classrooms of students in several different schools.
One model is estimated for the schools, another for the class-
rooms that are nested within the schools, and a third for the
children nested within the classrooms and schools. Predictors
at each level are employed to test various within-level and
across-level hypotheses.

Specifying a Hierarchical Linear Model

There are several methods of specifying hierarchical linear
models (HLMs) within a structural modeling framework. As

schi_ch24.qxd  9/6/02  2:21 PM  Page 624



Multilevel Models: An Extension of a Basic Multiple Group Model 625

with general structural equation modeling there are many types
and hypotheses relevant to HLM models (Heck & Thomas,
2000; Snijders & Bosker, 1999). A full discussion of these
different model specification methods and hypotheses is out-
side the scope of this chapter. Only one approach, with a very
simple model, will be illustrated in this example. For in-depth
discussion of multilevel approaches see Muthén (1994, 1997),
Chou, Bentler, and Pentz (1998), Bentler and Liang (in press),
and Reise (2001).

Multilevel models are appropriate with clustered data. For
example, when an intervention, such as the D.A.R.E. (Drug
Abuse Resistance Education) program, is given to classroom
of students, students are nested within the classroom. If tradi-
tional methods are employed to analyze this data, problems
may arise. If the data from an evaluation such as D.A.R.E. are
analyzed at the student level and there is a sizable intraclass
correlation, the standard errors may be too small, and inaccu-
rate conclusions may be drawn. If the data are analyzed only
at the level of the classroom then power is substantially re-
duced. Traditional methods also do not allow for cross-level
predictors (i.e., predictors from one level predicting outcomes
at another level). For example, participation in D.A.R.E.
(a classroom-level variable) may predict students’ Accep-
tance of Risky Behavior (an individual-level variable).

HLM models are specified in a multistage process. A
good-fitting model is established hierarchically. After good-
fitting models are established at each phase, a multiple group
model is tested that allows prediction across levels of mea-
surement. This ability is one of the strongest advantages of
multilevel modeling. In the example to follow, a multilevel
model will be employed to examine a two-group model of
children nested within classrooms. After establishing a good-
fitting model for the children (level 1), the second-level
model (the classrooms) is added to the model, and a multiple
group model is tested. Specifically, a level 1 (children) model
is tested for each unit (in this example, each classroom).
Then, hypothesized parameters from the individual level 1
models (regression coefficients, variances and covariances of
independent variables, and intercepts) are used as dependent
variables for second-level (classroom level) predictors.

An Empirical Example of Hierarchical Linear Models

A simple example using data from program evaluations of
Drug Abuse Resistance Education (D.A.R.E.) in Colorado
Springs will be used to illustrate an HLM model (Ullman,
Stein, & Dukes, 2001). D.A.R.E. is a drug use prevention pro-
gram that is given to classrooms of children in late elementary
school. Children are nested within classrooms. The four com-
ponents that the D.A.R.E. program targets (Self-Esteem,

Institutional Bonds, Acceptance of Risky Behavior, and Re-
sistance to Peer Pressure) as well as two D.A.R.E. curriculum
knowledge questions (“Changing the subject is a good way to
say no” and “Taking a deep breath is a good way to relax”)
were employed in this model. The primary hypothesis of in-
terest in this model is whether participation in D.A.R.E. pre-
dicts differences in these concepts and curriculum questions.
Note that although we conceptualize these components as
constructs, due to small sample sizes in some of the class-
rooms, in this model D.A.R.E. core concepts were treated as
measured variables. D.A.R.E. is given to classrooms of chil-
dren (groups); therefore, D.A.R.E. participation is considered
a level 2 (classroom level) predictor.Additionally, other class-
room predictors such as (a) size of class and (b) percentage of
minority students in the class could also be hypothesized to
predict D.A.R.E. effectiveness. These all are hypotheses in-
volving prediction of average student-level outcomes from
class-level predictors.

It is also hypothesized that variables measured at the child
level also predict changes in these components. At the
child level, the four core concepts and the two D.A.R.E. cur-
riculum questions were predicted from (a) ethnicity of child
(White, non-White), (b) gender of child, and (c) expected
grades for child. 

Model Estimation and Evaluation

We use data from 4,578 children in 144 classrooms. Further
details about these data and the D.A.R.E. program evalua-
tions can be found in Ullman, Stein, and Dukes (2000). First,
a model was estimated with only the child-level data, the four
D.A.R.E. core concepts, and two curriculum variables pre-
dicted from gender, ethnicity, and grades. The data for chil-
dren were nonnormally distributed (Mardia’s standardized
coefficient for multivariate kurtosis = 92.76, p < .001);
therefore, maximum likelihood estimation and the Satorra-
Bentler (S-B) Scaled chi-square were used to evaluate the
model (Bentler & Yuan, 1999; Satorra & Bentler, 1994).
There was evidence that the model fit the data: � 2(N =
4578, 11) = 2.90, p = .99. Although the model fit the data
well, none of the regression paths significantly predicted the
D.A.R.E. core concepts/curriculum after adjustment to the
standard errors for nonnormality. This pattern of nonsignifi-
cance is typical of research on the D.A.R.E. program (Dukes,
Ullman, & Stein, 1995).

Fundamental to a D.A.R.E. evaluation is whether
D.A.R.E. is effective in increasing Self-Esteem, Institutional
Bonds, and Resistance to Peer Pressure and in reducing
Acceptance of Risky Behaviors. D.A.R.E. is implemented at
the classroom level; therefore, participation is a level 2
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(classroom level) predictor. In addition to participation status
in D.A.R.E., it was also hypothesized that size of the class
and proportion of minority students in the class might predict
differences in the D.A.R.E. core concepts. This full, multi-
level model uses data collected at the classroom level to
predict the intercepts of the D.A.R.E. core concepts (Self-
Esteem, Institutional Bonds, Resistance to Risky Behavior,
and Acceptance of Risky Behavior) and the curriculum
questions from the student-level model. The EQS syntax for
this model is presented in the appendix. The classroom
data were also nonnormally distributed (Mardia’s stan-
dardized coefficient = 7.07); therefore, the multiple group
model was evaluated with the Satorra-Bentler scaled chi-
square. There was evidence that the HLM model fits the data,
S-B� 2(Nchildren = 4578, Nclassrooms = 144, 3) = 4.49, p =
.21, CFI = 98. However, none of the class-level variables—
participation in D.A.R.E. (yes/no), class size, and percentage
of non-White students—significantly predicted the core con-
cepts/curriculum variables. Again, these nonsignificant re-
sults are consistent with the prior D.A.R.E. literature.

A GUIDE TO SOME RECENT LITERATURE 
AND FUTURE DEVELOPMENTS

In this section we provide a guide to some recent publications
in the SEM literature, organized by a few topics that are cur-
rently the focus of methodological research. While SEM has
provided new ways to conceptualize and analyze multivariate
data, especially non- or quasi-experimental data, the method-
ology still has technical pitfalls that need resolution. In the
next several years we expect to see improvements in methods
for dealing with small samples, for dealing with missing data,
for handling outliers and unusual cases, for extending multi-
level models to less standard situations, and for dealing with
latent variable interactions and nonlinear models. We will say
a few words about these selected problems, recognizing that
our summary cannot cover many important recent develop-
ments in this growing field. For example, we do not review
important classes of methods such as growth curve modeling
(e.g., Curran, 2000; Duncan et al., 1999; Khoo & Muthén,
2000; Mehta & West, 2000), bootstrap methodology (Bollen
& Stine, 1993; Efron, 2000; Nevitt & Hancock, in press;
Yung & Bentler, 1996), or specialized applications in dozens
of fields (e.g., genetic modeling; Van den Oord, 2000). Gen-
eral reviews of the field are provided by Bentler and Dudgeon
(1996) and MacCallum and Austin (2000). Excellent collec-
tions of applications can be found in T. D. Little, Schnabel,
and Baumert (1999) and Rose, Chassin, Presson, and Sher-
man (2000). An overview of recent technical developments

can be found in Marcoulides and Schumacker (2001). For
work having a LISREL focus, see Cudeck, du Toit, and
Sörbom (2001).

Improved Methods for Small Samples

As noted earlier, SEM methodology is often applied when
sample size is small: “About 18% of the studies we reviewed
used samples of fewer than 100 individuals” (McCallum &
Austin, 2000, p. 215). The quality of results that may occur
from a given study with small samples will depend on the
features of the model of interest (parameter estimates, stan-
dard errors, z tests, test statistics, mediational effects) as well
as characteristics of the model such as the communality level
of the variables (MacCallum, Widaman, Zhang, & Hong,
1999) and the degree and kind of nonnormality that might
exist (e.g., Boomsma & Hoogland, 2001; Finch, West, &
MacKinnon, 1997; Hoogland, 1999; Yuan & Bentler, 1999b).
Ideally, SEM methods would perform well across all the
design features just mentioned, but this is not the case (e.g.,
Bentler & Yuan, 1999). At a minimum, one would like to
have enough power to reject alternative models (Hancock,
Lawrence, & Nevitt, 2000; MacCallum et al., 1996), but even
the estimation of power depends on having a test statistic that
can be relied upon under the given circumstances (i.e., typi-
cally, that correctly can be referred to the hypothesized
noncentral chi-square distribution). Because various test sta-
tistics that are presumed to have central chi-square distribu-
tions do not behave this way under realistic data-gathering
conditions (e.g., violation of normality in the case of normal
maximum likelihood), it is likely that the noncentral distribu-
tions used to calculate power also may not suffice. Clearly,
better small sample methods are needed.

Given the model characteristics, some methods are better
able to cope with small samples than are other methods. For
example, Bentler and Yuan (1999) studied the normal theory-
based likelihood ratio statistic TML, the Satorra-Bentler
rescaled statistic TSB, the Yuan and Bentler version TYB of
Browne’s (1984) residual-based ADF statistic TB, and their
F statistic derived from the residual-based ADF statistic.
They found that the F statistic performed best of all these
mentioned at the smallest sample sizes. It also performed
very well in Yuan and Bentler’s (1999a) and Nevitt’s (2000)
study, and is available in EQS 6 (Bentler, 2001). However,
Fouladi (1999) recommended using a Bartlett (1950) correc-
tion and applying it to the Satorra-Bentler (1994) scaled and
adjusted statistics. She found that the Bartlett-corrected
adjusted statistic performed best. In a related paper Fouladi
(2000) found that Bartlett and Swain rescaling was best with
small samples and very mild nonnormality, but that SB
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scaled and adjusted procedures were better with more severe
nonnormality. Nevitt (2000) also found that a Bartlett-
corrected statistic performed best in his study, which was
more extensive than that of Fouladi. Nevitt’s final conclusion
was that the k-factor-corrected Satorra-Bentler scaled (not
adjusted) test statistic is best used to evaluate model fit in
small samples. This recent work, while very promising, de-
serves extension and incorporation into standard packages.

Another interesting development that may help in small
samples is that of two-stage least squares. Although the
method is old, new implementations are distribution free and
imply some robustness to misspecification that is not avail-
able in full information methods (Bollen, 2001). Bollen’s
approach may also yield better performance with small
sample size.

Improved Methods for Missing Data

In our presentation we did not go into detail on missing data
methodology. Yet missing data are inevitable. Two promising
methods for dealing with missing data are a direct maximum
likelihood (e.g., Neale, 2000; Wothke, 2000) and a two-stage
approach based on the unstructured mean and covariance
estimates obtained by the EM-algorithm (e.g., Graham &
Hofer, 2000; see also Jamshidian & Bentler, 1999, 2000).
Enders (2001) provided a good summary. Typical assump-
tions under these two methods are ignorable nonresponse and
normality of data. Unfortunately, there is no effective way of
verifying these conditions in practice. When these conditions
are not satisfied, normal theory methods generally lead to
incorrect model and parameter evaluation and misleading
substantive conclusions even in complete data cases (e.g.,
Curran, West, & Finch, 1996; Hu et al., 1992; Yuan &
Bentler, 1998a), and it is unlikely that one can avoid such in-
correctness with an added missing data problem. As an im-
provement over current methods, Yuan and Bentler (2000b)
built on Arminger and Sobel (1990) and dropped the normal
distribution assumption and thus were able to develop several
more accurate procedures for model inference. Based on the
theory of generalized estimating equations (see Yuan &
Jennrich, 2000), they provided a way to obtain consistent
standard errors of the two-stage estimates. They also pro-
posed a minimum chi-square approach and showed that the
estimator obtained by this approach is asymptotically at least
as efficient as the two likelihood-based estimators for either
normal data or nonnormal data. Both the ML and generalized
approaches are implemented in EQS 6.

Ad hoc methods have been used in data analysis for
decades and provide another option in handling incomplete
data. These include mean imputation, listwise deletion,

pairwise computations, stochastic regression imputation, and
hot deck imputation as well as more recently developed
methods such as similar response pattern imputation or per-
son mean imputation (Bernaards & Sijtsma, 2000). In these
approaches a modified data set or a covariance matrix is cre-
ated that subsequently can be analyzed by any existing stan-
dard method designed for complete data. An advantage of
these approaches is that they are relatively practical to imple-
ment; indeed, such methods for dealing with incomplete data
can be found in most well-known statistical program pack-
ages. Furthermore, nonnormality can be routinely handled
when an imputed data matrix is analyzed with a distribution-
free method. These methods are all appropriate when the
amount of missing data is extremely small. In fact, under
some conditions there may be only marginal loss of accuracy
or efficiency when compared to maximum likelihood (see
Gold & Bentler, 2000). However, there exist several draw-
backs of these nonprincipled methods. For example, listwise
deletion can render a longitudinal study with few cases left,
resulting in grossly inefficient estimates (e.g., Brown, 1994).
When the missing data mechanism is so called missing at
random (MAR), existing simulation results indicate that list-
wise deletion causes parameter estimates to be biased even
for normal data (R. J. A. Little & Rubin, 1987; Schafer,
1997). We suspect that some technical work can render some
of these ad hoc methods more principled and hence poten-
tially competitive with the currently technically advanced
methods, especially with nonnormal data.

A problem raised by incomplete data is whether a sample
may be a missing completely at random (MCAR) sample
from a single population with a given mean vector and
covariance matrix. If this can be established, a single SEM
model for the population can be considered; if means and
covariances are not homogeneous, this may not be advisable.
There have been developments that test MCAR in several dif-
ferent areas (e.g., generalized estimating equations; Chen &
Little, 1999). In the area of multivariate normal data, there are
currently two proposed test statistics for analyzing whether
incomplete data patterns are MCAR (R. J. A. Little, 1988;
Tang & Bentler, 1998). Both R. J. A. Little and Tang-Bentler
use the EM algorithm to impute incomplete data, obtain ML
estimates of free parameters under the MCAR assumption,
and propose a test statistic to evaluate an MCAR null hypoth-
esis. R. J. A. Little’s (1988) MCAR test is based on evaluat-
ing the homogeneity of available means for different patterns
of incomplete data. R. J. A. Little also mentioned, but did not
study, a test based on both means and covariances, in which
the homogeneity of available covariance matrices is simulta-
neously studied with homogeneity of means. He expected
that this test might not perform well due to its typically large
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degrees of freedom. In quite a different context, Tang and
Bentler (1998) studied covariance structures, such as factor
analysis models, for incomplete data. When their test is spe-
cialized to that of an unstructured but common covariance
matrix for all patterns of incomplete data, it provides a test of
the MCAR assumption. In fact, their test can be shown to spe-
cialize to a test that can be constructed based on a chi-square
difference rationale applied to R. J. A. Little’s two proposed
tests. A serious problem with these likelihood approaches is
that they break down when the number of subjects for a given
pattern of incomplete data is very small. Kim and Bentler
developed a new method, included in EQS 6, that uses a gen-
eralized least squares rationale to develop tests that should be
more stable in small samples.

Extended Use of Robust Methods

Standard linear modeling methods such as ANOVA and SEM
are susceptible to catastrophic breakdown in nonregular situ-
ations. Unfortunately, those are the very situations encoun-
tered in many research situations. As noted by Wilcox (1995,
p. 57), “It should be stressed that outliers are not the only rea-
son for considering robust methods. Small shifts in a distribu-
tion can have a large impact on the mean, which might render
it a potentially misleading measure of the typical individual.”
He also raises the provocative question of whether discover-
ies have been lost due to nonuse of robust methods (Wilcox,
1998). It is known that the influence function associated with
the sample covariance is quadratic, so that a few influential
cases or outliers can lead to inappropriate solutions for virtu-
ally all standard statistical methods that rely on sample co-
variances (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986;
Yuan & Bentler, in press). SEM methods, of course, rely
heavily on means and covariances as their basic data to be
modeled. It is well known that methods for handling data in
nonstandard situations, such as methods that have bounded
influence functions and can tolerate a high proportion of bad
data before breaking down, have existed for a long time (e.g.,
Hoaglin, Mosteller, & Tukey, 1983). However, in the past
these methods have been presented primarily as exploratory
and graphical methods, with little attention paid to standard
problems of inference in the multivariate case. These issues
were solved in a series of papers by Yuan and his colleagues
(Yuan & Bentler, 1998b, 1998c, 2000a; Yuan, Chan, &
Bentler, 2000). In general, these methods seek to weight cases
or observations differentially. By giving a proper weight to
each case, the influence of outliers on a robust procedure is
minimal.As an example of this approach, Yuan et al. proposed
to use the robust procedure as a transformation technique,

generating a new data matrix that can be analyzed by a variety
of multivariate methods. The sample covariance matrix of the
transformed data then becomes the robust covariance matrix,
which is generally more efficient when the sampling distribu-
tion has heavy tails. Because the transformation makes the
data approximately normal, classical normal theory–based
procedures applied to the transformed data give more accu-
rate evaluations regarding model structure. In their approach,
Mardia’s multivariate skewness and kurtosis statistics are
used to measure the effect of the transformation in achieving
approximate normality. Examples showed the useful effect of
the transformation on model evaluation.

In general, these robust methods work with a weight func-
tion that in turn generates the final case weights. Because
there are in principle a lot of potential weight functions (see,
e.g., Table 11-1 of Hoaglin et al., 1983), there are also many
different case weight vectors that could be used. Examples are
Maronna’s (1976) M-estimator weights, Huber’s (1977) type
weights, multivariate-t weights (Lange, Little, & Taylor,
1989), and Campbell’s (1980) weights. Based on good simu-
lation performance, the Campbell weighting is available in
EQS 6. However, because the distribution of the data is not
known a priori, it is hard to have a clear a priori rationale as to
which weight to use in what circumstance. In fact, this is prob-
ably an Achilles’ heel of robust methods: Because there are so
many possibilities, consensus on the use of a single method
has not been achieved, and hence their use in more applied
settings has been hindered. In the next few years one can hope
that consensus will be achieved as to the best way to do robust
mean and covariance structure modeling.

Methods for Multilevel Nonnormal Data

As we noted earlier, data sets often have a hierarchical struc-
ture; for example, students are nested within classes, classes
are nested within schools, and schools are further nested
within school districts. Strenio, Weisberg, and Bryk (1983)
noted that growth curve models and models for repeated
measures are special cases of a two-level model (see also
Chou et al., 1998). Because of such a hierarchical structure,
cases within a cluster are generally correlated. Thus, to
achieve accurate results, statistical models must explicitly ac-
count for these correlations. Using a two-level model applied
to educational data, Aitkin and Longford (1986) demon-
strated that ignoring the hierarchical structure could be mis-
leading. Assuming that data are normal, Goldstein (1986) and
Longford (1987) considered algorithms for obtaining maxi-
mum likelihood estimates in an HLM, a hierarchical linear
model. Other early developments in multilevel modeling are
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summarized in Bock (1989). More recent results can be
found in Bryk and Raudenbush (1992), Goldstein (1995), and
Kreft and deLeeuw (1998). Paralleling the development of
HLM, multilevel SEM also has grown rapidly (Goldstein &
McDonald, 1988; Lee, 1990; Longford, 1993a, 1993b;
McDonald & Goldstein, 1989; Muthén, 1994, 1997; Muthén
& Satorra, 1995; Rovine & Molenaar, 2000). An HLM-like
approach is given in Chou et al. (2000). The most popular ap-
proach is Muthén’s MUML method. This is an approximation
to maximum likelihood, and it is equivalent to it when the
data are balanced. While its “within” parameters are well be-
haved, the “between” parameters and model tests with
MUML may have some bias (e.g., Hox & Maas, 2001). A
practical, true ML approach was developed by Bentler and
Liang (in press) and is incorporated into the EQS 6 program.

Unfortunately, most approaches to multilevel models cur-
rently require a multivariate normality assumption for the hi-
erarchical data or its error structure. An exception is the
distribution free approach of Lee and Poon (1994), which,
however, is mainly applicable to data with a small number of
variables and huge sample sizes. Current research by Yuan
and Bentler is aimed at providing statistics that are robust to
violation of the normality assumption. The intent is to pro-
vide a scaling correction akin to the Satorra-Bentler (1994)
correction and to generate more adequate standard error esti-
mates with a triple product, sandwich-type matrix. These
have been found to work well in the standard situation of
independent observations.

Latent Variable Interactions and Nonlinear Models

The idea of interactions is a standard one in linear models and
ANOVA. Yet such ideas continue to be out of reach to practi-
cal SEM work. Although introduced many years ago (e.g.,
Kenny & Judd, 1984; Mooijaart & Bentler, 1986), only re-
cently has a huge and technical literature on this topic devel-
oped. See, for example, Schumacker and Marcoulides (1998)
or Yang-Wallentin (2001). It is clear from this work that pro-
posed approaches to handling interactions are very compli-
cated to implement and not yet routinely available for applied
researchers because no one has figured out how to make this
methodology convenient and easy to use in a program pack-
age using a few simple commands. It is hoped that the
technical issues will soon be solved and that practical imple-
mentations will become available (see, e.g., Wood, 2000).
Even though nonlinear models with polynomial relations go
back several decades (e.g., McDonald, 1967), today “the
most challenging problems are generalizations of structural
equation modeling that involve nonlinear functions of latent

variables” (Browne, 2000, p. 663). According to Wall and
Amemiya (2000), the challenge is basic: The Kenny-Judd
(1984) approach and its extension by others produces incon-
sistent parameter estimates unless the latent variables are
normally distributed. Although the Bollen (1995, 1996) ap-
proach is consistent, Wall and Amemiya found that it could
not be extended to general polynomial models such as they
have developed. It is possible that their approach is both
general and practical enough that if programmed in a way
to hide its own complexity, it might be amenable to use by
nonspecialists.

As discussed in this chapter, SEM is a technique for deal-
ing with linear relations among variables. Clearly this is a
strong and, no doubt, sometimes unreasonable assumption.
We hope that practical approaches will become available for
nonlinear SEM (and related) models in the next few years.
The recent literature uses advanced statistical methods to ad-
dress such problems. These are based on Bayesian theory
using the Gibbs sampler and the Metropolis-Hastings algo-
rithm (e.g., Arminger & Muthén, 1998; Lee & Zhu, 2000;
Scheines, Hoijtink, & Boomsma, 1999; Zhu & Lee, 1999).
These procedures typically involve estimation of individual
specific parameters, such as factor scores, and also take into
account the uncertainty in such estimates. Because Bayesian
theory is not generally known to applied researchers, produc-
ing a practical implementation of any of these methods that is
meaningful and accurate will be a big challenge that the field
still needs to undertake. 

CONCLUSIONS

In this chapter we attempted to introduce the reader to a
powerful statistical technique, structural equation modeling
(SEM). This technique allows examination of complex sys-
tems of variables that are both observed and unobserved. Our
goal was to provide a general overview of SEM using applied
examples. Therefore, we began the chapter with a brief intro-
duction to the method. We used a real data example to demon-
strate basic modeling techniques and issues. After introducing
the fundamental theoretical underpinnings and basic model-
ing techniques, we presented a very simple example of an ex-
citing new extension of basic SEM models, multilevel
modeling. Finally, we concluded the chapter with a section
that discussed future research directions in SEM, providing a
guide to current research as well as presenting exciting areas
for further study. Given these promising new research en-
deavors, the next several years should see continued rapid
growth in the development and use of SEM techniques.
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APPENDIX: EQS SETUP FOR HLM MULTILEVEL
MODEL SPECIFICATION

/TITLE
Kids - Level 1 

/SPECIFICATIONS
DATA=’c:\program files\spss\kidsema17.ess’;
VARIABLES=68; CASES=4578; 
multilevel=hlm; level = v64; analysis = 
moment;
METHODS=ML,ROBUST;
MATRIX=RAW;
ANALYSIS=moment;

/Equations
!Self-Esteem
V57 = *v999 + *V65 + *V43 + *V42 + e57;

!Institutional Bonds 
V66 = *V999 + *V65 + *V43 + *V42 + E66;

!Acceptance of Risky Behaviors 
V67=*V999 + *V65 + *V43 + *V42 + E67;

!Resistance to Peer Pressure 
V68=*V999 + *V65 + *V43 + *V42 + E68;

V32 = *v999 + *v65 + *v43 + *v42 + e32;
V33 = *v999 + *v65 + *v43 + *v42 + e33;
V65 = *V999 + E65;
V43 = *V999 + E43;
V42 = *V999 + E42;

/VARIANCES
E32,E33 = *;
E65,E43,E42 = *;
E57,E66,E67,E68=*;

/COVARIANCES
E32,E33 = *;
E66 TO E68 =*;
E57,E66 = *;
E57,E67=*;
E57,E68=*;

/END
/TITLE
Classes - Level 2
/SPECIFICATIONS
DATA=’c:\program files\spss\classes.ess’;
VARIABLES=20; CASES=144;
METHODS=ML;
MATRIX=RAW;
ANALYSIS=COVARIANCE;

/DEFINE                !This paragraph
pulls in parameters from the prior level
V21 = (V57,V999);
V22 = (V66,V999);
V23 = (V67,V999);
V24 = (V68,V999);
V25 = (V32,v999);
V26 = (V33,v999);

/EQUATION
V21 = *V13 + *V5 + *V12 + E21;
V22 = *V13 + *V5 + *V12 + E22; 
V23 = *V13 + *V5 + *V12 + E23;
V24 = *V13 + *V5 + *V12 + E24;
v25 = *v13 + *v5 + *v12 + e25;
v26 = *v13 + *v5 + *v12 + e26;

/VARIANCE
V13,V5,V12 = *;
E21 TO E26 = *;

/COVARIANCES
E21 TO E26 = *;

/PRINT
FIT = ALL;

/LMTEST
/END
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MOTIVES FOR ORDINAL ANALYSIS

Statistical methods that make use of ordinal information have
many desirable properties that argue for their general use.
First, much data in the social sciences has only ordinal justi-
fication. Ordinal methods are based on operations consistent
with ordinal data. Second, many research questions in the
social sciences are ordinal in nature. Ordinal methods pro-
vide answers to ordinal questions. Third, ordinal methods are
invariant under monotonic transformations. Results of ordi-
nal methods obtained on raw data are exactly the same under
any order-preserving transformation. Fourth, ordinal meth-
ods can be more robust than traditional methods when the
latter’s assumptions are violated. Ordinal methods require
fewer distributional assumptions, are not as vulnerable to
extreme values, and are valid for nonlinear but monotonic
relationships. After discussing these merits in detail, we pre-
sent two classes of methods useful in applied analyses, ordi-
nal measures of correlation and ordinal measures for group
comparisons.

Many Variables Are Ordinal

Interval-level scales are very desirable in scientific investiga-
tion because they allow the relations among empirical vari-
ables to be represented with highly specific mathematical
expressions. However, few variables in the social sciences
can be said to have interval-level scales. The reason is that
most scales do not meet the stringent conditions necessary to
attain interval status.

According to axiomatic measurement theory (Krantz,
Luce, Suppes, & Tversky, 1971), the defining characteristic
of an interval scale is the representation of the empirical
properties of order and additivity. The property of order
means that amounts of an empirical construct can be empiri-
cally realized and compared according to the ordinal rules
less than, greater than, and equal to. For example, consider
three blobs of clay, �, �, and �, as empirical realizations of
the construct weight (note that for constant downward accel-
eration, i.e., gravity, weight is proportional to mass). We
might take certain pairs of blobs of clay, (�, �), (�, � ),
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weigh them against each other on a beam balance (also
known as a pan balance), and determine their ordinal relation
by observing which blob pan hangs lower. Suppose that the
results of this operation show that � � � (� is greater than �)
and � � �. By transitivity we know that � � � (although we
can check it) and we have the empirical ordering of the blobs
by weight, � � � � �.

Additivity is the empirical representation of mathematical
addition. This means that an arbitrary unit of a construct is se-
lected and all other amounts of the construct are measured in
relation to the cumulative addition of the unit. For example,
let us arbitrarily define � as the unit. Suppose that two repli-
cas of � were in one pan of a beam balance and � was in the
other pan. If the beam was perfectly horizontal (i.e., the blob
pans were perfectly level with each other), we could say that
� = � + � = 2�. If � was arbitrarily small, then the weights
of all other blobs could be expressed by successively adding
together replicas of �.

It is an understatement to say that in most areas of the so-
cial sciences, the demonstration of empirical additivity is
very difficult, perhaps owing to the abstract nature of many of
the constructs. A significant step forward in measurement
theory was the demonstration by Luce and Tukey (1964) that
interval scales could be constructed based on an axiomatic
definition of additivity (additivity of differences) without the
requirement of empirical additivity. This is known as simul-
taneous conjoint measurement. The essential idea of simulta-
neous conjoint measurement is that given certain relational
conditions known as conjoint axioms, we can take three in-
terrelated variables whose numbers represent at least distinct
categories and simultaneously derive interval scales for all
the variables through monotonic transformation, provided
certain conditions are met. To illustrate, suppose we have
three variables, A, B, and Y that we arrange in a factorial de-
sign, with A and B as the factors (with many levels) and Y as
the dependent variable. Given that the conjoint axioms are
satisfied, it is possible to find a monotonic transformation of
Y that will induce a no interaction model (i.e., a model in
which the effects of A and B are additive). A and B are not
themselves additive in the sense of weights, but changes on A
and changes on B are. Under this additivity condition, Y =
A + B + k, where k is an arbitrary constant. The monotonic
transformation serves as a basis for an interval scaling of all
the variables.

A difficulty with simultaneous conjoint measurement is
that it is not stochastic. The conjoint axioms are deterministic
and do not allow for errors when investigating the conditions
in sample data (Nygren, 1986). An alternative to literal con-
dition checking is to assume an additive model, then use
the monotonic transformation that will best eliminate any

interaction, and then evaluate the goodness of fit of the trans-
formed data to the model. One method that does this is Rasch
scaling (Rasch, 1980), but there are others (see Cliff, 1973,
1992 for reviews).

Rasch scaling is widely used in mental testing (Wright,
1999). It begins with an additive conjoint model and uses a
specific monotonic transformation, a single-parameter logis-
tic transformation, as a basis for interval scaling (strictly
speaking, this is only possible for a dichotomous response;
see Fischer, 1995). Operating under some assumptions (e.g.,
unidimensionality), an additive model is fit to item responses
(the data) and evaluated for goodness-of-fit using probability-
based statistics. Sufficient fit is evidence that the probability
of a response can be expressed as an additive function of a
person parameter (usually an index of ability) and an item
parameter (usually an index of item difficulty; Wright, 1999).
The logistic transformation serves as a basis for an interval
scale of the latent person variable on which we can locate
individuals (the items are simultaneously scaled as well). As-
suming the Rasch model holds (which may be a rare occur-
rence in applied research; see Embretson & Hershberger,
1999), individuals can be assigned interval-scale scores on
the latent variable that are monotonically related to raw
scores, yet have more desirable properties (e.g., extreme
score unbiasedness, sample independence, and linearity).
There are problems with Rasch scaling. The most common
one is that items vary in discrimination, so that more than one
item parameter is necessary. This usually leads to a violation
of one or more of the axioms of conjoint measurement and
compromises the interval properties of the scale. Another
problem is the controversy over evaluating the goodness-of-
fit of the model to sample data (see Hambleton, 1989).
Nevertheless, Rasch scaling can be a useful tool for deter-
mining whether batches of empirical data are at least consis-
tent with a type of additive model.

The foregoing discussion should make it clear that careful
thought and planning are required for the creation of an inter-
val scale. Data collected under an additive model (either an
empirical additive model, an additive conjoint model, or an
additive scaling model) have the best chance of reflecting the
characteristics of empirical order and additivity. Such data
are amenable to highly parametric model-based methods be-
cause these methods provide explicit expressions about unit-
based functional relationships between variables. In the great
majority of instances, however, the data contradict interval
scaling. Where there is no direct contradiction, the data are
usually too sparse: They have too few levels to inspire confi-
dence in their interval properties.

Most data in the social sciences are not collected under an
additive model, nor are they scaled in accordance with such a
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model (Cliff, 1992, offers various reasons for this neglect).
Therefore, it is unlikely that most scales represent additivity
in either an empirical, conjoint, or scaled sense. On the other
hand, it seems reasonable that the property of order is repre-
sented in many cases. Order is much more easily justified
than additivity because one need only argue that two individ-
uals with different scores on a measure can be ordered in
terms of the empirical amount of the construct in question,
provided the scores are reasonably consistent. This ordering
seems sensible in many situations, even when we cannot de-
termine meaningful distance between the ordered individu-
als. Therefore, it seems realistic to assume that much of the
data in the social sciences are ordinal.

The advantage of ordinal methods is that they deal explic-
itly with the order of the data. Most of the methods to be
presented later are based on ordinal comparisons between
scores. Pairs of scores on a variable are compared in terms of
the order relations less than, greater than, and equal to. This
is the most appropriate treatment when order is the only
justified scaling property of the data.

Many Research Questions Are Ordinal

Many of the types of research questions commonly posed
tacitly acknowledge that many data are ordinal. When form-
ing research questions, few researchers take seriously the
specific interpretations provided for by highly parametric
methods. For example, rather than expressing questions
about the correlation between two variables in unit-based
functional terms, most researchers simply want to know “if
high scores on one variable tend to go with high (or low)
scores on the other variable” (Long & Cliff, 1997). The same
can be said in the case of group comparisons. Instead of ex-
pressing questions about group difference in terms of the unit
difference between two parameters, researchers often simply
want to know “if people in one group tend to score higher on
a variable than people in the other group” (Cliff, 1996a,
1996b). These common types of research questions are ordi-
nal in nature. An advantage of ordinal methods is that they di-
rectly provide answers to ordinal questions. In addition, there
is some protection from overinterpreting results. Ordinal
methods do not tempt us to the unit-based interpretations that
are not warranted when highly parametric methods are ap-
plied to ordinal data.

Invariance Under Monotonic Transformation

Affine Transformation

In his seminal work, Stevens (1951) defined various scales
of measurement in terms of what he called admissible

transformations that maintain the important information of a
scale. He proposed four main categories of scale level based
on admissible transformations: nominal, ordinal, interval,
and ratio. Because a ratio scale is an interval scale with an
empirically justified origin, and a nominal scale is not quan-
titative (at least on the surface), we focus on the important
distinction between ordinal and interval scales. We have al-
ready shown that the information to be maintained for an in-
terval scale is empirical order and additivity, which for a
scale means maintaining the rank order of scale values and
the relative distances between scale values. The transforma-
tion that maintains this scale information is the affine trans-
formation, Y = bX + a.

To illustrate the affine transformation, assume we have an
interval scale with values xh, xi, defined in arbitrary � units,
such that x i > xh. The distance between two scale values is
x i − xh. Suppose we apply the affine transformation
Y = bX + a to the values on the original scale. Replacing
the x values with the new y values, we have yh = bxh + a,
and yi = bx i + a. The affine transformation maintains the
property of order because a and b are constants that do not
affect inequalities. Therefore, given that (xi, xh > 0), when
(xi > xh), it is always the case that (yi > yh).

To see that the meaning of distance is maintained by the
affine transformation, we compute the difference between the
values of the transformed scale, yi − yh = (bxi + a) −
(bxh + a) = b(xi − xh). This means that for any given origi-
nal difference, the transformed distance is equal to the original
distance times the arbitrary scaling constant. The nature of two
differences is unchanged because the same constant multiplies
both. Therefore, the meaning of a fixed distance anywhere
along the original scale is maintained and simply rescaled by b.

Monotonic Transformation

The order of a scale is preserved with a monotonic transfor-
mation. A monotonic transformation has the form Y = f (X),
where f (X) is a one-to-one strictly increasing or decreasing
function. To illustrate, suppose in the previous example
we used the monotonic transformation Y = (X)2 instead of
the affine transformation. In this case the transformed values
are yh = (xh)2, and yi = (xi)2. Assuming that xi and xh are
positive, the property of order is maintained by the monotonic
transformation because given that xi > xh, it must be the case
that (xi)2 > (xh)2.

Information about scale distance is not maintained with a
monotonic transformation. This is evident by the fact that
when we use Y = (X)2 as our transformation, (yi − yh) is not
equal to (xi − xh) times a scaling constant. Rather, (yi − yh) =
[(xi)2 − (xh)2] = (xi − xh)(xi + xh). For any fixed original

schi_ch25.qxd  8/2/02  3:12 PM  Page 637



638 Ordinal Analysis of Behavioral Data

distance, the transformed distance increases as the values of xh

and xi increase. Therefore, the meaning of any fixed original
distance is not maintained along the transformed scale.

Monotonic Transformation and Data Analysis

A monotonic transformation of a scale maintains the property
of order but not that of distance. This fact has important
implications when using monotonic transformations with
highly parametric methods because such methods make use
of the distances of the variables (see the section in this chap-
ter entitled “Pearson’s Correlation Coefficient”). When the
distances of the variables are changed through monotonic
transformations, the results of the parametric methods (in-
cluding test statistics) will be different. Mild changes in dis-
tance produce small changes in the values of the parametric
methods, whereas extreme changes can result in very differ-
ent values. It is important for researchers to be aware of these
facts because monotonic transformations are fundamental in
two important applications: transforming to meet statistical
assumptions, and item response theory (IRT; Rasch scaling is
a special case of IRT).

With careful thought and application, monotonic transfor-
mations can be very useful in clarifying relationships and in-
terpreting variables (see Emerson & Stoto, 1983). A more
arbitrary use of monotonic transformations is to induce sam-
ple data to be consistent with parametric assumptions (e.g.,
normality). The arbitrariness arises from the fact that a trans-
formation is often determined by the sample data without
regard for replication or comparison with other analyses
(Games, 1984). Consider results of research using reaction
time measured in milliseconds (ms). It could be the case that
the transformation f (ms) = ms(.835) is used to induce nor-
mality in one data set, whereas the very different transforma-
tion f (ms) = ms(−.5) is used to induce normality in another
data set. Comparing parametric results based on these two
transformations is difficult. The two transformations produce
different distances between scale values and lead to different
parametric results. In contrast, the ordinal information is the
same regardless the monotonic transformation, so that results
based on ordinal methods are comparable. Furthermore, ordi-
nal methods make it unnecessary to use monotonic transfor-
mations to meet statistical assumptions because results will
be the same whether raw or transformed scores are the basis
of analysis.

Monotonic relationships and monotonic transformations
are also important in the stochastic item response models (IRT)
that underlie most of modern test theory. A fundamental
premise of IRT is that manifest and latent variables have a non-
linear but monotonic functional relationship (usually ogival).

Highly parametric methods, such as structural equation mod-
eling (SEM), assume linear relations between manifest and
latent variables. If IRT is taken seriously, analyzing raw scores
with methods such as SEM must lead to a misspecification of
the manifest-latent relationships. This contradiction has led
some observers to suggest that the results of highly paramet-
ric methods can be spoiled when raw scores are analyzed
(Embretson, 1996). A dilemma arises when IRT is applied
inconsistently with highly parametric methods. Because IRT
proposes that manifest (raw) scores be monotonically trans-
formed to estimate latent scores, the results of parametric
analyses using latent scores are not comparable to analyses
with manifest scores. Ordinal methods have an advantage in
this context. Because of the monotonic relation, the ordinal
information of the manifest variable is identical to the infor-
mation of the latent construct. Ordinal results will be identical
regardless of whether manifest or latent scores are the basis of
the analysis. This means that the misspecification problem
with the analysis of raw scores is avoided, and results of ordi-
nal analyses can be compared regardless of whether manifest
scores or latent scores are used.

Robustness

Under optimal conditions, parametric statistics generally
have larger absolute values than their ordinal counterparts,
and parametric inferential methods perform better than ordi-
nal inferential methods, usually in terms of higher power (but
see a contrary example in the following discussion). Higher
power under optimal conditions is probably the justification
for many applied researchers’ using parametric methods
rather than ordinal methods (Zimmerman & Zumbo, 1993).
However, the differences in power can be very small, and
when conditions are not optimal, ordinal methods can have
many superior properties, including higher power. Because
there are reasons to believe that optimal conditions rarely
hold in applied research (Micceri, 1989; Sawilowsky & Blair,
1992; Wilcox, 1990), ordinal methods may be a better choice
than are parametric methods for general use.

The ordinal methods presented in this chapter tend to be
less influenced than are parametric methods by changes in the
characteristics of the data such as nonnormality, outliers, and
monotonic nonlinearity. In this sense, the ordinal methods are
said to be more robust than their parametric counterparts.
Distributional variations in the data can considerably distort
values of parametric statistics, test values, and confidence in-
tervals. For example, monotonic transformation away from
bivariate normality can drastically reduce the value of
Pearson’s r and its t test (Long & Cliff, 2001). In contrast, the
values of ordinal statistics and their inferential methods are
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invariant under monotonic transformations, so that trans-
forming away from normality does not change their values.
Thus, ordinal methods are applicable to a wider class of
distributions than are parametric methods. 

Parametric methods are vulnerable to extreme changes in
single scores. A single extreme score can drastically affect the
value of a parametric method due to the large distance that is
introduced in the computation (see the comments regarding
Pearson’s r later in this chapter). Ordinal methods are much
more resistant to extreme values because distances are not
considered in computation (only order). A very large outlier,
for example, is simply treated as the largest rank value, and
its distance to the next-to-lowest score is irrelevant. It does
not matter if the largest value is close to the next-to-smallest
value or very far above it. 

Finally, parametric methods can be adversely affected by
nonlinear but monotonic relationships (both in the popula-
tion and the sample). Nonlinear but monotonic relationships
tend to inflate parametric standard errors and lead to lower
power (Birkes & Dodge, 1993, chap. 1). Ordinal methods
can perform much better with such relationships, due to the
fact that the ordinal information is identical for monotonic
and linear functions. Suppose we take a linear bivariate rela-
tionship and induce a nonlinear but monotonic relationship
via monotonic transformation. The parametric standard error
for the transformed relationship would tend to be larger than
the original and the power of a parametric method would
tend to be lower. On the other hand, the standard error and
power of an ordinal method would not change. The func-
tional relationship is continuously increasing or decreasing
(barring ties) in both situations, and thus the ordinal informa-
tion is the same.

Ordinal Methods to Be Presented

The methods of ordinal analysis to be presented fall into two
categories: measures of correlation and measures for group
comparison. We first consider the bivariate situation, and then
show how the methods can be extended for use in more com-
plex analyses. We believe that the ordinal statistics presented
in the following discussion have clear substantive interpreta-
tions, in contrast to traditional nonparametric methods. These
statistics should be considered as estimates of meaningful
population counterparts and not simply as devices for testing
null hypotheses. Another distinction of our presentation from
that of traditional nonparametric methods is an emphasis on
inferential methods that apply in the non-null case. Many
traditional nonparametric inferential methods rely on distrib-
utional assumptions that only hold in the null case. In con-
trast, we present inferential methods based on estimating

properties of sampling distributions from sample data that
have more general applications. In this parametric emphasis,
the chapter follows earlier publications such as Cliff (1993,
1996a, 1996b), Long (1999), and Long and Cliff (1997).

ORDINAL CORRELATION METHODS

General Form of Correlation

Most of the ordinal correlation methods presented in this sec-
tion are based on Kendall’s tau. Although it is not commonly
known, Kendall’s tau has a direct connection to the more
widely known Pearson and Spearman correlations. In fact, all
three are special cases of a general form of correlation based
on the comparison of pairs of scores. It is instructive to pre-
sent the three correlations in a general form involving pairs
of scores in order to show that their computational formulas
are directly related to assumptions about scale level. 

To introduce the general form of correlation based on
paired comparisons, let us assume we have a set of n scores
on X and Y. For any pair of scores, say the ith and the hth, we
can assign a score on X, denoted as aih, representing the com-
parison between the ith and hth observations. Likewise, we
can also assign a score on Y, denoted as bih, representing
the comparison on Y. Then general form of a correlation
coefficient derived from score comparisons is

� =
∑∑

i>h
aihbih√∑∑

i>h
a2

ih

∑∑
i>h

b2
ih

, (25.1)

where both i and h run from 1 to n, and there are (1/2) n
(n − 1) comparisons of scores on each variable for i > h.

The Pearson, Kendall, and Spearman correlations are defined
by the choice of the aih and bih comparisons in Equation 25.1.
When the ith raw score is equal in value to the hth raw score
on a variable, then the pair is tied. The treatment of tied val-
ues can be important, so comments regarding ties are selec-
tively included.

Pearson’s Correlation Coefficient

If interval variables can be assumed, then Pearson’s � is con-
sidered an appropriate measure of bivariate correlation. The
formulas for � and its sample counterpart, r, are very famil-
iar. However, our present purposes are served better if we
introduce an unnecessary complexity. Let aih and bih be dif-
ferences between raw scores. We define

aih = xi – xh, (25.2)
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where xi and xh are the ith and hth raw scores on X. Similarly,

bih = yi – yh, (25.3)

where yi and yh are the ith and hth raw scores on Y.
Making substitutions into Equation 25.1, we can compute

the sample Pearson correlation, r,

r =
∑∑

i>h
(xi − xh)(yi − yh)√∑∑

i>h
(xi − xh)2

∑∑
i>h

(yi − yh)2
. (25.4)

With a bit of algebraic manipulation, it can be shown
that Equation 25.4 is equivalent to the traditional formula of
Pearson’s r. Equation 25.4 shows that r is based on the literal
distances between values on X and Y. As was argued previ-
ously, these distances are only meaningful with interval data.
Therefore, r has an ambiguous interpretation when computed
on ordinal data. In addition, changing the distances on one or
both of the variables (e.g., by monotonic transformation) also
changes the value of r.

Spearman’s Rho

A correlation coefficient that uses ordinal information is
Spearman’s �s, which is based on the differences between
pairs of ranks. We define

aih = qix − qhx, (25.5)

where qix and qhx are the ranks of the ith and hth scores on X.
Similarly,

bih = qiy − qhy, (25.6)

where qix and qhx are the ranks of the ith and hth scores on Y.
Substituting these values into Equation 25.1 yields the sam-
ple Spearman correlation, rs,

rs =
∑∑

i>h
(qix − qhx)(qiy − qhy)√∑∑

i>h
(qix − qhx)2

∑∑
i>h

(qiy − qhy)2
. (25.7)

Perhaps an advantage of Spearman’s rs is that it is a
bridge, so to speak, between Pearson’s r and the tau
correlation because it incorporates properties of both. Like
Pearson’s r, Spearman’s rs uses distances between numbers,
and like Kendall tau, the computation of Spearman’s rs is
based on the order of the variables.

The Spearman correlation can be shown to be equivalent
to a Pearson correlation applied to ranks. Assuming no ties,

several equivalent forms of Spearman’s correlation can be
derived based on simplifying identities (see Cliff, 1996b,
pp. 51–54 for details). Algebraic manipulation of Equa-
tion 25.7 yields another form of Spearman’s correlation, 

rs = 12
[∑

i (qix − �qx)(qiy − �qy)
]

n3 − n
,

(25.8)

where �q j is the mean of the ranks of the jth variable. With
further algebra, Equation 25.8 can be expressed in its tradi-
tional form,

rs = 1 − 6
∑

i (qix − qiy)2

n3 − n
. (25.9)

It is possible to adjust Equations 25.8 and 25.9 for tied
pairs. However, when the number of ties is small, the ad-
justed equations are closely approximated by the unadjusted
equations (Kendall & Gibbons, 1990). Most often in applied
research, ties are ignored when computing Spearman’s corre-
lation. This means that Equation 25.7 is used with tied rank
values computed by taking the average of the corresponding
ranks for identical raw scores. 

Spearman’s rho has a theoretical relationship to � . In
bivariate normal populations,

�s = 6

2�
sin−1 �, (25.10)

where �s is the population form of Equation 25.9 and � is the
population form of Equation 25.4. Equation 25.10 indicates
that �s is very close in value to � (approximately .01 smaller)
over the medium values that are common in applied research. 

Correlations Based on Kendall’s Tau

When one has only ordinal information, a comparison of
pairs of scores can be performed that is consistent with the
empirical operations of greater than, less than, and equal to.
This is the basis for a class of correlations based on Kendall’s
tau, �xy. For Kendall’s tau, the aih and bih of Equation 25.1
are the signed difference between raw scores, known as the
dominance of X and Y. We define

aih = dihx = sign(xi − xh), (25.11)

where dihx = +1 when xi > xh, dihx = −1 when xi < xh, and
dihx = 0 when xi = xh. Similarly,

bih = dihy = sign(yi − yh), (25.12)

where dihy = +1 when yi > yh, dihy = −1 when yi < yh, and
dihy = 0 when yi = yh. Substituting the dominance into
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Equation 25.1, we can compute the sample Kendall’s tau,
txy, as

txy =
∑∑

i>h
dihxdihy√∑∑

i>h
d2

ihx

∑∑
i>h

d2
ihy

. (25.13)

The numerator of Equation 25.13 represents the sum of the
order agreement between corresponding pairs of scores. If
the order of the pair is the same on both variables, then
(dihx)(dihy) = +1. If the order is not the same, (dihx)(dihy) =
−1. Finally, if one or both pairs are tied, (dihx)(dihy) = 0.

There are a number of forms of Kendall’s tau that can be
defined by altering the denominator of Equation 25.13. When
there are no ties on X or Y, then the sum of squared domi-
nance scores is equal to the number of pairs for the (i > h)
comparisons, which is (1/2) n (n − 1). Therefore, tau may
be expressed in the form Kendall (1970) calls tau-a,

ta =
∑∑

i>h
dihxdihy

1
2 n(n − 1)

. (25.14)

Tau-a can be expressed in an alternate form. Suppose we
let P = the number of dominance products that are positive
(i.e., the number of corresponding pairs with the same order
on both variables) and N = the number of dominance prod-
ucts that are negative (i.e., the number of corresponding pairs
with opposite order on the variables). Then using # to indi-
cate number of,

ta = P − N

total # pairs
. (25.15)

Equation 25.15 shows that tau-a can be interpreted as the pro-
portion of pairs of scores that are in the same order minus the
proportion of scores that are in the opposite order. The corre-
sponding population probability interpretation is

�a = Pr[(xi > xh) and (yi > yh)]

– Pr[(xi > xh) and (yi < yh)]. (25.16)

Note that if X and Y are independent (and uncorrelated), in
the long run the left-hand and right-hand probabilities will
be equal and �a will be zero. If X and Y are at least monot-
onically related, then the probabilities will not be equal
and �a will not be zero. For bivariate normal populations,
tau has a theoretical relation with Pearson’s correlation
coefficient,

�a = 2

�
sin−1 � , (25.17)

meaning that �a is approximately two-thirds the size of � over
the range of moderate values most commonly found in ap-
plied research.

When there are ties on X or Y or both, tau-a cannot attain
the limits of ±1. In this case, tau-a still has a clear inter-
pretation: It is the ordinal correlation among the pairs relative
to the total possible number of pairs. When the number of ties
is very large, the largest absolute value of tau-a may be un-
comfortably small for some researchers. There are other
forms of tau that can be computed that attain the limits of ±1
in the presence of ties. One option is to simply use Equa-
tion 25.13 for txy when ties are present. Kendall (1970) calls
this form tau-b, and we can write tb = txy. Because of the pos-
sibility of ties, |tb| ≥ |ta|. Tau-b is attractive because its form
is similar to the familiar Pearson’s correlation. The problem
with tau-b is that its definition is not as simple as that of the
Pearson correlation. The geometric interpretation of a Pearson
correlation as the angle of separation of X and Y (i.e., cos �xy)
holds in tau-b between the pairwise dominance scores, not
between the values of the variables themselves.

A tie-adjusted measure that has a more attractive theoreti-
cal definition is a form of tau known as Yule’s Q (Yule, 1900),
which is also known as Goodman-Kruskal gamma (Goodman
& Kruskal, 1959). The sample version of Yule’s Q, tQ, is

tQ =
∑∑

i>h
dihxdihy∑∑

i>h
d2

ihxd2
ihy

. (25.18)

The numerator of Equation 25.18 is the same as that of the
previous tau correlations, but the denominator is equal to the
number of pairs of scores that are untied on both variables.
Thus, tQ indicates the average ordinal (dis)agreement ignor-
ing ties (or adjusting for ties) on both variables.

Similar to tau-a, tQ can also be expressed as

tQ = P − N

total # untied pairs
, (25.19)

which is the proportion of corresponding pairs of scores with
the same order minus the proportion in the opposite order for
those pairs not tied on either variable. The population proba-
bility interpretation is

�Q = Pr[(xi > xh) and (yi > yh) | (xi �= xh)

and (yi �= yh)]

− Pr[(xi > xh) and (yi < yh) | (xi �= xh)

and (yi �= yh)]. (25.20)

This probability is similar to tau-a but has the condition of no
ties on both variables.
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TABLE 25.1 Computation of Various Correlation Coefficients Based
on Paired Comparisons

Raw Scores Ranks

i,h X Y qX qY

1 41 5 5 1
2 12 8 1 2
3 26 11 4 3
4 17 14 2 4.5
5 19 14 3 4.5

Computation of Pearson correlation

i,h (xi − xh) (yi − yh) (xi − xh)(yi − yh) (xi − xh)
2 (yi − yh)

2

2,1 −29 3 −87 841 9
3,1 −15 6 −90 225 36
4,1 −24 9 −216 576 81
5,1 −22 9 −198 484 81
3,2 14 3 42 196 9
4,2 5 6 30 25 36
5,2 7 6 42 49 36
4,3 −9 3 −27 81 9
5,3 −7 3 −21 49 9
5,4 2 0 0 4 0

Sums: −525 2530 306
r = −0.597 (Equation 25.4)

Computation of Spearman correlation

(qix − qhx) ×
i,h (qix − qhx) (qiy − qhy) (qiy − qhy) (qix − qhx)

2 (qiy − qhy)
2

2,1 −4 1 −4 16 1
3,1 −1 2 −2 1 4
4,1 −3 3.5 −10.5 9 12.25
5,1 −2 3.5 −7 4 12.25
3,2 3 1 3 9 1
4,2 1 2.5 2.5 1 6.25
5,2 2 2.5 5 4 6.25
4,3 −2 1.5 −3 4 2.25
5,3 −1 1.5 −1.5 1 2.25
5,4 1 0 0 1 0

Sums: −17.5 50 47.5
rs = −0.359 (Equa-

tion 25.7)

Computation of Kendall’s correlations

i,h dihx dihy tihxy (dihx)
2 (dihy)

2 t2
ihxy

2,1 −1 1 −1 1 1 1
3,1 −1 1 −1 1 1 1
4,1 −1 1 −1 1 1 1
5,1 −1 1 −1 1 1 1
3,2 1 1 1 1 1 1
4,2 1 1 1 1 1 1
5,2 1 1 1 1 1 1
4,3 −1 1 −1 1 1 1
5,3 −1 1 −1 1 1 1
5,4 1 0 0 1 0 0

Sums: −3 10 9 9

ta = −0.300 (Equation 25.14)
tb = −0.316 (Equation 25.13)
tQ = −0.333 (Equation 25.18)
tdyx = −0.333 (Equation 25.21)

Unlike ta and tb, tQ is not strictly monotonic. This means
that very different arrays of scores, or pairs of arrays based on
different ns, may produce the same value for tQ. Therefore, tQ

does not discriminate between certain subsets of relations for
which ta and tb do (see Agresti, 1984, chapter 9). In terms of
values of the coefficients, this means that |tQ| ≥ |tb| ≥ |ta|.

Yet another type of tau correlation can be computed, one
that corrects for ties only on the response variable, Y. This
correlation is Somers’ d, which is symbolized as �dyx. The yx
in the subscript indexes the fact that the correlation adjusts
for ties on Y but not X. The sample tdyx is computed as

tdyx =
∑∑

i>h
dihxdihy∑∑

i>h
d2

ihy

, (25.21)

and can be interpreted as the average ordinal (dis)agreement
adjusting for ties on Y. Alternatively, tdyx can be expressed as

tdyx = P − N

total # untied on Y
, (25.22)

which is the proportion of corresponding pairs of scores that
are in the same order minus the proportion of corresponding
pairs that are in the opposite order for those pairs not tied on
Y. The population probability interpretation is

�dyx = Pr[(xi > xh) and (yi > yh) | (yi �= yh)]

− Pr[(xi > xh) and (yi < yh) | (yi �= yh)]. (25.23)

If one variable is arbitrarily designated the response, it
may not make sense to only adjust for ties on it (it is tempting
to use the larger of tdyx and tdxy). A situation in which the re-
sponse is not arbitrarily assigned is in group-comparison
problems. In this case, �dyx can be used as a basis for a type of
ordinal measure of location (discussed later in this chapter).

Examples of Calculations

Table 25.1 shows some hypothetical data sorted on Y and
calculations using the paired comparisons formulas for all the
correlation coefficients. The results illustrate a typical relation-
ship among the correlation coefficients: |r | ≥ |rs| ≥ |tQ| ≥
|tdyx| ≥ |tb| ≥ |ta|.

Inference in Ordinal Correlation

The focus of this section is inferential methods based on tau-
a, but methods for Spearman’s rho are also discussed. We feel
tau-a is the most interpretable of the ordinal correlations
and has favorable statistical properties such as invariance
under monotonic transformation. Although we briefly discuss
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traditional approaches to hypothesis testing, we stress infer-
ential methods that can be used in the non-null case as well,
and expanded to provide the basis for a much broader range
of application than is generally realized. Cliff (1996b, pp.
55–88) provides a more extensive discussion than can be pro-
vided here.

Traditional Randomization Approach

Kendall’s Tau-a

The most common inferential method for tau-a is the z test of
independence of X and Y. Note that independence implies
�a = 0, but is a more general assumption than is the latter.
Independence assumes that for a given order of one variable,
all possible permutations of the other are equally likely. In
this case, Kendall (1970) shows that the asymptotic variance
of ta under random permutations of X and Y is

var(ta) = 2(2n + 5)

9n(n − 1)
. (25.24)

Under H0: �a = 0, the normal distribution variate is the sam-
ple tau-a over the square root of Equation 25.24,

z = ta√
2(2n + 5)
9n(n − 1)

. (25.25)

The z test statistic of Equation 25.25 has some favorable
properties. It is invariant under monotonic transformation of
the variables, it does not require the variables to have a spe-
cific distributional shape, and it is insensitive to outlying val-
ues. The weakness of the test is the assumption of complete
independence of X and Y, which has limited applicability.
Later in this chapter we discuss a variance term that forms the
basis for methods with wider applicability.

Spearman’s Rho

Inferential methods for rs are hampered by the fact that its
sampling properties are difficult to specify. Among other
things, there is no straightforward method for determining
the standard error of rs, even assuming independence of X
and Y (Kendall, 1970). The inferential methods that do ap-
pear to have adequate performance require some strong
assumptions. For example, if one is willing to test for
independence (as previously with tau), then as n increases,
rs is approximately normally distributed with variance
1/(n − 1). Cliff (1996b) provides a table of critical values of
rs for n up to 37, reproduced from Ramsey (1989). Using the
variance term based on Pearson’s r, a more general test of

H0: �s = 0 is

z = r ′
s√
1

n−3

(25.26)

where r ′
s is Fisher’s z transformation of rs,

r ′
s =

(
1

2

)
ln

∣∣∣∣1 + rs

1 − rs

∣∣∣∣ . (25.27)

Caruso and Cliff (1997) studied a number of inferential meth-
ods based on rs and found the Equation 25.26 z test per-
formed the best in terms of actual Type I error rate and power.
Although Equation 25.26 assumes bivariate normality, it
does have at least one advantage over its counterpart based
on Pearson’s r (which requires the same assumption). Equa-
tion 25.26 will yield the same result for any data that is or can
be monotonically transformed to bivariate normality because
rs is invariant under such a transformation. In this regard,
Equation 25.26 is more general than is the corresponding test
based on Pearson’s r.

Recently, Bonett and Wright (2000) presented interval es-
timates based on rs (and ta) under rather general assumptions.
They base their interval estimate for �s on the variance term
[(1 + rs)/2]/(n − 3) and offer evidence for its accuracy.

Non-Null Inference With Tau-a

The variance term for tau-a presented previously assumes
that X and Y are completely independent. Complete indepen-
dence is usually of limited interest to the applied researcher
because it is not possible to test a general null hypothesis
such as H0: �a = c, nor is it possible to compute a confidence
interval for �a. These failings are in conflict with general
recommendations for statistical analysis in psychology and
education (Cohen, 1994; Wilkinson & the Task Force on
Statistical Inference, 1999). 

It is possible to proceed as we do with parametric meth-
ods and estimate the characteristics of the sampling distribu-
tion of ta from sample data. Specifically, when �a �= 0, we
can compute ta, estimate its variance, and use these quanti-
ties as a basis for a general hypothesis test or a confidence
interval.

A number of estimates of the variance of ta have been de-
veloped for use when �a �= 0(Cliff & Charlin, 1991; Daniels &
Kendall, 1947; Kendall, 1970). One such variance estimate is
the consistent estimate. It is simpler to discuss the consistent
estimate if we first define the dominance product

tihxy = (dihx)(dihy), (25.28)

which is 1 if dihx and dihy have the same sign, −1 if they are
opposite, and 0 if one or both are 0. Also used is ti.xy, the
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average consistency of i,

ti.xy =
∑

h tihxy

(n − 1)
. (25.29)

The consistent estimate of var(ta) is

Est[var(ta)] =
4(n − 2)s2

t i.xy
+ 2s2

t ihxy

n(n − 1)
, (25.30)

where

s2
ti.xy

=
∑

i(ti.xy − ta)2

(n − 1)
, (25.31)

and

s2
tihxy

=
2
∑∑
i>h

t2
ihxy − n(n − 1)t2

a

[n(n − 1)] − 1
. (25.32)

The appendix to this chapter illustrates the calculation of the
Est[var(ta)] using the data in Table 25.1.

The estimated variance can be used in a significance test
of H0: �a = c, or in a confidence interval of the form

ta ± x1−�/2

√
Est[var(ta)], (25.33)

where x1−�/2 is the appropriate value from Student’s distrib-
ution based on (n − 2) degrees of freedom. Long and Cliff
(1997) studied the sampling behavior of the Equation 25.33
confidence interval. A simulation study was conducted in
which samples of different sizes were drawn from popula-
tions with various values of �a. Interest was in the coverage
probability, defined as the proportion of times the �a parame-
ter was in the confidence interval, and in power, defined as
the proportion of times in which zero was not in the confi-
dence interval (the proportion of times H0: �a = 0 was re-
jected). Results showed that the confidence interval had
excellent coverage, never dropping below (1 − �) even when
the sample size was as small as 10. Power was relatively high
as compared to a number of other confidence intervals com-
puted with different variance estimates (for details, see Long
and Cliff, 1997). It appears that the Equation 25.33 confi-
dence interval based on the consistent estimate of the vari-
ance of ta is both accurate and relatively powerful under a
wide number of conditions.

Extensions of Ordinal Correlation

Comparing Two Independent Taus

The methods of the last section can be extended to other situ-
ations involving taus, as described by Cliff (1996a, 1996b).
One such situation arises when a researcher seeks to compare

tau-a correlations from two independent samples, asking
whether the correlation is equal in the two groups. When
more than one tau is considered, we must alter our previous
subscript notation to allow for multiple coefficients. Specifi-
cally, we drop the a in ta and use difference numerical sub-
scripts to designate taus from two different samples, for
example t1 and t2.

Inferential methods based on (t1 − t2) use the variance of
the sum of two independent taus, which is the sum of the
individual variances. We can use the formulas from the last
section to compute estimates of the variances of the individual
taus, Est[var(t1)] and Est[var(t2)]. The square root of the sum
of variances can be used as a basis to test H0: �1 − �2 = 0, or
to compute the 95% CI for (�1 − �2), which is

95% CI for (�1 − �2)

= (t1 − t2) ± 1.96
√

Est[var(t1)] + Est[var(t2)]. (25.34)

Comparing Two Dependent Taus

Suppose we want to see which of two predictors, X1 and X2,
correlates more highly with a dependent variable, Y. When
two taus are computed with the same sample data, they
are dependent. In this case, the var(t1y − t2y) = var(t1y) +
var(t2y) − 2cov (t1y, t2y), which is parallel to comparing two
means from the same sample. We have already shown how to
compute the estimates of the variances of the individual taus.
The estimate of the covariance between two nonindependent
taus, t1y and t2y, is similar in logic to the variance.

In this case there are two sets of tihjk—namely, tih1y and
tih2y, which are arranged in the symmetric matrices, T1y and
T2y. Using the formulas of Cliff and Charlin (1991), the esti-
mate of the covariance between t1y and t2y is

Est[cov(t1y, t2y)] = 4(n − 2)st i.1y,t i.2y + 2st ih1y,t ih2y

n(n − 1)
. (25.35)

Consistent with our previous definition of ti.xy, the ti.1y are the
row totals of T1y divided by (n − 1), and the ti.2y are the row
totals of T2y divided by (n − 1). The first term in the numer-
ator, st.1y,t.2y, is the covariance between the ti.1y and ti.2y, for-
mally defined as

sti.1y,ti.2y =
∑

i(ti.1y − t1y)(ti.2y − t2y)

(n − 1)
. (25.36)

The second term in the numerator of Equation 25.35,
stih1y,tih2y , is the covariance of the tih1y and tih2y, formally de-
fined as

stih1y,tih2y =

∑∑
i�=h

(tih1y − t1y)(tih2y − t2y)

n(n − 1) − 1
. (25.37)

which also uses the individual elements of T1y and T2y.
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To illustrate the computation of the covariance between
two dependent taus with Equations 25.35–25.37, the addi-
tional variable, X2,

X2: 9, 5, 2, 8, 7

is used with the X and Y of Table 25.1. The samples are too
small for a really meaningful comparison, but merely illus-
trate the computational process. Table 25.2 shows the Dih2

matrix, the Tih2y matrix, and the 
∑

h tih2y. The tau correlation
between X1 and X2 is t12 = (2/10) = .20, the tau correlation
between X2 and Y is t2y = (−1/10) = −.10, ti.2y =
[−1, 0, 0, .25, .25], and finally, Est[var(t2y)] = .2550.

To compute the estimated covariance between t1y and t2y,
we solve Equation 25.35 by substituting the results of Equa-
tion 25.36 and Equation 25.37. Equation 25.36, st.1y,t.2y, is the
covariance between the ti.jk of both pairs of variables. Work-
ing with the elements of the ti.1y and the ti.2y vectors and
recalling that t1y = −.3 and t2y = −.1, the data at the end of
Table 25.2 used in Equation 25.36 yields 

st.1y,t.2y

= [(−1 − (−.3))(−1 − (−.1)) + · · · + (−.25 − (−.3))(.25 − (−.1))]

4

= .1813. (25.38)

Equation 25.37, stih1y,tih2y, is the covariance between the tihjk

of both variables. Working with the tih1y and tih2y, we compute

stih1y , tih2y

= [(−1 − (−.3))(−1 − (−.1)) + · · · + (0 − (−.3))(0 − (−.1))]

5(4) − 1

= .1421. (25.39)

Finally, substituting all the elements into Equation 25.35,
the estimated covariance between t1y and t2y is

Est[cov(t1y, t2y)] = 4(n − 2)sti.1y,ti.2y + 2stih1y,tih2y

n(n − 1)

= 4(3)(.1813) + 2(.1421)

5(4)

= .1230. (25.40)

Using Equation 25.30, we find Est[var(t1y)] = .2615 (see the
appendix), and Est[var(t2y)] = .2549. Therefore,

var(t1y − t2y) = var(t1y) + var(t2y) − 2 cov(t1y, t2y)

= .2615 + .2549 − 2(.1230) = .2704.

(25.41)

Thus, the standard error of the difference is 
√

.2704 = .52,
making the CI for the difference t1y − t2y ± (1.96) (standard
error of the difference) = −.2 ± 1.02, which is very wide be-
cause of the small sample size. The estimated covariance and
variances are also the basis of an inferential method in a type
of ordinal multiple regression, to which we now turn.

Ordinal Multiple Regression

In addition to the situations just discussed, ordinal correlation
can be extended to the multivariate case in a type of ordinal
multiple regression (OMR; Cliff, 1994, 1996b). OMR has
some advantages over the traditional least squares multiple
regression (LSMR). OMR is based on ordinal operations, and
its results address the ordinal questions that researchers often
pose in multiple regression. Both the descriptive and inferen-
tial results of OMR are invariant under monotonic transfor-
mation. OMR can be more powerful than LSMR when
predictor correlations are moderate to high, and when LSMR
assumptions are violated.

LSMR is a method in which the information of a set of
predictors (X j) is combined to optimally predict the scores on
a response variable, Y. A weighted combination of predictors
is formed, Ŷi = ∑

bi X ij , which minimizes a loss function
based on the sum of squared residuals, 

∑
(Yi − Ŷi)2, thereby

maximizing the sample multiple correlation. The highly spe-
cific mathematics of LSMR means that the relationships be-
tween the predictors and the response can be expressed in
very explicit, unit-based terms. For example, it is common to
interpret an unstandardized regression weight as the pre-
dicted increase in Y for a one-unit increase in predictor X j

holding all other predictors constant (Howell, 1997, p. 516).
The other predictors are actually held constant only in the
case of strict multivariate normality, or when the predictors
have fixed values as in ANOVA. In more common situations,
the condition satisfied is that the contribution of X j is uncor-
related with the contributions of all other predictors. Further-
more, raw scores can be composed (or decomposed) from
proportions of predictors (and constants). Suppose that
Yi = b1 X i1 + b2 X i2 + b0 + ei , where b1 = .8 and b2 = .4.

This means that the ith response score is .8 of X1, plus .4 of
X2, plus a constant and a leftover.

It is rare that research questions are consistent with the
highly specific nature of LSMR. Rather, most research ques-
tions are vague, along the lines of Given a set of predictors,
can we predict who will be high and who will be low on the
response? This type of question is ordinal in nature and is
perhaps best answered with a corresponding ordinal method.
OMR is based on ordinal operations that provide results con-
sistent with these ordinal questions commonly asked in mul-
tiple regression.
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TABLE 25.2 Computation of the Estimated Covariance of Two Dependent Taus

i, h X1 X2 Y

1 41 9 5
2 12 5 8
3 26 2 11
4 17 8 14
5 19 7 14

(tih1y − t1y)×
Pair dih1 dih2 dihy tih12 tih1y tih2y (tih1y − t1y) (t

ih2y
− t2y) (tih2y − t2y)

1,2 −1 −1 1 1 −1 −1 −0.7 −0.9 0.63
1,3 −1 −1 1 1 −1 −1 −0.7 −0.9 0.63
1,4 −1 −1 1 1 −1 −1 −0.7 −0.9 0.63
1,5 −1 −1 1 1 −1 −1 −0.7 −0.9 0.63
2,3 1 −1 1 −1 1 −1 1.3 −0.9 −1.17
2,4 1 1 1 1 1 1 1.3 1.1 1.43
2,5 1 1 1 1 1 1 1.3 1.1 1.43
3,4 −1 1 1 −1 −1 1 −0.7 1.1 −0.77
3,5 −1 1 1 −1 −1 1 −0.7 1.1 −0.77
4,5 1 −1 0 −1 0 0 0.3 0.1 0.03

Sums: 2 −3 −1 2.7
tjk = 0.2 −0.3 −0.1 stih1y,tih2y = 0.1421

T1y h
∑

htih1y ti.1y (ti.1y − t1y) (ti.1y − t1y)
2

0 −1 −1 −1 −1 −4 −1 −0.7 0.49
−1 0 1 1 1 2 0.5 0.8 0.64

i −1 1 0 −1 −1 −2 −0.5 −0.2 0.04
−1 1 −1 0 0 −1 −0.25 0.05 0.0025
−1 1 −1 0 0 −1 −0.25 0.05 0.0025

Sums: −6 −1.5 0 1.175

T2y h
∑

htih2y ti.2y (ti.2y − t2y) (ti.2y − t2y)
2

0 −1 −1 −1 −1 −4 −1 −0.9 0.81
−1 0 −1 1 1 0 0 0.1 0.01

i −1 −1 0 1 1 0 0 0.1 0.01
−1 1 1 0 0 1 0.25 0.35 0.1225
−1 1 1 0 0 1 0.25 0.35 0.1225

Sums: −2 −0.5 0 1.075

(ti.1y − t1y)
×

(ti.1y − t1y) (ti.2y − t2y) (ti.2y − t2y)

−0.7 −0.9 0.63
0.8 0.1 0.08

−0.2 0.1 −0.02
0.05 0.35 0.0175
0.05 0.35 0.0175

Sum: 0.725
sti·1y,ti·2y = 0.18125

Est[covar(t1y, t2y)] = 0.1230 (Equation 25.40)

In OMR, information on the predictors is combined to op-
timally predict the order on Y, where order is defined by the
dominance on Y, dihy. Cliff (1994, 1996b) shows that the in-
formation on the predictors can be either raw differences,
aihj = (xij − xhj), rank differences, aihj = (qixj − qhxj), or

dominances, aihj = dihxj = sign(xij − xhj) . Similar to LSMR,
the information on the predictors is combined by means of a
weighted composite, d̂ ihy = ∑

wjaihj . However, unlike
LSMR, the weights are chosen so as to optimize an ordinal
loss function rather than a least-squares loss function.
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Treating the problem as a discriminant analysis with the
groups defined by the values of dihy, Cliff (1994) showed that
weights for computing the d̂ ihy can be obtained that approxi-
mately optimize the ordinal loss function,

	 =
∑∑

i>h
(dihy)(sign[d̂ ihy])

1
2 n(n − 1)

, (25.42)

where sign[·] = −1 when d̂ ihy < 0, sign[·] = +1 when
d̂ihy > 0, and sign[·] = 0 when d̂ ihy = 0 (this last value rarely
occurs in practice). 	 is analogous to a multivariate tau cor-
relation because it is the sum of the product of dominance
scores divided by the total number of pairs. When there are
tied pairs on Y, it may be desirable to alter the denominator of
Equation 25.42 as was done with the bivariate tau correlation.

The equations that are solved to obtain weights that opti-
mize Equation 25.42 are similar in form to those of LSMR. In
predicting dominances from raw score differences, we use
aihj = (xij − xhj), and the weights are similar to OMR
weights,

w1 = (2/n)S−1
x srxy, (25.43)

where Sx is the ( p × p) variance-covariance matrix among
the p predictors, and srxy is the ( p × 1) vector of covariances
between the predictors and the ranks of Y. When predicting
from the difference between ranks, we use aihj = (qixj − qhxj),
and the weights are

w2 = R−1
sx rsxy, (25.44)

where Rsx contains the Spearman rs correlations among the
predictors, and rsxy contains the Spearman rs correlations
between the predictors and Y. In the case of predicting from
dominances, we use aihj = dihxj = sign(xij − xhj), and the
weights are

w3 = T−1
x txy, (25.45)

where Tx contains the tau-a correlations among the predic-
tors, and txy contains the tau-a correlations between the
predictors and Y.

Issues Regarding OMR Weights

Although the weights obtained with Equations 25.43, 25.44,
and 25.45 are guaranteed to yield the most signed agreements
and maximize 	 only when the d̂ ihy are normally distributed
conditional on the dihy, they work well in practice (Long,
1999). It should be noted that least squares based methods

such as discriminant analysis also yield approximate weights
in any applied analysis because normality can never exactly
hold in sample data (nor in the population; e.g., see Wilcox,
1991).

In the case of predicting from dominances, a truly optimal
solution is possible. For any set of p predictors, there are a fi-
nite number of possible dominance patterns across the pre-
dictors (3p if there are ties on the predictors, 2p if not). In
principle, these can be used to define a set of inequalities on
the weights (Cliff, 1994). The least squares weights have
been found to satisfy all, or nearly all, of these inequalities in
the examples tested. However, the number of inequalities
rises rapidly with the number of predictors. A curious conse-
quence of the inequalities is that in the two-predictor
case without ties, using two predictors cannot improve on
the better of the individual predictors by the criterion of
Equation 25.42.

No Partial Tau

In the case of predicting from two dominances, the numerator
of the first OMR weight can be shown to equal t1y − t2yt12.

This numerator is identical in form to the numerator of the
LSMR standardized regression coefficient and the numerator
of the Pearson partial correlation. Given this similarity, it is
tempting to interpret OMR weights in terms of partial
relationships as is common in LSMR. However, such inter-
pretations are problematic when dealing with dominances.
The reason is that the investigation of partial relationships is
based on the analysis of residuals, and a residualized domi-
nance makes no sense. A residual of a dominance score ob-
tained with the regular least squares methods can take on any
real value. This violates the very nature of dominance as an
index of the order relations greater than, less than, and equal
to. More important is that the residuals of dominances do not
behave like residuals of raw interval scores and can cause
some curious results for partial tau correlations. For example,
in situations in which two variables are completely depen-
dent on a third, the partial Pearson correlation will always be
zero, but the value of a partial tau correlation can be nonzero
(see Nelson & Yang, 1988).

The qualifications just discussed indicate the OMR
weights should be interpreted only as practical devices for
predicting the order on the criterion. In OMR, the functional
relationship between the dominance on Y and the information
on the predictors, dihy = f (aihj), is much more vague than in
LSMR. Therefore, the OMR weights cannot be interpreted
in any causal or explanatory sense. We can safely say that the
size of an OMR weight represents the relative importance of
a predictor to the overall prediction system. A variable with a
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large weight has a relatively large influence in prediction, and
a variable with a small weight has a smaller influence in pre-
diction. However, substantive interpretations beyond this
have little or no justification. It should be noted that LSMR
weights are not without their own interpretational complica-
tions, especially when the predictors are correlated (see Cliff,
1987; Mosteller & Tukey, 1977).

Confidence Intervals for OMR Weights

Given that the order on Y can be predicted in the sense that 	
is not zero, an applied researchers may want to know which
variable(s) is(are) important to that prediction. Descriptively,
this can be addressed by observing the decrease in 	 (if any)
omitting X j. If a researcher wants to go beyond description,
this can be accomplished by computing a confidence interval
for an OMR regression weight.

The OMR CI for a single population weight, �j is

wj ± z1−�/2 
̂wj , (25.46)

where wj is a sample weight from Equation 25.45 (predicting
from dominances), z1−�/2 is the appropriate critical value
from the standard normal distribution at �, and 
̂wj is the esti-
mated standard error of wj.

Computing the Estimated Standard Error. In order to
compute the estimated standard error, 
̂wj , we assume a fixed
effects regression model (this is a common assumption in
multiple regression; see Long, 1999). Under the OMR fixed
effects model, the elements of the matrix of predictor tau cor-
relations, Tx, are constants, and so are the elements of T−1

x .
Given these assumptions, any sample weight, wj, can be
viewed as a linear combination,

wj =
p∑

k=1

t∗
jktky, (25.47)

where t∗
jk is an element from the T−1

x matrix, tjk is the tau-a
correlation between X j and Xk and tky is the tau-a correlation
between Xk and the criterion, Y.

When an OMR sample weight is defined as a linear com-
bination, then the variance of the weight can be obtained by
computing the variance of a linear combination (see Cliff,
1987, pp. 53–60). The formula for the variance of a linear
combination of wj is


2
wj

=
∑

k

(t∗
jk)2 var(tky) + 2

∑
k<m

t∗
jkt∗

jm cov(tky, tmy). (25.48)

In this equation, var(tky) is the variance of the tau validity be-
tween Xk and Y, cov(tky, tmy) is the covariance between the
two respective tau validities, and the t∗

jk are known elements

from the T−1
x matrix, so the task here is to compute estimates

of the variances using Equation 25.30 and covariances using
Equation 25.35. After this is done, the square root of Equa-
tion 25.48 can be used in the CI formula, Equation 25.46.

As an example, suppose we wanted to computed the 95%
CI for �1 based on the data in Table 25.2. The solution for the
estimated standard error of the first OMR weight, 
̂2

w1
, is


̂2
w1

= (t∗
11)2 Est[var(t1y)] + (t∗

12)2 Est[var(t2y)]

+ 2{t∗
11t∗

12 Est[cov(t1y, t2y)]}. (25.49)

From above we know that

T−1
x =

[
1.0 .2
.2 1.0

]−1

=
[

1.0417 −.2083
−.2083 1.0417

]
. (25.50)

The variances of the t1y and t2y and the covariances between
them are

�̂ =
[

.2615 .1230

.1230 .2549

]
(25.51)

Substituting all the appropriate values,


̂2
w1

= (1.0417)2(.2615) + (−.2083)2(.2550)

+ 2[(1.0417)(−.2083)(.1230)] = .2414, (25.52)

and 
̂w1 = √
.2414 = .4914.

Having computed 
̂w1 , we can use Equation 25.46 to com-
pute the 95% CI for �1. It can be shown that Equation 25.45
yields w1 = −.2917 and w2 = −.0417. Using all the rele-
vant information, the 95% CI for �1 is

w1 ± 1.96 
̂w1 = −.2917 ± (1.96)(.4914)

= [−1.2548, 0.6714] . (25.53)

This CI covers zero, so we would not reject H0: �1 = 0, but
note that n = 5 is very small, contributing to the lack of
power in detecting a false null hypothesis.

Performance of the OMR Confidence Interval. Long
(1999) studied the sampling behavior of the CI of Equa-
tion 25.46. The results of his stimulation study showed that
when sampling from population data that meet the assump-
tions of fixed effects LSMR, the OMR CI performed well in
terms of probability coverage, with the exception that cover-
age tended to be conservative as effect size increased.

The results for power were noteworthy and showed some
important contrasts with the LSMR CI. When the predictors
were not correlated, the OMR CI had slightly lower power
than the LSMR CI, which seems to confirm the conventional
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wisdom that ordinal methods are not as powerful as paramet-
ric methods when data conditions are optimal for the latter.
However, power of the OMR CI was superior to the LSMR
CI when the predictors were moderately to highly correlated.
This is an especially favorable finding for the OMR CI, given
that predictor correlations are usually nonzero and can be
quite substantial in applied research (Cohen, 1994; Meehl,
1997).

Omnibus Hypothesis Testing in OMR

If one wants to test whether any of a group of predictors is
significantly related to the criterion, one can construct a test
of the omnibus null hypothesis 

H0: �1y = �2y = · · · = �py = 0 , (25.54)

where �ky is the population tau-a correlation between the kth
predictor and Y.

Assuming that we are predicting from the dominances, let
us define the test statistic,

H = t′y(V−1)ty, (25.55)

where ty is the ( p × 1) vector of tau validities, and V is the
( p × p) variance-covariance matrix of the tau validities.
Using the formulas from the past sections,

V =




Est[var(t1y)] Est[cov(t1yt2y)] · · · Est[cov(t1ytpy)]

Est[var(t2y)]
.
.
.

. . . Est[cov(tp−1ytpy)]

Est[var(tpy)]


 ,

(25.56)

where V is symmetric.
Under the null hypothesis, if the elements of ty are nor-

mally distributed, then H ∼ � 2( p). The distribution of tky

tends towards normality as n increases. Therefore, under the
null, as n increases, H → � 2( p). H can be computed from
the sample data, and with a sufficiently large sample size, we
would reject H0 if H > tabled � 2

�( p). When n is not large, we
might use the rejection criterion of pF( p, n − p − 1) for a
fixed � (see McKean & Sheather, 1991).

An alternative approach to omnibus testing is based on a
chi-square analysis of the contingency table defined by the
dihy and the predictor dominance patterns. Assuming no ties
on Y, we can compute the entire n(n − 1) dominance vector
of Y and call it dy. In this case, half of dy will be dihy = +1
and the other half will be dihy = −1 because dihy = −dhiy. If

we also assume no ties on the predictors, we can form a con-
tingency table defined by the two values of dihy (i.e., −1, +1)
and the 2p possible predictor dominance patterns. The cell
frequencies are the tallies of the co-occurrence of a value of
dihy and one of the 2p patterns. If Y is unrelated to the predic-
tors, then half the number of a given predictor dominance
pattern should be associated with dihy = +1 and the other
half associated with dihy = –1. To test this hypothesis, we can
compute � 2[n(n − 1)]−1 as a test statistic, which can be
evaluated against � 2

�( p). A similar test can be computed
allowing for ties.

Long (2001) is currently investigating the performance
of the omnibus methods. Preliminary investigation indicates
that using pF( p, n − p − 1) to evaluate H yields good ac-
tual Type I error rate and power, but more investigation is
needed before definitive statements can be made.

ORDINAL ALTERNATIVES TO MEAN
COMPARISON: DOMINANCE ANALYSIS

Dominance Analysis for Independent Data

The Delta Measure and the d Statistic

One of the most important and frequently encountered prob-
lems in psychological and behavioral research is the so-
called two-sample problem, or location comparison. For
example, we are often interested in whether scores from one
group tend to be higher than those from the other (e.g., treat-
ment effects). This research question is usually answered by
the two-sample t test comparing means of the two groups or
the parallel one-way ANOVA. The t test requires (a) interval
level of measurement for the variables, and (b) the assump-
tions of normality and homogeneity of variance. However, as
argued earlier in the chapter, many behavioral and social
variables have only ordinal justification. Although some
studies show that Type I error rates and empirical power of
the t test are preserved for Likert-scaled data (Hsu & Feldt,
1969; Nanna & Sawilowsky, 1998), ordinal methods can be
more powerful than the t test for data of less than interval
level. In addition, the parametric assumptions are always vi-
olated to a greater or lesser extent in applied research. Non-
normality and heterogeneity of variance can inflate the actual
Type I error rate and severely reduce the power of normal-
based mean comparison procedures (e.g., Barnard, 1984;
Cressie & Whitford, 1986; Gronow, 1953; Pearson & Please,
1975; Ramsey, 1980; Tan, 1982; Wilcox, 1990, 1991, 1992).
The t test and the corresponding CI for a mean difference are
highly quantified procedures. However, as previously dis-
cussed, the question of the researcher is often formulated in a
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looser, ordinal fashion, such as Do individuals in this group
or under this condition tend to score higher than do those in
the other?

In this section we describe a measure, � often written �,
for answering research questions about central tendency of
two groups, conditions, or occasions. � and its sample coun-
terpart, d, directly reflect the tendency for one set of scores to
be higher than the other, which a mean difference does not,
unless the later is converted to some kind of correlational
index. In addition to describing d analysis, ways in which this
ordinal measure can be applied in more complex research
designs are suggested.

� is a direct quantification of the extent to which scores in
one set are higher than scores in the other. This measure has
been discussed in nonparametric statistics books for years
(Agresti, 1984; Hettmansperger, 1984; Randles & Wolfe,
1979), but it has not been widely employed. Its application
was emphasized and extended recently by Cliff (1991, 1993,
1996b). For a score X1 sampled from one population and a
score X2 from another, � is the probability that X1 is higher
than X2, minus the reverse probability:

� = Pr(X1i > X2j) − Pr(X1i < X2j). (25.57)

That is, each observation of the first population is compared
to each observation of the second population. There is a prob-
ability that the observation of the first population is higher,
and a probability that the observation of the second group is
higher. � is the difference between these two probabilities. It
runs from −1.0 (nonoverlapping distributions with the X2

observations higher) to 1.0 (nonoverlapping distributions
with the X1 observations higher). � is essentially equivalent
to p = Pr{X1 > X2} (cf. Birnbaum, 1956; McGraw & Wong,
1992; Mee, 1990). When there are no ties between X1 and X2

observations,

p = (� + 1)/2. (25.58)

(Note that p in Equation 25.58 is not to be confused with
the number of predictors discussed above.) However, we
believe � is preferable to p, particularly when there are ties
in the data. By taking the difference between the two proba-
bilities, the formula defining � includes ties but does not
count them as either higher or lower. Therefore, further mod-
ifiers to communicate the probability of ties are not neces-
sary. Also, � is equivalent to the form of Kendall’s � called
Somer’s d (Somer, 1968) for the special case in which one
variable is a dichotomy (see section in this chapter entitled
“Ordinal Correlation Methods”).

An unbiased sample estimate of �, the ordinal statistic d, is
the proportion of times a score from one group is higher than

a score from the other minus the proportion of times when the
reverse is true:

d = #(xi > xj) − #(xi < xj)

mn
, (25.59)

where xi represents any observation in the first group, xj in
the second, n and m represent the respective sample sizes,
and # denotes the number of times. That is, each of the n
scores in the first group is compared to each of the m scores
in the second, and counts are made of how many times a
score of the first group is higher and how many times it is
lower. Ties are included in the denominator, mn, but are not
counted in the numerator as either higher or lower.

Faced with a two-sample problem, an investigator is likely
to be advised to choose between the well-known t test and the
Wilcoxon-Mann-Whitney test (Mann & Whitney, 1947;
Wilcoxon, 1945). A less restrictive null hypothesis, that two
independent samples of observations have come from the
same population, is one of the reasons often cited by those
who favor the Wilcoxon-Mann-Whitney U statistic. The d
statistic is a simple transformation of U. Let n and m be the
sample sizes of the two groups being compared, and the r1 be
the ranks of the first group’s scores among all the m + n
observations, ties being given the average rank. Then
U = ∑

r1 − n(n + 1)/2, and

d = 2U/nm − 1. (25.60)

In fact, the Wilcoxon-Mann-Whitney test provides a test of
the null hypothesis that � = 0, assuming that the two popula-
tion distributions are identical. However, the distributions
could differ in shape or in spread, with or without having �
equal to 0. In other words, the Wilcoxon-Mann-Whitney test
is testing the hypothesis that the two groups represent random
samples from the same distribution, but rejection of the hy-
pothesis is sometimes taken as reflecting a difference in the
location of the two distributions. Differences between the
two distributions in shape or in spread may invalidate infer-
ences from the Wilcoxon-Mann-Whitney test. On the other
hand, the d statistic tests the H0 that � = 0 without assuming
identical distributions.

Inferences About Delta

If identical distributions are assumed, the variance of d or U
in the null case depends only on the sample sizes of the two
groups being compared, it being 
2

d = (n + m + 1)/3mn.

For large samples, the ratio d2/
2
d has a chi-square distribu-

tion with d f = 1. Tables are widely available for the U sta-
tistic in small samples. However, this kind of inference has
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limited applicability because it only allows a test of the null
hypothesis that two random samples are from the same distri-
bution. A more useful approach is to treat d as a sample esti-
mate of �, regardless of the population distributions. Then
characteristics of the sampling distribution of d can be used
in making inferences regarding �. Because the sampling dis-
tribution of d is asymptotically normal, normal-based infer-
ences can be made with 
2

d being estimated from the sample.
It should be noted that asymptotic normality of d is distinct
from normality of data. Extensive simulation studies (Feng &
Cliff, 1995) revealed that even when the distribution of the
data is far from normal, the distribution of d approaches nor-
mality pretty quickly. In fact, the distribution of the average
of d across subjects or across variables is generally platykur-
tic rather than leptokurtic.

Discussions of the sampling properties of d are aided by
the use of dominance variables that represent the direction of
differences between scores. The dominance in the two-group
case has a slightly different definition from that of the case of
ordinal correlation. Suppose that xi is a score from the first
group and xj a score from the second group, the dominance is
defined as

dij = sign(xi − xj). (25.61)

The dominance, dij, simply represents the direction of differ-
ences between the xi scores and the xj scores. A score of 1 is
assigned if xi > xj , a score of −1 is assigned if xi < xj , and a
score of 0 is assigned if xi = xj . Then a second definition of �
is the expected value of dij

� = E(dij). (25.62)

In the matrix in which dij are the elements, the row averages
are called di., and the column averages are called d.j. In sam-
ples, the di. can be estimated as the proportion of the xi being
higher than the xj minus the proportion of the reverse:

d∗
i. = #(xi > xj) − #(xi < xj)

m
, (25.63)

where “*” indicates an estimate. There is a similar definition
for the d∗

.j . Obviously, E(d∗
i. ) = di. , and E(d∗

.j ) = d.j . The
sample statistic d can be calculated as

d =
∑∑ dij

mn
. (25.64)

It can be seen that � = E(d∗
i. ) = E(d∗

.j ) = E(d).
Because it is a kind of mean, d is asymptotically normally

distributed with a sampling variance that can be expressed as


2
d =

(m − 1)
2
di.

+ (n − 1)
2
d.j

+ 
2
dij

mn
, (25.65)

where 
2
di.

= E(di. − �)2, 
2
d.j

= E(d.j − �)2, and 
2
dij

=
E(dij − �)2. If there are no ties, the variance of dij, 
2

dij
, is

1 − �2. In large samples, the variance will resemble the
variance of the difference between means, becoming approx-
imately 
2

di.
/n + 
2

d.j
/m. As m and n increase, d∗

i. = di. and
d∗

.j = d.j , so 
2
di.

, 
2
d.j

, and � can be estimated from the sample
and substituted in Equation 25.65 to give a consistent esti-
mate of 
2

d . Alternatively, without relying on asymptotic
properties, the unbiased sample estimate of 
2

d is

s2
d = m2 ∑

(d∗
i. − d)2 + n2 ∑

(d∗
.j − d)2 − ∑∑

(dij − d)2

mn(m − 1)(n − 1)
.

(25.66)

In practice, the negative sign on the last term of the numera-
tor makes it possible for the estimate of variance of d to be
negative. Thus, it is suggested that (1 − d2)/(mn − 1) is
used as the minimum allowable value for s2

d . This substitu-
tion introduces a bias, but such modification eliminates im-
possible values and usually increases the efficiency of an
estimate. In large samples, the last term of the numerator is
negligible compared to the other terms of Equation 25.66.

Adjustments to the Confidence Interval of Delta

Using a sample estimate of the variance of d, the null hy-
pothesis that � = 0 can be tested without assuming identical
distributions, and CIs for � can be formed. The CI for � is tra-
ditionally computed as (d − z�/2 sd, d + z�/2 sd), using
Equation 25.66 for sd. However, this CI was found in a
Monte Carlo study (Feng & Cliff, 1995) to be unsatisfactory
for two reasons. First, when d = ±1 (at the edge of the para-
meter space), there is a zero estimated variance for d. Thus,
the conventional CI reduces to the point � = ±1. But d = ±1
can occur when � �= ±1, particularly when � is fairly high
and the sample sizes are small. Second, the traditional con-
struction of the CI does not take into account the fact that 
2

d

and � are negatively correlated. Adjustments are suggested
that take account of these so as to improve the CI for �.

As discussed in the earlier section, the consistent estimate
of the variance of t gives an improved CI for � and obviates
the necessity of using a minimum allowable variance. A sim-
ilar modification can be made in estimating 
2

d . Individually,
s2

di· and s2
d.j

are unbiased estimates of 
2
di· and 
2

d.j
, respectively.

Let us define the sample estimate of 
2
dij

as
∑

(dij − d)2/

(nm − 1). Then we can substitute 
2
di.

, 
2
d.j

, and s2
dij

in Equa-
tion 25.65, and using their sample estimates,


̂2
d =

(m − 1)s2
di.

+ (n − 1)s2
d.j

+ 
2
dij

mn
(25.67)

schi_ch25.qxd  8/2/02  3:12 PM  Page 651



652 Ordinal Analysis of Behavioral Data

This gives the consistent estimate of 
2
d , which was found to

improve the inferential performance of d (Feng & Cliff,
1995).

To take account of the negative correlation between 
2
d

and �, an asymmetric adjustment to the CI for � was sug-
gested (Feng & Cliff, 1995). It was found that


2
d ≈ s2

d (1 − �2)

(1 − d2)
(25.68)

Again, assuming that (d − �)/
d ∼ N (0, 1), z2
�/2 =

(d − �)2/
2
d . Inserting Equation 25.68 for 
2

d , the boundaries
for the CI are taken as the roots of

z2
�/2 = (d − �)2

[(1 − �2)/(1 − d2)]s2
d

. (25.69)

Equation 25.69 can be solved to give the asymmetric CI with
the adjusted lower and upper bounds

� = d − d3 ± z�/2
d
(
1 − 2d2 + d4 + z2

�/2
2
d

)1/2

1 − d2 + z2
�/2
2

d

(25.70)

For example, for d = .5, s2
d = .04, n = m = 10, and

� = .05, the standard method, � ∈ (d − z�/2sd, d + z�/2sd)
would give a symmetric CI of (.08, .92). With the adjustment,
however, the CI would be (.05, .78), which is a little longer
on the lower end and shorter on the upper end. Note that
Type I error rate under H0: � = 0 and power are also affected
because H0: � = 0 is retained if 0 is within the CI.

Example of Delta for Independent Groups

In this section we use an artificial example to illustrate the in-
dependent groups dominance analysis. Suppose that we are
interested in the relationship between mental psychological
impairment and alcoholism, and we compared 25 female al-
coholics with 25 female nonalcoholics on time to complete a
performance test. Artificial data from the two groups are
sorted and shown in Table 25.3. The mean for the 25 alco-
holics is 23.03 min, whereas the mean for the 25 nonalco-
holics is 15.65 min.

As a useful visual aid to the analysis of d, a dominance di-
agram is constructed. In this dominance matrix, the columns
represent scores of the nonalcoholic group sorted in ascend-
ing order, with the rows representing scores of the alcoholic
group sorted in the same way. The elements of the dominance
diagram represent the dominance variable. The symbol +
stands for the dij = +1, − stands for dij = −1, and 0 stands
for dij = 0, as shown in Table 25.3 in the upper right corner.
Notice that the frequency of + is much higher than that of −,
indicating scores from the alcoholic group are generally

higher than those from the nonalcoholic group. The d∗
i. and d∗

.j

are shown and it can be seen that their variation is moderate.
As a comparison with traditional methods, an independent t

test with Welch’s adjustment of degrees of freedom was per-
formed for the same data. The quantitative results of the d
analysis including inferences about � and the components of
variance of d, as well as the inference about Welch’s t test, are
summarized in the second part of Table 25.3. The statistical de-
cision of whether to reject the null hypothesis that � is zero is
made based on the z score for d, or on whether the CI contains
zero. For this example, d for alcoholics versus nonalcoholics
on time to complete the performance test is .389, showing that
it tends to take the female alcoholics longer to complete the
test, but the two sample distributions have some overlap.

The components of the variance of d are also given in the
table. Beside each raw score in the table is di. (for the alco-
holic participants) and d.j (for the nonalcoholic participants).
The former are the proportion of nonalcoholic scores that are
above this alcoholic score, minus the proportion that is
below. The latter is the proportion of alcoholic scores that are
above this nonalcoholic score, minus those that are below.
The three variances that are combined to make up the vari-
ance of d are given in the lower part of Table 25.3. According
to Equation 25.67, the variance of the observed d is .0237, so
the standard deviation of d is .154, leading to a 95% confi-
dence interval for � of .081 to .696. The z score for the signif-
icance of d is 2.530, slightly larger than the observed t score
for mean difference (t = 2.322 with 44.484 Welch’s adjusted
df ). Both the CI for � and the z score for d indicate that the
null hypothesis � = 0 should be rejected. It should be noted
that although the d and t statistics lead to consistent statistical
decisions of rejecting the null hypotheses, the d method has
descriptive superiority and provides a more direct answer to
the research question of whether female alcoholics tend to
take more time to complete the performance test.

Extensions of d Analysis

Extension to Multiple Groups

The d analysis can be extended to multiple groups contexts
by estimating a � for each possible pairwise group compari-
son. Making inferences about multiple �s raises the issue of
controlling the experimentwise Type I error rate. When there
is a theoretical or practical basis, one should perform planned
comparison and test each hypothesis separately rather than
performing post hoc comparisons. Therefore, in many cases
in which more than one � is estimated, one should use a com-
parisonwise (or parameterwise) � level based on theoretical
or important practical issues. When there are several groups
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TABLE 25.3 An Example of d Analysis for Small Samples From Two Independent Groups

Ordered Scores

Alchoholic Nonalchol.

Score di. Score d.j Dominance Diagram

1 −1.00 3 .92 – – – – – – – – – – – – – – – – – – – – – – – –
4 −.72 3 .92 + + + 0 – – – – – – – – – – – – – – – – – – – –
6 −.56 3 .92 + + + + + 0 – – – – – – – – – – – – – – – – – –
7 −.52 4 .88 + + + + + + – – – – – – – – – – – – – – – – – –
7 −.52 5 .84 + + + + + + – – – – – – – – – – – – – – – – – –

14 −.24 6 .80 + + + + + + + + + 0 – – – – – – – – – – – – – – –
14 −.24 12 .60 + + + + + + + + + 0 – – – – – – – – – – – – – – –
18 .40 12 .60 + + + + + + + + + + + + + + + + 000 – – – – – –
19 .52 13 .60 + + + + + + + + + + + + + + + + + + + – – – – – –
20 .52 14 .52 + + + + + + + + + + + + + + + + + + + – – – – – –
21 .52 15 .44 + + + + + + + + + + + + + + + + + + + – – – – – –
24 .68 15 .44 + + + + + + + + + + + + + + + + + + + + + – – – –
25 .68 15 .44 + + + + + + + + + + + + + + + + + + + + + – – – –
26 .68 15 .44 + + + + + + + + + + + + + + + + + + + + + – – – –
26 .68 15 .44 + + + + + + + + + + + + + + + + + + + + + – – – –
26 .68 16 .44 + + + + + + + + + + + + + + + + + + + + + – – – –
27 .72 18 .40 + + + + + + + + + + + + + + + + + + + + + 0– – –
28 .84 18 .40 + + + + + + + + + + + + + + + + + + + + + + 00 –
28 .84 18 .40 + + + + + + + + + + + + + + + + + + + + + + 00 –
30 .92 23 .12 + + + + + + + + + + + + + + + + + + + + + + + + –
33 .92 23 .12 + + + + + + + + + + + + + + + + + + + + + + + + –
33 .92 27 −.32 + + + + + + + + + + + + + + + + + + + + + + + + –
44 1.00 28 −.44 + + + + + + + + + + + + + + + + + + + + + + + + +
45 1.00 28 −.44 + + + + + + + + + + + + + + + + + + + + + + + + +
50 1.00 43 −.76 + + + + + + + + + + + + + + + + + + + + + + + + +

Inferences about �
d .389
sd .154
.95 confidence interval (.081, .696)
z for d 2.530

Components of s2
d

s2
di· .394

s2
d·j .207

s2
dij .831

Mean comparisons
t for means 2.322
Welch’s df for t 44.484

and it is necessary to control familywise � in a d analysis, one
can use the Bonferroni procedure.

Extension to Factorial Designs

A common situation that occurs in behavioral and biological
science is the factorial design in which the main effects and
interactions are tested. Although the additive model that un-
derlies the full analysis of a factorial experiment is not ap-
plicable to ordinal data, Cliff (1994, 1996a, 1996b) suggests
that the d method can be easily extended to multiple groups
situations in order to answer research questions that are typi-
cally answered by factorial ANOVA.

Suppose there are two factors, A and B, in the factorial de-
sign, the main-effect sum of squares for Factor A is equiva-
lent to the between-groups sum of squares that would have
been obtained if the groups had been combined across Factor
B. The main-effect of A is often interpreted as scores on X at
A1 tend to be higher than at A2, regardless of the level of B.
In a d analysis, the main-effect of A is tested by calculating
the average d with respect to different levels of A, averaged
across all levels of B. That is, a d1 is computed by comparing
scores on X at A1 to those at A2 at B1, and a d2 is computed
by comparing scores on X at A1 to those at A2 at B2. The av-
erage of d1 and d2, which we will call d-bar, reflects the over-
all tendency for scores at A1 to be higher than those at A2,
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holding B constant. For independent data, 
2
d bar, the variance

of d-bar, can be estimated by s2
d bar = (s2

d1
+ s2

d2
)/4. Then this

sample estimate of 
2
d bar can be used to test the null hypothe-

sis that �-bar = 0 with any d-bar, and to form a CI for �-bar.
The main effect of B can be tested in the same manner.

When interaction is of interest, the research question is:
Are the differences due to Factor A the same at all levels of
B? This can be addressed by testing the null hypothesis that
�1 = �2, or H0: �1 − �2 = 0. Obviously, the unbiased sample
estimate of �1 − �2 is d1 − d2 with a sampling variance

2

d1−d2
, which can be estimated by s2

d1−d2
= (s2

d1
+ s2

d2
).

Therefore the null hypothesis can be tested with the variance
of d1 − d2 estimated from the sample, and the CI for �1 − �2

can be formed.
Supposed that in an altered version of the study of psycho-

logical impairment from alcoholism, the researcher is inter-
ested whether alcoholism has an effect on participants’
performance on the psychological test independent of gender,
and whether alcoholism affects males’ and females’ per-
formance differently. The first question is a question of the 
main-effect of alcoholism, and the latter is a question of the in-
teraction of gender and alcoholism. Suppose that in addition
to the data presented in Table 25.3, 25 male alcoholics and 25
male nonalcoholics are also given the same performance test.

To test the main-effect of alcoholism, a dominance analy-
sis is performed for males by comparing male alcoholics and
male nonalcoholics, and a similar d analysis is performed for
females. As seen, for the simulated data, df, which shows the
tendency for female alcoholics to take a longer time to com-
plete the performance test than female nonalcoholics, is .389.
The sample estimate of the variance of df is s2

df
= (.154)2 =

.0237. Analysis for male participants (data not shown)
yields dm = .425 and s2

dm
= .0328. Then, d-bar = (.389 +

.425)/2 = .407, and s2
d bar = (.0237 + .0328)/4 = .0141.

The CI for �-bar can be obtained by inserting these quantities
into Equation 25.14. Carrying out the calculation, we found
the CI for �-bar to be (.126, .674), which does not contain zero.
Therefore, the H0: �-bar = 0 should be rejected. The conclu-
sion is that male and female alcoholics tend to be slower in
completing the performance test than are male and female
nonalcoholics.

To answer the question of whether there is a gender differ-
ence in the effect of alcoholism on performance, the null
hypothesis �m − �f = 0 is tested. Here, dm − df = (.425 −
.389) = .036, s2

d1−d2
= (.0237 + .0328) = .0565. Inserting

these quantities into Equation 25.70 gives a CI for �m− �f as
(−.075, .147). Because the CI contains zero, the null hypoth-
esis is not rejected, and it is concluded that a gender differ-
ence in the effect of alcoholism on subjects’ performance is
not found.

Extension to Multiple Dependent Variables

When the analysis involves multiple correlated dependent
variables, MANOVA is traditionally performed. The d analy-
sis can be extended to this situation and an overall conclusion
can be drawn, although the predicted direction of differences
on all the dependent variables must be determined in advance
on a theoretical or practical basis. Let u be the number of
variables on which two groups are compared. An overall null
hypothesis states that the sum of the �s is zero: That is to say,
H0:

∑
�u = 0. To test this null hypothesis, we need to obtain

an estimate of the variance of 
∑

du, var(
∑

du), and then we
can use 

∑
du/var(

∑
du)1/2 as a z test. Like any other sum,

the variance of 
∑

du can be expressed as

var
(∑

du

)
=

∑
var(du) +

∑∑
cov(du, dv), (25.71)

where u and v represent the dependent variables. To estimate
the covariance term, the expression for the variance of d can
be generalized:

cov(du, dv)

= (m − 1)cov(di.u, di.v) + (n − 1)cov(d.ju , d.jv ) + cov(diju , dijv )

mn

(25.72)

The quantities in this expression can be estimated by substi-
tuting sums of squares of products of d-hat for their sums of
squares in Equation 25.66 or (preferably) Equation 25.67.
When several ds are summed, the complications involved
in constructing the asymmetric CI that are used for small-
sample ds are unlikely to be important. Therefore, the CI for∑

�u can be constructed in the traditional way.

Robustness and Power Relative to t

Feng and Cliff (1995) performed simulations to evaluate the
distributional behavior of d under various circumstances, and
compared d with the t test with Welch’s adjusted degrees of
freedom (tw). Their results are generally favorable to d,
which was found to behave well in terms of size, power, and
coverage of the CI for � in most cases. But the CI coverage
can be lower than the nominal .95 when � is high, especially
when a high � is paired with small sample size. Comparing
the dominance analysis with mean comparison, d and tw both
behave well for normal data, although tw showed slight supe-
riority. For skewed data and for data that are bounded at one
or both sides, d behaves well in almost all cases, but tw
showed empirical size that is higher than the nominal level,
and CI coverage that is lower than the nominal level, in
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several cases. Because empirical data often are nonnormal,
have heterogeneous variances, or both, d analysis seems
preferable as the method of choice.

DOMINANCE ANALYSIS FOR CORRELATED DATA

Paired Data d Analysis

This section discusses the application of d to correlated data
(e.g., repeated measures or dependent groups), as described
by Cliff (1993, 1996a, 1996b). For paired observations, � can
be used to measure the probability that a score from one oc-
casion is higher than a score from another occasion, just as in
the independent groups context. With the dominance variable
dih defined as sign(xi − xh), where xi represents any observa-
tion on the first occasion, xh in the second, � can be defined as
E(dih). For n pairs of observations, � can be estimated by
d = ∑∑

dih/n2. In other words, this definition of � com-
bines information about within-pair changes with informa-
tion about between-pair changes. The calculation of d
involves comparison of each of the scores on one occasion to
each of the scores on the other occasion. In practice, the prob-
ability that an individual changes in a certain direction could
be different from the probability that a random score from the
first occasion is higher than a random score from the second.
Therefore, for paired observations, it is necessary to distin-
guish the within-pair (or within-subject) difference from the
between-pair (or between-subject) difference. Cliff (1996b)
defined a �w reflecting the probability that individuals change
in a certain direction as:

�w = E(dii). (25.73)

Here, the subscript, ii, indicates that the ith subject’s score
from the first occasion is compared to the same subject’s
score from the second occasion. The unbiased sample esti-
mate of �w is the average within-pair dominance:

dw =
∑ dii

n
. (25.74)

It is the difference between the proportion of individuals who
change in one direction and the proportion that change in the
opposite direction. When there are no ties in the paired
observations, dw would be equivalent to the Friedman (1937)
statistic.

Separately, � which is a measure of the extent to which
the overall distribution has moved, except for the self-
comparisons, is estimated by db, the average between-pair
dominance. In the repeated measure case, db is the proportion
that individual scores on one occasion are higher than
scores of other individuals on the other occasion, minus the

proportion of the reverse:

db =

∑∑
i�=h

dih

n(n − 1)
. (25.75)

That is to say, db is a U statistic with expectation �2. A d that
was defined to include the self-comparisons has expectation
[�w + (n − 1)�]/n.

Inferences about Dependent Groups �

The sampling distributions of db and dw are asymptotically
normal (because they are average scores), with means � and
�w, and sampling variances 
2

db
and 
2

dw
, respectively. Similar

to the case of deriving the variances of t, the approach to de-
riving the variances of db and dw is based on the dominance
variables dij. By taking the expectation of d2

b , Cliff (1993)
showed that


2
db

=

2

dih
+ cov(dih, dhi) + (n − 2)

[

2

di.
+ 
2

d.i
+ 2 cov(di., d.i)

]
n(n − 1)

.

(25.76)

In the Equation 25.76, di. and d.i both have i as the subscript
because they refer to the same set of subjects. Given the way
the dominance variable dih has been defined, di. represents the
proportion of pretest scores that are lower than subject i’s
posttest scores, and d.i represents the proportion of posttest
scores that are higher than subject i’s pretest scores. When pre-
and posttest scores are positively correlated with each other,
which is usually the case in practice, the covariance of di. and
d.i is negative. Thus, unlike in the case of paired t test, the last
term of Equation 25.76 is positive. The variance of dw is


2
dw

= 
2
dii

/n, (25.77)

where 
2
dii

= E(dii − �w)2. When there are no ties, 
2
dii

=
1 − �2

w. Let p be the probability of a randomly selected sub-
ject changing in one direction without ties of pre- and posttest
scores. Then 1 − �2

w = 4p(1 − p).
Similar to the variance of d in the independent groups

case, and to that of t, unbiased estimates of 
2
db

and 
2
dw

can be
obtained based on the sample. Defining d∗

i. = di. − db, d∗
i. =

d.i − db, and d∗
ih = dih − db, it is shown that an unbiased

estimate of 
2
db

is

s2
db

=

(n − 1)2
( ∑

d∗2
i. + ∑

d∗2
.i + 2

∑
d∗

i.d
∗
.i

)
− ∑ ∑

d∗2
ih − ∑ ∑

d∗
ihd∗

hi

n(n − 1)(n − 2)(n − 3)
(25.78)
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The unbiased estimate of 
2
dw

is derived in a similar way:

s2
dw

=
∑

(dii − dw)2

(n − 1)
. (25.79)

Then, s2
db

can be used to form the CI for � as (db − z�/2 sdb ,
db + z�/2sdb ), and a hypothesis that � = �0 can be tested by
using (db − �0)/sdb as a standard normal deviate. An asym-
metric CI for � was suggested earlier to compensate for the
positive correlation between independent d and its variance
in small samples. A Monte Carlo study found that when a
similar asymmetric adjustment was applied to correlated
data, the CI coverage of db tended to be conservative, result-
ing in reduced power. Therefore, it is suggested that the ordi-
nary db ± z�/2sdb should be used in constructing a CI for � in
the paired data case. Similarly, a CI for �w can be formed, and
H0: �w = �0 can be tested, in the traditional way.

In addition to tests of within-pair changes and between-
pair changes separately, the dominance analysis provides a
test of the combined effect. That is, a null hypothesis that
� + �w = �0 can be tested. Because the two statistics dw and
db are not independent, the test of the combined effect in-
volves their covariance cov(dw, db). The variance of the sum
of the two dominance variables dw and db is

var(dw + db) = 
2
dw

+ 
2
db

+ 2 cov(dw, db). (25.80)

It can be shown that the covariance of dw and db is

cov(dw, db) = [cov(dii, di.) + cov(dii, d.i)]/n, (25.81)

and the unbiased estimate of this covariance is

Est[cov(dw, db)]

=
∑

i

(∑
h dih + ∑

j dhi

)
dii − 2n(n − 1)dbdw

n(n − 1)(n − 2)
(25.82)

Substituting the unbiased sample estimates of variances
and the covariance for their corresponding terms in Equa-
tion 25.80, we can form a CI for the sum � + �w, and test the
null hypothesis about � + �w.

The d method for paired data is closely related to the
widely applied Wilcoxon’s signed rank test (WSR), but has
some additional advantages. The WSR rank-based inference
procedure was originally proposed as a one-sample test of the
median, and has been used to test a null hypothesis of random
changes. However, because it is applied to the differences on
the dependent variable, conclusions based on the WSR test
are not invariant under monotonic transformation of the
dependent variable. When WSR is used with raw data that
are transformed into ranks, the rank transform also makes

substantive interpretation difficult. The d statistic, on the
other hand, can be used on the raw scores, and thus a rank
transformation is not necessary. The d statistic also lends it-
self to parameter estimations, and does not rely on the identi-
cal distribution assumption.

Example of Delta for Paired Groups

The dominance analysis for correlated data can be illustrated
by an artificial example of repeated measures. Suppose that
in a hypothetical experiment, the experimenter is interested
in whether intentional study and incidental study differ in ef-
fectiveness for subsequent remembering. First, the experi-
menter presents a list of 40 common words to 20 participants
and instructs them to rate each word as pleasant, neutral, or
unpleasant. Then the participants are asked to recall as many
words as they can in any order (incidental remembering).
Three days later, the same 20 participants are presented an-
other list of 40 common words of the same complexity and
popularity, but are instructed to study each word carefully for
a subsequent memory test (intentional remembering). On
both occasions, the dependent measure is the number of
words each participant can recall correctly. Simulated data
are presented in the upper left part of Table 25.4, sorted by
incidental remembering scores. The upper right part of
Table 25.4 shows the dominance diagram generated based on
these artificial data. Here, a + indicates that a subject recalls
more words correctly with intentional study, a − indicates
the opposite, and a 0 indicates a tie.

Again, to compare with traditional methods, a paired t test
was performed for the same data. The d statistics and the in-
ferences about � + �w of the dominance analysis for this
artificial example are summarized in the second part of
Table 25.4. In this example, dw is .750 with a standard error
of .143, indicating that comparing the same participants
under two experimental conditions, there is a strong tendency
for the subjects to recall more words with intentional study.
This dw is highly significant; the z score for dw is 5.25, and
the .95 CI for �w is .470 to 1.0. The tendency of the move-
ment of the whole group is reflected by db, which is .329 with
a standard error of .123. The db shows that compared with
each other, participants tend to recall more words under the
intentional remembering condition. The between-subject
change is significant with a z score 2.67, leading to CI for � of
.088 to .570. The sum of dw and db, reflecting the combined
effect of intentional study on remembering is 1.079. These
results suggest that null hypotheses � = 0, �w = 0, and
� + �w = 0 all should be rejected. It is significant with a z
score of 4.37. For comparison, the paired t test of correlated
means yields a significant t score for mean difference
(t = 3.09, df = 19).
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TABLE 25.4 An Example of d Analysis for Repeated Measures Data

Raw Scores

Subject Incidental Intentional Dominance Diagram

1 2 4 +   – – – – – – – – – – – – – – – – – – –
2 6 11 + + + + + + + + + + + + + 0 0 – – – – –
3 6 8 + + +  + + 0 0 – – – – – – – – – – – – –
4 7 9 + + + +  + + + 0 0 0 – – – – – – – – – –
5 7 10 + + + + + + + + + + 0 0 0 – – – – – – –
6 8 11 + + + + + +  + + + + + + +0 0 – – – – –
7 8 11 + + + + + + +  + + + + + + 0 0 – – – – –
8 9 5 + – – – – – – –   – – – – – – – – – –– –
9 9 14 + + + + + + + + + + + + + + + + + 0– –

10 9 12 + + + + + + + + +  + + + + + + 0 – – – –
11 10 13 + + + + + + + + + + +  + + + + + 0– – –
12 10 10 + + + + + + + + ++ 0 0 0 – – – – – – –
13 10 14 + + + + + + + + + + + + +   + + + + 0– –
14 11 16 + + + + + + + + + + + + +  + + + + ++0
15 11 14 + + + + + + + + + + + + + + +  + + 0– –
16 12 13 + + + + + + + + + + + + + + + + 0 – – –
17 13 15 + + + + + + + + + + + + + + + + + +0 –
18 14 15 + + + + + + + + + + + + + + + ++ + 0 –
19 15 16 + + + + + + + + + + + + + + + + + + + 0
20 16 10 + + + + + + + + + + 0 0 0 – – – – – – –

Inferences about �w

dw .750
sdw .143
.95 confidence interval (.470, 1.0)
z 5.25

Inferences about �
db .329
sdb .123
.95 confidence interval (.088, .570)
z 2.67

Components of s2
db

s2
di· .332

s2
d·j .323

cov(di· , d·j) −.184

s2
dij .816

cov(dih, dhi) −.282
Combined inferences

dw + db 1.079
cov(dw, db) .013
s(dw + db) .247
z 4.37

Mean comparisons
Mean difference 1.90
sdiff 2.751
SE of mean difference .615
T 3.09
Df 19

Extensions of Paired d Analysis

Extension to Multiple Groups With Repeated Measures

Cliff (1996b) suggested that the paired d analysis can be ex-
tended beyond the simple case of one-sample paired observa-
tions, including many situations usually analyzed by repeated
measures ANOVA. For instance, it may be used for two or

more groups with repeated measures, which is typically ana-
lyzed by a mixed ANOVA. Suppose two independent groups
are measured on X at two occasions (e.g., pre- and posttest),
and the investigator is interested in whether there is a group
difference in how subjects change from pretest to posttest—
that is, whether the �s for the two groups are the same.
Clearly, for each group, �w, �, (�w + �), and the variances of
dw and db can be estimated from its sample. For two inde-
pendent groups, the variance of the difference of the two ds,
whether two dws or two dbs, or two sums of dw and db, is sim-
ply the sum of the variances of the two ds:

s2
d1−d2

= s2
d1

+ s2
d2

, (25.83)

where the subscripts 1 and 2 represent the group membership.
Hence the CI for �1 − �2 can be found by (d1 − d2) ±
z�/2(s2

d1
+ s2

d2
)1/2, and null hypotheses H0: �1− �2 = 0,

H0: �w1 − �w2 = 0, and H0: (�1 + �w1) − (�2 + �w2) = 0 can
be tested.

Suppose that in an altered version of the hypothetical ex-
periment comparing the effectiveness of intentional and
incidental study on subsequent remembering, an additional
factor, the complexity of the words is examined. The design of
the experiment is the same as described earlier, except that
two groups of participants are tested. One group is presented
with a list of 40 words of high complexity, and the other group
is presented with a list of 40 words of low complexity.
Based on simulated data, the dominance analysis for the
group that is presented with simple words yields dw1 = .750,
sdw1 = .143, db1 = .329, sdb1 = .123, dw1 + db1 = 1.079, and
sdw1+db1 = .247; the analysis for the group presented with
highly complex words yields dw2 = .326, sdw2 = .105, db2 =
.227, sdb2 = .098, dw2 + db2 = .653, and sdw2+db2 = .215.
Then, the main-effect of type of study can be tested by averag-
ing ds across different levels of word complexity. For within-
subject comparisons, dw-bar = (.750 + .326)/2 = .538,
s2

dw-bar = [(.143)2 + (.105)2]/4 = .0079, sdw-bar = .089, and
z score for dw-bar is 6.04. The CI for �w-bar formed in the tra-
ditional way, dw-bar ± z�/2sdw-bar, is .364 to .712, not contain-
ing zero. For between-subject comparisons, db-bar =
(.329 + .227)/2 = .278, s2

db-bar = [(.123)2 + (.098)2]/4 =
.0062, and sdb-bar = .079. Thus, z score for db-bar is 3.52, and
the CI for �-bar is .123 to .433, which does not contain zero.
For the combined effect, [(dw1 + db1 ) + (dw2 + db2 )]/
2 = .816, standard error of the averaged sum of dw and db is
{[(.143)2 + (.105)2]/4}1/2 = .164, and the z score for this
averaged summed d is 4.98, significant at the .05 level.
Therefore, the hypotheses that �w-bar = 0, �-bar = 0, and
�w-bar + �-bar = 0, all should be rejected. The conclusion is
that averaging across two levels of word complexity, individ-
uals tend to recall more words with intentional study.
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When the interaction of word complexity and type of study is
of interest, the difference of the ds obtained based on two groups
should be calculated, and inferences about the difference of ds
should be made. For instance, an interaction of word complex-
ity and type of study for within-subject comparison can be
examined by testing the null hypothesis �w1 − �w2 = 0. For
this example, dw1 − dw2 = (.750 − .326) = .424, s2

dw1−dw2
=

(.143)2 + (.105)2 = .0315, sdw1−dw2 = .177, leading to a CI
for �w1 − �w2 as (.077, .771). Because the CI does not contain
zero, the null hypothesis is rejected, and it is concluded that
there is a difference in the effect of type of study on recall due
to word complexity. Specifically, intentional study results in
better subsequent recall, and this is particularly true with recall
of complex words. Tests of interaction for between-subject
comparisons, or for the combined effect, can be obtained in the
same manner.

It should be noted that when there are more then two
groups, an omnibus test is not available to test the null hy-
pothesis that all �s are equal. But multiple pairwise compar-
isons can be made, which may be more closely related to
the typical research question about group differences over
time.

Extension to Multiple Repeated Measures

Often of interest is whether scores on a certain measure are
expected to increase or decrease systematically over time.
When there are multiple repeated measures (e.g., a pretest, a
posttest, and one or more follow-ups), one may compute a dw

and a db between each pair of measurements, and make in-
ferences about each � and �w. The ordinary � should be used
if there is a separate interest in each planned comparison.
Otherwise, the Bonferroni procedure can be used to control
the familywise Type I errors.

Other, perhaps more interesting research questions can be
investigated by calculating sums, averages, or differences in
ds (whether dws or dbs). For example, when a single group is
measured on variable X on three occasions, there are three
pairwise ds, d12, d23, and d13, where the pairs of subscripts
refer to conditions being compared. Then the amount of over-
all trend can be represented by d12 + d23. The question of
whether trends are consistent, as opposed to leveling off or
even reversing, can be represented by d12 − d23. The same
reasoning can be applied when the various conditions reflect
different levels of some ordinal variable. In either case, one
must be careful to state conclusions in terms of �s rather than
quantitative differences.

It is conceptually simple to make inferences about sums or
averages or differences of �s. As discussed earlier, the vari-
ance of the sums (equivalently, averages) or difference of ds

can be expressed as

var
(∑

du

)
=

∑
var(du) ±

∑∑
cov(du, dv). (25.84)

Here, the subscripts u and v refer to pairs of occasions. We al-
ready discussed how to obtain an unbiased estimate of du in
the two-times-of-measurement context. Again, as seen ear-
lier, the expression for the variance of d can be generalized to
estimate the covariance of two ds:

cov(du, dv) =
cov(dihu, dihv) + cov(dihu, dhiv) + (n − 2) cov[(di.u + d.iu), (di.v + d.iv)]

n(n − 1)

(25.85)

The unbiased sample estimate of cov(du, dv) is

sdu,dbv = (n − 1)
[∑

(d∗
i.u + d∗

.iu)(d∗
i.v + d∗

.iv)
]

n(n − 2)(n − 3)

−
∑∑

d∗
ihud∗

ihv + ∑∑
d∗

ihud∗
hiv

n(n − 1)(n − 2)(n − 3)
, (25.86)

where subscripted d∗s represent the deviation of that quantity
from the corresponding mean, which here is du or dv.

The same strategy can be applied to extend the use of d in
more complex research designs, including those traditionally
analyzed by factorial or mixed ANOVA. As seen earlier, the
main-effect of a factor can be expressed by the average of the
ds for this factor at all levels of other factor (or factors). An
interaction can be tested by taking the difference of two ds. In
other words, there are corresponding d analyses that can be
applied to answer various research questions that the investi-
gator has in mind.

CONCLUSION

In this chapter, we have tried to make the case that many re-
search questions in the social sciences can best be answered
by use of ordinal methods. Ordinal methods have the benefit
that they can be more statistically robust than traditional
methods, and the conclusions of ordinal methods do not
change under monotonic transformations of the data. 

The methods presented should be viewed as valuable in
their own right, not simply as methods to be used in place of the
traditional ones. They should be regarded as parametric in that
parameters of populations are estimated with the sample data.
Furthermore, the estimation procedures are not simply conve-
nient devices conditional on unrealistic population assump-
tions. Standard errors can be estimated from the data and used
as the basis for inferences about the parameters in question.
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When only the ordinal aspects of data are considered, we
have statistical methods in which the statistical and verbal
conclusions are very close. Many parametric models are now
available for testing highly specific parametric hypotheses. If
a researcher has a carefully planned hypothesis that fits into
the framework of a highly parametric model, then he or she
should use such a model. However, we very often have more
loosely formulated hypotheses and use the highly parametric
models as a default. There usually is some sort of Procrustean
translation of the original research ideas into questions that fit
with the sophisticated models. The problem is that an analy-
sis based on a highly parametric model may not provide an-
swers that are fitting for the researcher’s original questions.
We have given a number of reasons that ordinal statistics pro-
vide results that are consistent with common types of re-
search questions. The added benefit is that the conclusions
and inferences from the ordinal methods are valid under a
wide variety of conditions. Furthermore, the results are un-
changed under monotonic transformations: They generalize
to scores of latent variables as well as observed ones.

There are SPSS macros and Fortran programs available
for a number of the methods described in this chapter.
These may be accessed through the website of J. D. Long,
http://education.umn.edu/edpsych/Faculty/long.html.

APPENDIX: COMPUTING THE ESTIMATED
VARIANCE OF ta

Here we illustrate the computation of Est[var(ta)] for the raw
data in Table 25.1. The last section of Table 25.1 shows the
calculation of the tihxy, t2

ihxy, and ta that are required to com-
pute Equations 25.31 and 25.32, and finally, the estimated
variance of Equation 25.30. Using the information from
Table 25.1, Equation 25.32 is computed as

s2
tihxy

=
2
∑∑

i>h
t2
ihxy − n(n − 1)t2

a

[n(n − 1)] − 1

= 2(9) − 5(4)(−.32)

5(4) − 1
= .8526. (A25.1)

The ti.xy in Equation 25.31 are defined by summing the tihxy

in a row of the (n × n) symmetric matrix. For the tihxy in
Table 25.1, we have

h

Txy = i




0 −1 −1 −1 −1
−1 0 +1 +1 +1
−1 +1 0 −1 −1
−1 +1 −1 0 0
−1 +1 −1 0 0


 , (A25.2)

For each row (i) of the above matrix, we sum over columns
(h) and divide by (n − 1) yielding

ti.xy: (−4/4), (2/4), (−2/4), (−1/4), (−1/4), (A25.3)

or

ti.xy: −1, .5, −.5, −.25, −.25. (A25.4)

Once we have the ti.xy we can compute Equation 25.31,

s2
ti.xy

=
∑

i(ti.xy − ta)2

(n − 1)

= (−1 − (.3))2 + · · · + (−.25 − (.3))2

4

= 1.175

4
= .2938. (A25.5)

Now we are able to substitute all the relevant results into
Equation 25.30. Doing so, we have the consistent estimate of
the variance of ta,

Est[var(ta)] =
4(n − 2)s2

ti.xy
+ 2s2

tihxy

n(n − 1)

= 4(3)(.2938) + 2(.8526)

5(4)
= 5.2308

20
= .2615.

(A25.6)

(This is an unusually high value even for such a small
sample.)
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Often quantities of interest in psychology cannot be observed
directly. These unobservable quantities are known as latent
variables. In addition to being unobservable, latent variables
tend to be complex, often multidimensional, constructs. Un-
like height, which can be measured with a single assessment,
depression or temperament cannot be adequately measured
with only one questionnaire item. This complexity can be
dealt with by using multiple items as indicators of the latent
variable; this approach provides a more complete picture of
the construct and allows estimation of measurement error.
Examples of latent variables in the psychological literature
include temperament, psychological diagnoses, attachment,
health behaviors, and attitudes. The best that researchers can
do to measure latent variables is to collect data on manifest
indicators, knowing that the available indicators are imper-
fect measures of the latent variables. When several manifest
indicators are used to assess an underlying latent variable, we
have a basis for removing measurement error, leading to bet-
ter measurement of the latent variable.

The fundamental premise of any latent variable model is
that the covariation among manifest variables is explained

by the latent variable. There are four latent variable frame-
works that model the relationship between manifest variables
and a latent variable. Figure 26.1 depicts this relationship
for the four frameworks. Which framework is appropriate
depends on whether the manifest variables and latent variable
are considered to be continuous or categorical. In factor
analysis or covariance structure analysis, observed variables,
usually continuous, map onto continuous latent variables
assumed to be normally distributed (Jöreskog & Sörbom,
1996). Latent trait analysis (Spiel, 1994) refers to discrete
observed variables mapping onto a continuous latent variable.
For example, a set of aptitude test items coded as correct or in-
correct might be seen as indicators of the underlying latent
trait, in this case ability. In latent profile analysis, continuous
observed variables map onto a discrete latent variable. Latent
class analysis (LCA) models the relationship between dis-
crete observed variables and a discrete latent variable.

The present chapter focuses on this last framework, LCA.
The first section introduces the concept of a latent class and
then presents the mathematical model. This is followed by 
a discussion of parameter restrictions, model fit, and the
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Figure 26.1 Latent variable frameworks.

measurement quality of categorical items. The second section
demonstrates LCA through an examination of the prevalence
of depression types in adolescents. This empirical example is
meant to help clarify concepts presented in the first section
and help the reader to understand the latent class model. In
the third section we present longitudinal extensions of LCA.
This section also contains an empirical example on adoles-
cent depression types; in this example we extend the previous
analysis to examine the stability and change in depression
types over time. In the final section we turn our attention to
several advanced topics in latent class models. Here several
recent developments that further extend the latent class
model are introduced.

LATENT CLASS ANALYSIS

The Concept of a Latent Class

Latent classes can be thought of as a classification system for
groups of individuals when we are classifying individuals
according to some construct that is not directly measurable.
Suppose, for example, a researcher interested in the con-
struct temperament hypothesizes that this construct is made
up of qualitatively different categories. The researcher can
measure several indicators of temperament, and then use la-
tent class analysis to try to identify two or more tempera-
mental types in which people might be classified. In the
following discussion, several examples are presented in
which latent class models have been applied in the study of
psychological and behavioral phenomena. Note that for
some constructs (such as temperament) an individual’s latent
class membership is generally expected to remain the same
over time, whereas for other constructs (such as substance
use), it is possible for individuals to move between latent
classes over time.

Theory suggests that there are two main temperamental
types of children: namely, inhibited and uninhibited, charac-
terized by avoidance or approach to unfamiliar situations

(Kagan, 1989). Stern, Arcus, Kagan, Rubin, and Snidman
(1995) used LCA to test this theory empirically, comparing a
model with two temperamental types of children to models
with three and four types. Infants in two cohorts of sample
sizes 93 and 76 were measured on three categorical variables:
motor activity, fret-cry, and fear. Two-, three-, and four-class
models were fit for each cohort. For both cohorts, a two-class
solution appeared to represent the data adequately, although
the sample size may not have provided enough power to
detect additional classes.

Latent class models have also been used to explore the
onset of substance use behaviors during adolescence. Fol-
lowing Kandel’s (1975) introduction of the concept of stages
in substance use, Collins and colleagues (Collins, Graham,
Rousculp, & Hansen, 1997; Hyatt & Collins, 2000) have
explored this construct as a categorical latent variable. Using
data from the Adolescent Alcohol Prevention Trial (Hansen
& Graham, 1991), Collins et al. (1997) identified a stage-
sequence of substance use made up of the following eight
latent classes: no use; alcohol use; alcohol use with drunken-
ness; tobacco use; alcohol and tobacco use; alcohol use with
drunkenness and advanced use; alcohol, tobacco, and ad-
vanced use; and alcohol use with drunkenness, tobacco use,
and advanced use. This model specifies that adolescents can
first move from the no use latent class to either the alcohol
use or the tobacco use latent class, and then progress to latent
classes characterized by more advanced substance use. No-
tice that not all possible combinations of substances are rep-
resented in this latent class model. For example, a latent class
characterized by alcohol and marijuana use without tobacco
use does not exist. The eight latent classes specified by this
model were sufficient to represent the data. In this study, a
relationship between heavy caffeine use during adolescence
and substance use onset was established.

This approach has been applied to various educational
studies, including an examination of the number of different
classes of teaching style in the United Kingdom conducted by
Aitkin, Anderson, and Hinde (1981). Teaching style was char-
acterized by the presence or absence of 38 different teaching
behaviors in 468 fourth-grade teachers. A latent class ap-
proach to modeling this type of data is appealing because it
summarizes data from many different questionnaire items in
a parsimonious way. Although only two teaching styles were
originally predicted, formal and informal, evidence was
found for a three-class model. The first class was a more for-
mal style, in which the teachers were expected to stick to a
firm timeline and restrict the students’ behaviors. The data
suggested that 48% of teachers had a formal style. The second
class represented an informal teaching style, in which
teachers tended to have less strict classroom organization,
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to integrate subjects, and to encourage individual work. This
class encompassed 32% of teachers. The remaining 20% of
teachers fell in the third latent class, a mixed teaching style, in
which certain behavior restrictions were enforced as in the
formal group, but grading and homework were similar to
those of the informal group.

LCA has been used to apply the transtheoretical model of
behavior change to various types of health behaviors, includ-
ing smoking cessation (Martin, Velicer, & Fava, 1996), con-
dom use (Evers, Harlow, Redding, & LaForge, 1998), and
exercise (Gebhardt, Dusseldorp, & Maes, 1999). Velicer and
colleagues used a latent class approach to test competing
models of the stages of change in smoking behavior (Martin
et al., 1996; Velicer, Martin, & Collins, 1996). Figure 26.2
shows the model that was found to represent the data best.
This model posits that individuals can move both forwards
and backwards through the stages of change, and that for-
ward movement between any two adjacent times does not
extend beyond a maximum of two stages.

Bulik, Sullivan, and Kendler (2000) used LCA to classify
eating disorders in a population-based sample. All individu-
als in the sample reporting some eating disorder symptom
were included in the analysis. Nine eating disorder symptoms
were included in the latent class model, including items such
as ever had eating binges and excessive concerns with shape
and weight. Three of the six latent classes that were identified
clearly reflected the main DSM-IV clinical eating disorders:
anorexia nervosa, bulimia nervosa, and binge eating disorder.
An interesting finding was that three additional latent classes
emerged: shape-weight preoccupied, low weight with bing-
ing, and low weight without binging. These results suggest
that the three DSM-IV categories of eating disorders alone did
not fully explain the observed data; rather, all six unobserved
latent classes were needed.

Several studies have explored subtypes of depression
using latent class analysis (e.g., Parker, Wilhelm, Mitchell,
Roy, & Hadzi-Pavlovic, 1999; Sullivan, Kessler, & Kendler,
1998). For example, Sullivan et al. (1998) used 14 DSM-III-R
depressive symptoms in an epidemiological data set to
identify six latent classes: severe typical, mild typical, severe
atypical, mild atypical, intermediate, and minimal symptoms.
Although the particular latent classes identified and the

number of classes found depend on both the sample and the
items included in the model, a latent class approach provides
a means of empirically testing competing theories about
depressive subtypes for a given data set. In a later section an
empirical example is presented of LCA applied to data on
adolescent depression.

The LCA Mathematical Model and Related Issues

Latent class theory is a measurement theory for a categorical
latent variable that divides a population into mutually exclu-
sive and exhaustive latent classes (Goodman, 1974; Lazarsfeld
& Henry, 1968). The latent variable is measured by multiple
categorical indicators. During the 1970s, two important papers
were published that together provided researchers with the the-
oretical and computational tools for estimating latent class
models. First, Goodman (1974) described a maximum likeli-
hood estimation procedure for latent class models. Second, a
broadly applicable presentation of the use of the expectation-
maximization (EM) algorithm when there is incomplete data
was introduced (Dempster, Laird, & Rubin, 1977). The EM
algorithm is an iterative technique that yields maximum likeli-
hood estimates from incomplete data. In LCAthe latent (unob-
served) variables can be considered to be missing data. Several
software packages are available for conducting latent class
analysis and its extensions, including WinLTA (Collins &
Wugalter, 1992; Hyatt & Collins, 2000), �em (Vermunt, 1993;
Vermunt, Langeheine, & Bockenholt, 1999), PANMARK
(Langeheine, 1994; Langeheine, Pannekoek, & van de Pol,
1996; van de Pol & Langeheine, 1990), and Mplus (Muthén &
Muthén, 2001).

Latent class models are particularly useful when the theo-
retical construct of interest is made up of qualitatively differ-
ent groups, but the group membership of individuals is
unknown and therefore must be inferred from the data.
Although it might be tempting to try to classify individuals
based on their manifest data, LCA has several important ad-
vantages over simple cross-tabulation methods. First, a latent
variable approach to identifying qualitatively different
classes of individuals involves using multiple indicators of
the latent variable. The use of multiple indicators provides a
basis for estimating measurement error, yielding a clearer
picture of the underlying latent variable. Second, LCA can be
a confirmatory procedure. For a set of discrete manifest
items, the user must specify the number of latent classes.
LCA then estimates the parameters and provides a fit statistic.
A confirmatory procedure provides a means of testing a priori
models and comparing the fit of different models. Third,
when measurement error is present, many individuals’ res-
ponses do not point unambiguously to membership in one

Figure 26.2 Stages of change construct from the transtheoretical model.
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particular group. A latent variable approach can help the re-
searcher interpret large contingency tables, providing a sense
of both the underlying group structure and the amount of
measurement error associated with particular items.

In latent class models, the data are used to estimate the
number of classes in the population, the relative size of each
class, and the probability of a particular response to each item,
given class membership. In this section the LCA statistical
model is presented for problems involving three manifest in-
dicators, or variables. The model can be extended directly to
problems involving fewer or more indicators. Suppose that
Item 1 has response categories i = 1, . . . , I ; Item 2 has re-
sponse categories j = 1, . . . , J ; Item 3 has response cate-
gories k = 1, . . . , K ; and the latent variable has c = 1, . . . , C
latent classes. Let y = {i, j, k} represent a particular response
pattern (i.e., a vector of possible responses to the three items),
and let Y represent the array of all possible ys. Each response
pattern y corresponds to a cell of the contingency table formed
by cross-tabulating all of the manifest items, and the length of
the array Y is equal to the number of cells in this table.

The estimated proportion of a particular response pattern,
P(Y = y), can be expressed as a function of two types of pa-
rameters. First, the latent class probabilities, which are re-
ferred to here as � parameters, represent the proportion of the
population that falls in each latent class. Because the latent
classes are mutually exclusive and exhaustive (i.e., each indi-
vidual is placed in one and only one latent class), the �

parameters sum to 1. Second, the conditional response prob-
abilities, which we refer to here as � parameters, represent
the probability of a particular response to a manifest variable,
conditioned on latent class membership. These � parameters
express the relationship between the observed variables and
the latent variable. The conditional parameters bear a close
conceptual resemblance to factor loadings in that they pro-
vide a basis for interpretation of the meaning of the latent
classes. However, it is important to remember that they
represent probabilities rather than regression coefficients. A
probability near 0 or 1 represents a strong relationship be-
tween the item and the latent construct. This would mean
that, given latent class, we can predict with near certainty
how an individual would respond to that item. On the other
hand, for dichotomous items, a probability near .5 means that
the item does not provide any information above random
chance in placing the individual in the latent class.

The probability of a particular response pattern, or cell in
the contingency table cross-classifying the three items, can
be written as

P(Y = y) =
C∑

c=1

�c�i |c� j |c�k|c (26.1)

where

• �c represents the probability of being in latent class c.

• �i |c represents the probability of response i to Item 1, con-
ditional on membership in latent class c.

• � j |c represents the probability of response j to Item 2, con-
ditional on membership in latent class c.

• �k|c represents the probability of response k to Item 3,
conditional on membership in latent class c.

The preceding parameter definitions appear in Appen-
dix A for later reference. The latent class model is defined by
making two critical assumptions. First, all individuals in a la-
tent class are assumed to have the same conditional response
probabilities for the items. For example, all individuals in
the latent class associated with an inhibited temperament
type are assumed to have the same probability of displaying
high motor activity. Second, there is an assumption of condi-
tional independence given latent class. This implies that
within each latent class, the three indicators are independent
of one another. For example, individuals’ temperament type
explains any relationship among their reports of motor activ-
ity, fret-cry, and fear. This second assumption allows us to
express the probability of a particular response pattern as
shown in Equation 26.1, without conditioning on anything in
addition to latent class.

Estimation

The EM algorithm is usually used to estimate the parameters
of latent class models (Dempster et al., 1977; Goodman,
1974). This algorithm alternates between the E-step, or ex-
pectation step, and the M-step, or maximization step. At each
step of the EM algorithm, the current set of estimates is com-
pared with the set from the previous step. When the differ-
ence between the estimates becomes smaller than a specified
criterion, the program has converged on a maximum of the
likelihood function. Depending on the likelihood function of
a given model, there may be a distinct global maximum, or
there may be one or more local maxima. The issue of local
maxima is critical in latent class models. If there are several
local maxima, which local maximum is reached will depend
on the set of starting values used. It is important to explore
multiple solutions to ensure that the maximum likelihood es-
timates represent the best solution. This can be done by esti-
mating the parameters based on several different sets of
random start values. Although we hope that only one mode is
identified, several different solutions corresponding to differ-
ent local maxima may be found. In this case there are several
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possible ways to proceed. One choice is to examine the dis-
tribution of solutions and assume that the solution reached
most often is the best one, and that one can be selected as the
final model. A second approach is to select the solution with
the best fit, which corresponds to the highest likelihood. A
third way to proceed is to simplify the model being fit, which
will reduce the number of parameters being estimated. This
often is enough to ensure that just one solution is reached.
Any combination of these approaches can be used together in
deciding upon a final solution. Fortunately, for many latent
class analyses only one solution will be identified.

Missing Data

As has been reviewed extensively in the missing data litera-
ture (e.g. Collins, Schafer, & Kam, 2001; Schafer, 1997),
there are three major classifications of missing data. If miss-
ingness on a variable Y depends on the variable itself, such as
when a drug user in a drug use prevention study avoids a
measurement session because he is using drugs, this is re-
ferred to as missing not at random (MNAR). If missingness
on Y does not depend on Y itself, this is referred to as missing
at random (MAR). One example of this would be missing-
ness caused by poor readers’ failing to finish a questionnaire.
The special case of MAR in which the cause of missingness
is completely unrelated to Y is referred to as missing com-
pletely at random (MCAR). For a thorough introduction to
modern missing data procedures, see the chapter by Graham,
Cumsille, and Elek-Fisk in this volume.

Most LCA procedures, including WinLTA (Collins &
Wugalter, 1992; Hyatt & Collins, 2000), employ a maximum
likelihood routine that adjusts for missing data. This ap-
proach adjusts for MAR missingness, but not for MNAR
missingness. Several simulation studies have documented the
success of parameter recovery under various conditions.
When the � parameters clearly define the latent classes (for
example, probabilities above .8 or below .2 for dichotomous
indicators), parameter recovery for data that are MCAR or
MAR is not substantially biased regardless of the amount of
missing data, the sample size, or the latent class model (Hyatt
& Collins, 1998; Kolb & Dayton, 1996). It is important to
point out that the maximum likelihood missing data proce-
dure will be fully successful only if all variables relevant to
missingness are included in the model being fit. If there are
variables relevant to missingness that cannot be included in
the model being fit, it may be preferable to use a multiple im-
putation approach in order to include these variables (Collins
et al., 2001). The impact of missing data on assessment of
model fit is discussed below in the section in this chapter
entitled “Advanced Topics in Latent Class Models.”

The Use of Parameter Restrictions

Restricted parameters include those that are fixed, in which
the value is set to a particular value and not estimated, and
those that are constrained to be equal to other parameters in
an equivalence set, so that only one parameter is estimated
for the entire set. In a classic article, Goodman (1974) pre-
sented the estimation of restricted latent class models using
the EM algorithm. Often latent class models are fit without
the use of any parameter restrictions. Such unrestricted mod-
els can be quite informative, and are especially useful for
exploring new models. However, parameter restrictions serve
two important roles in latent class models.

First, parameter restrictions can be used to help in achiev-
ing identification. Both fixing and constraining parameters
reduces the number of parameters to be estimated, which
helps in achieving identification. Underidentification refers
to a situation in which there are too many parameters to esti-
mate given the information available in a certain data set.
One necessary condition for identification is that the number
of independent parameters to be estimated be less than the
number of possible response patterns. However, satisfying
this condition does not ensure an identified model. Having a
large sample size relative to the number of response patterns
helps in identification. When the sample size is small relative
to the number of response patterns (i.e., the contingency
table is sparse), parameter restrictions can greatly aid in
identification.

Second, parameter restrictions are useful tools for specify-
ing or testing various features of a model. For example, the �

parameters define the meaning of the latent classes. If we have
measurement invariance across groups, meaningful compar-
isons of the latent class probabilities can then be made. Struc-
tural invariance across groups in the measurement of the
latent variable is a testable hypothesis. The parameter esti-
mates can be freely estimated in one analysis, and constrained
equal across groups in another, and the fit of the two models
can be compared. As an example, a researcher interested in
comparing sex differences in the prevalence of two tempera-
ment types in a sample of infants may wish to start by com-
paring a model with all parameters freely estimated to one in
which the conditional response patterns are constrained to be
equal across the two classes. If measurement invariance can
be established across classes, this is evidence that the same
construct is being measured in males and females, and there-
fore meaningful cross-sex comparisons of the prevalence of
the inhibited and uninhibited types can be made.

Another example of a latent class model for which there is
a theoretical justification to impose parameter restrictions
is a hierarchical, or Guttman, model (Rindskopf, 1983).
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In Guttman models, it is assumed that there is an order among
the items in a scale. In models of learning, this order corre-
sponds to the difficulty of passing each item. For example, if
three skills are measured and assumed to be hierarchical in
level of difficulty, and a pass is denoted 1 and a fail denoted 0,
we might restrict the parameters so that the only latent classes
correspond to the patterns 000, 100, 110, and 111. The fit of
such a model can then be compared to the fit of an unrestricted
model to see if the Guttman scale holds in the data.

Model Selection and Goodness-of-Fit

An important issue regarding latent class models is how many
latent classes are there? Choosing the number of latent
classes can be somewhat subjective, and the choice can be
driven by both empirical evidence and theoretical reasoning.
For example, if theory suggests that there are only two tem-
perament types, the fit of a two-class model can be assessed.
A more empirical approach would be to examine models with
two, three, and four latent classes to see which solution is
most interpretable or provides the best fit. The typical ap-
proach to model fit in latent class analysis is to compare the
response pattern frequencies predicted by the model with the
response pattern frequencies observed in the data. The pre-
dicted response pattern frequencies are computed based on
the parameter estimates produced in the LCA. The two most
common measures of fit in a contingency table analysis are
the Pearson chi-square statistic, X2, and the likelihood ratio
statistic, G2. The likelihood ratio statistic has the advantage
that nested models can be compared by a likelihood ratio test,
with the resulting statistic distributed as chi-square, and thus
is often preferred to the Pearson chi-square. The likelihood
ratio statistic is calculated by

G2 = 2
∑

y

obs log

(
obs

exp

)
(26.2)

where y represents a response pattern (i.e., a cell in the contin-
gency table formed by cross-tabulating all items). This statis-
tic expresses the degree of agreement between these predicted
frequencies and the observed frequencies. The G2 is asymp-
totically distributed as a chi-square, with degrees of freedom
equal to number of possible response patterns minus number
of parameters estimated minus 1. The term asymptotically
means that a chi-square distribution is a good approximation
when the number of observations in each cell is sufficiently
large. However, latent class models can often involve large
contingency tables, resulting in a contingency table with
many sparsely populated cells. For sparse contingency tables,
the expected counts can be very small for many cells, and thus
the distribution of the G2 is not well approximated by the chi-

squared distribution. Under such conditions, overall hypothe-
sis testing of model fit using the G2 can be done in only a
rough way (Collins, Fidler, Wugalter, & Long, 1993; Read &
Cressie, 1988). A good rule of thumb is that having the value
of the fit statistic close to or less than the degrees of freedom
is an indication that the model fits the data reasonably well.
For a G2 difference test comparing two nested models, how-
ever, the distribution usually is better approximated by the
chi-squared distribution, and thus hypothesis testing is more
reliable.

A pair of nested models consists of a simpler model and a
more complex model. The more complex model can be con-
sidered a version of the simpler model, in which some para-
meters constrained in the simpler model are estimated in the
more complex model. Two nested latent class models can be
compared statistically by taking the difference of their G2 val-
ues. This difference is distributed as a chi-square with de-
grees of freedom equal to the difference in the degrees of
freedom associated with the two G2s. If the difference in G2 is
nonsignificant, it means that the more parsimonious model
fits about as well as the more complex model, and thus there
is no benefit to estimating the parameters in the more com-
plex model. If the difference in G2 is significant, it means that
the additional parameters estimated in the more complex
model are necessary to achieve adequate fit. The G2 differ-
ence test can be quite useful when comparing various patterns
of parameter restrictions for latent class models with a given
number of classes. For example, if we are interested in con-
ducting an omnibus test for sex differences in the prevalence
of temperament types in infants, we can constrain the � para-
meters (the probability of membership in each temperament
type) to be equal across males and females in one model, and
freely estimate the � parameters in a second model. The G2

difference test will tell us whether it is reasonable to impose
this equality restriction. If the difference test reaches statisti-
cal significance, then we can conclude that the probabilities
of membership in the temperament types vary by sex. Ideally
we would like to be able to use this approach to help deter-
mine the appropriate number of latent classes by comparing
the fit of two models. For example, we might want to com-
pare a model with two temperament types to a model with
three temperament types. Unfortunately, two models with
different numbers of latent classes are not nested because pa-
rameters of the simpler model take on boundary values of the
parameter space (Everitt, 1988; Rubin & Stern, 1994).
Boundary values refer to the maximum and minimum values
a parameter can take on. Because all parameters in the latent
class model are probabilities, the boundary values are 0
and 1. For example, in order to compare a model with two
latent classes and one with three latent classes, the simpler
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two-class model would have to contain three latent classes,
one with probability of membership fixed at zero. Because
zero is a boundary value, these two models are not nested.

Various model selection information criteria have been
proposed for comparing models with different numbers of
classes, including the Akaike information criterion (AIC;
Akaike, 1974) and the Bayesian information criterion (BIC;
Schwarz, 1978). The AIC and BIC are penalized log-
likelihood test statistics, where the penalty is two times the
number of parameters estimated for the AIC and the log of
N times the number of parameters estimated for the BIC.
Results of a simulation study conducted by Lin and Dayton
(1997) suggest that, although the AIC performs better than the
BIC and the Consistent AIC (CAIC) (Bozdogan, 1987),
the AIC tends to select models that are more complex than the
true model. Another drawback to this approach is that these
methods serve only to compare the relative fit of several
models under consideration, but do not help in determining
whether a particular model has sufficiently good fit. A
Bayesian approach to model monitoring using a posterior pre-
dictive check distribution has been proposed as a method for
comparing models with different numbers of classes (Rubin
& Stern, 1994). This approach is discussed in the section
entitled “Goodness-of-Fit Issues,” under “Advanced Topics
in Latent Class Models.” Bootstrapping the goodness-of-fit
measures has also been proposed for latent class models
(Collins et al., 1993; Langeheine et al., 1996). This method,
also referred to as Monte Carlo sampling, involves repeatedly
sampling from the model-based parameter estimates to get a
distribution of the fit statistic under the assumption that the
model is true. This method yields an empirical distribution of
the fit statistic, forgoing the use of a theoretical distribution
altogether.

It may be helpful to draw a comparison between LCA and
factor analysis. In factor analysis, multiple continuous items
are mapped onto several factors. In contrast, the latent class
model maps multiple categorical items onto several cate-
gories of a latent variable. In factor analysis, both exploratory
and confirmatory approaches can be used in selecting the
number of factors. All factors with eigenvalues greater than 1
are often selected in an exploratory factor analysis. An ex-
ploratory approach to LCA might involve the user’s fitting a
two-class solution to a data set, then a three-class solution,
and so on, and comparing the various solutions and fit statis-
tics in a rough way. In this framework there is no rule of
thumb for selecting the smallest number of latent classes that
can adequately explain the structure in the data. The closest
analogue might be to create a table that summarizes the G2

value and degrees of freedom for each number of classes fit to
the data. The most parsimonious model (the model with the

smallest number of classes) that provides adequate fit could
be selected as the one with the most appropriate number of la-
tent classes. This approach is taken in the empirical example
on adolescent depression presented later in this chapter.

Assessing the Quality of Categorical Measures

Latent class models provide a basis for assessing the reliabil-
ity of categorical items (Clogg & Manning, 1996; Collins,
2001). Psychometric theory for instruments intended to mea-
sure continuous latent variables is inappropriate for instru-
ments measuring categorical latent variables (Collins, 2001).
However, reliability of such instruments can be examined by
means of the parameters in the latent class model.

Clogg and Manning (1996) present two types of reliability
for categorical items, item-specific reliability and item-set re-
liability. Item-specific reliability refers to pairwise relations
between single items and the latent class variable. For exam-
ple, consider the � parameters. These values quantify how
well membership in a latent class predicts item response,
which is one form of reliability. An item that is highly associ-
ated with a latent class is a reliable indicator of that class.
Another item-specific form of reliability presented by Clogg
and Manning (1996) is how well an item response predicts
membership in a latent class. Additional methods Clogg and
Manning present for assessing item-specific reliability in-
clude using odds ratios and transformed odds ratios that are
similar to correlations.

Item-set reliability, in contrast to item-specific reliability,
refers to the reliability of a set of items with respect to each
latent class—that is, how well a particular response pattern
predicts latent class membership. Flaherty (in press) uses
both item-specific and item-set reliability to examine the
measurement quality of four measures of tobacco use in a
national survey.

Collins (2001) has developed a reliability index that is
similar conceptually to the familiar Cronbach’s �. Rather
than examine reliability for item and class pairs, or for re-
sponse patterns and each latent class, Collins (2001) takes the
information contained in the item-set reliabilities and devel-
ops a single number that summarizes the reliability of the
items. Collins (2001) also extends this notion of reliability to
the assessment of the reliability of dynamic (changing) cate-
gorical latent variables.

Reliability analysis is closely related to item development
and selection. Biemer and Wiesen (2002) use the latent class
model to assess the consistency of people’s reports of mari-
juana use in a national survey of substance use. Using this
method, they were able to identify poor items and adjust
prevalence estimates of marijuana use.
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A LATENT CLASS EXAMPLE:
ADOLESCENT DEPRESSION

We illustrate the latent class model in this section by examin-
ing adolescent depression in data from The National Longitu-
dinal Study of Adolescent Health (Add Health; Resnick et al.,
1997). We might expect there to be an underlying latent vari-
able made up of two mutually exclusive and exhaustive
groups of individuals: those who are depressed and those who
are not. An alternate theory might hypothesize that there are
several different types or levels of depression. These two
competing theories can be examined empirically by fitting
several different latent class models to a data set.

The Add Health study was mandated by Congress to col-
lect data for the purpose of measuring the effect of social con-
text on the health and well-being of adolescents in the United
States. The first wave of the sample included 11,796 students
in grades 7 through 12 who were surveyed between April and
December of 1995, and the second wave included the same
individuals interviewed again between April and August of
1996. The sample used in the latent class analysis includes all
1,892 adolescents who were in 12th grade at Wave I, consist-
ing of all adolescents in the oldest cohort of the core data set.

The prevalence of depression in this sample of high school
seniors is explored by examining eight survey items from the
Add Health study. The items, listed in Table 26.1, include
four items related to sadness, two indicators of feeling dis-
liked by others, and two items related to feelings of failing at
life. These six-level items were recoded so that 1 represents
never or rarely experiencing the symptom in the past week,
and 2 represents experiencing the symptom sometimes, a lot,
most of the time, or all of the time during the past week.

Because latent class analysis is based on data in the form of a
contingency table, it is important to have only a few levels for
each variable. Extreme sparseness of cells can lead to prob-
lems in the estimation. As the number of levels within vari-
ables increases, so does the number of parameters in the
model. A balance between retaining information in the origi-
nal variables and collapsing categories must be struck, as
identification can be difficult to attain when too many para-
meters are estimated.

The eight questionnaire items are observed indicators of
the latent variable, depression. In our example, latent class
analysis allows us to arrive at a model that we believe best
represents the relationship between these eight items and the
latent variable depression. We will estimate the proportion of
individuals in a sample who are in each class of depression.

The Mathematical Model and Parameters Estimated

The LCA mathematical model is be presented here in terms
of our empirical example. Suppose that there are eight cate-
gorical manifest indicators with response categories i, j, k, l,
m, n, o, and p, respectively, and there are c = 1, . . . , C latent
classes. Let y = {i, j, k, l, m, n, o, p} represent a response
pattern, and let Y represent the entire array of response pat-
terns. Each individual can respond yes or no to each of the
eight indicators of depression listed in Table 26.1, so there are
28 = 256 possible ways to respond to the eight questions.
For example, an individual reporting no symptoms of depres-
sion in the past week would have the response pattern
{1, 1, 1, 1, 1, 1, 1, 1}, and someone experiencing symptoms
related to sadness but none related to being disliked or failure
might have the response pattern {2, 2, 2, 2, 1, 1, 1, 1}.

The estimated proportion of a particular response pattern,
P(Y = y), is expressed as a function of the latent class proba-
bilities (the � parameters) and the conditional response prob-
abilities (the � parameters). These � parameters express the
relationship between the eight observed variables and the
latent variable depression. The probability of a particular
response pattern is:

P(Y = y) =
C∑

c=1

�c�i |c� j |c�k|c�l|c�m|c�n|c�o|c�p|c (26.3)

where

• �c represents the probability of being in latent class c
(e.g., the probability of being in a certain latent class of
depression).

• �i |c represents the probability of response i to Item 1, con-
ditional on membership in latent class c (e.g., the proba-
bility of responding yes to Could not shake the blues given
membership in a certain latent class of depression).

TABLE 26.1 Eight Items From the Add Health Feelings Scale:
Percent of 12th-Grade Students Who Reported Symptom Sometimes,
a Lot, Most, All of the Time During the Past Week

Male (%) Female (%)

Sad:
You felt that you could not shake off the 25.7 35.1

blues, even with help from your family
and your friends.

You felt depressed. 36.2 47.0
You felt lonely. 35.6 44.7
You felt sad. 43.2 56.0

Disliked:
People were unfriendly to you. 36.8 33.5
You felt that people disliked you. 34.7 28.1

Failure:
You thought your life had been a failure. 15.4 16.2
You felt life was not worth living. 8.9 10.1

Note. All items were coded. 1 = never or rarely during the past week;
2 = sometimes, a lot, most, or all of the time during the past week.
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• � j |c represents the probability of response j to Item 2,
conditional on membership in latent class c (e.g., the prob-
ability of responding yes to Felt depressed given member-
ship in a certain latent class of depression), and so on.

For our example, we first fit a two-class solution, which
yielded a G2 of 885.1 with 238 degrees of freedom. We then
fit models with three classes, four classes, and so on, up to
eight classes. Table 26.2 reports the resulting G2s. The most
parsimonious model with a G2 value close to the degrees of
freedom is the five-class solution (G2 of 268.6 with 211 de-
grees of freedom), and thus we select this as our final model.
In order to explore the presence of multiple modes, or local
maxima, we ran the analysis 100 times using a different set of
random start values for each. If all 100 solutions were identi-
cal, then we could be confident that the global maximum of
the likelihood had in fact been identified. In other words,
there would be little doubt that we did in fact find the proper
solution for our five-class model. However, two slightly dif-
ferent modes were identified, both with reasonable parameter
estimates. In order to select the better mode we examined the

distribution of these 100 runs. One solution had a G2 of 268.6
and was reached 88 out of 100 times. A second solution,
reached 12 out of 100 times, had a G2 of 323.5. Because the
first solution was clearly dominant in frequency and had a su-
perior fit, this solution is reported as the final one. If the dom-
inant solution had an inferior fit, we might have considered
restricting the parameter estimation (e.g., imposing some
sensible equality constraints on the conditional response
probabilities). This more constrained model would then have
been run with 100 different sets of start values, and the distri-
bution of solutions would have been examined.

The Five-Class Solution

The results indicate that the observed data were best repre-
sented by five types, or levels, of depression. Table 26.3 con-
tains the parameter estimates for the five-class solution. The
matrix of conditional response probabilities shows the proba-
bility of responding yes to each of the eight items given class
membership. (The probability of responding no to each item
given class membership can be calculated by subtracting the
probability of yes from 1.) Probabilities greater than .50 are
marked in bold, indicating that individuals in that latent class
are more likely to report that symptom than not. It is interest-
ing to note that, although no restrictions were imposed on the
model parameters, the four indicators of sadness tend to op-
erate similarly, as do the two indicators of being disliked and
the two indicators of failure. Based on the pattern of condi-
tional response probabilities, the meaning of the five latent
classes can be interpreted and appropriate class labels can be
assigned. Individuals in Latent Class 1 are expected to have a

TABLE 26.2 Goodness-of-Fit for Various Models

Number of Classes Degrees of Freedom G2

2 238 885.1
3 229 567.0
4 220 351.2
5 211 268.6
6 202 237.3
7 193 206.3
8 184 187.8

TABLE 26.3 Results for Grade 12 Unconstrained Latent Class Model

Panel A. � Parameters: Probability of Yes

Sad Disliked Failure

Couldn’t Disliked Life Life not
Shake Felt Felt Felt People by was Worth
Blues Depressed Lonely Sad Unfriendly People Failure Living

Class 1 .04 .06 .12 .18 .13 .00 .02 .01
Class 2 .63 .89 .59 .80 .07 .12 .16 .07
Class 3 .07 .16 .29 .37 .63 .68 .13 .04
Class 4 .59 .83 .80 .91 .81 .66 .16 .05
Class 5 .90 .98 .95 .98 .67 .85 .88 .73

Panel B. Class Prevalence

Class Label Proportion

1 No depression .41
2 Sad .18
3 Disliked .17
4 Sad + disliked .15
5 Depression .09
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Figure 26.3 Overall prevalence of depression latent classes.

low probability of reporting any depression symptom, and
thus Latent Class 1 is called no depression. Members of
Latent Class 2 are likely to report yes to all sadness-related
symptoms and no to the other symptoms, so we call Latent
Class 2 sad. Similarly, Latent Class 3 is labeled disliked and
Latent Class 4 is called sad + disliked. Latent Class 5 is as-
sociated with a high probability of reporting all eight depres-
sion symptoms, and is called depression.

Table 26.3 also reports the � parameters, which represent
the relative size of each of the five classes. Note that these pa-
rameters must sum to 1, as they represent the distribution of a
discrete random variable. Figure 26.3 displays the prevalence
of the five depression latent classes.

The no depression latent class has the highest prevalence,
with 41% of the sample expected to be members of this class.
We expect 18%, 17%, and 15%, respectively, to be in the sad,
disliked, and sad + disliked classes. Only 9% are expected to
experience the highest level of depression. The no depression
class represents the largest segment of the population, the
depression class represents the smallest segment, and half of
the population is expected to fall somewhere in the three
middle levels.

Examining the Effect of Gender

Now that a five-class model for depression has been estab-
lished in this sample of adolescents, it may be useful to exam-
ine how the prevalence of each level of depression varies
across different groups. For example, we might be interested in
whether males or females experience higher levels of depres-
sion. This can be investigated by estimating the � and � para-
meters for each group and comparing the probabilities of latent
class membership. However, in order to make meaningful

comparisons of the prevalence of latent classes, it may be help-
ful to impose some type of structure on the conditional re-
sponse probabilities. One option is to impose measurement
invariance across sex. For latent class models, this means ap-
plying constraints such that the conditional response probabil-
ity matrix is the same for males and females. The unrestricted
five-class model in which all parameters are freely estimated
for both sexes, and an alternative model where measurement is
constrained to be equal across sex, are nested and can be com-
pared directly using a G2 difference test. Such a test indicates
whether it is reasonable to conclude that there is measurement
invariance across groups. In our example, the model with all
parameters estimated freely has a G2 of 421.3 with 422 df, and
the model that imposes measurement invariance across sex has
a G2 of 463.3 with 462 df. The difference test is not significant
(G2 of 42.0 with 40 df ), indicating that males and females have
the same probability of reporting each depression symptom
given their level of depression. Thus, measurement invariance
holds across sex, and so we constrain the � parameters to be
equal for males and females.

Table 26.4 shows results for a latent class model of depres-
sion with sex as a grouping variable. The matrix of conditional
response probabilities is very similar to that in Table 26.3. The
latent class prevalences for males and females can now be
compared. We can conduct an omnibus test for differences in
the distribution of males and females’prevalence of depression
by constraining all elements of the vector of � parameters to be
equal across sex, and comparing that to our present model. The
G2 difference test is highly significant (G2 = 80.6 with 4 df ),
indicating that the prevalences of the five latent classes of
depression differ substantially between males and females.
Table 26.4 shows that the proportion of adolescents expected
to be in the no depression latent class is similar for males and
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TABLE 26.4 Results for Grade 12 Latent Class Model, Conditional Parameters
Constrained Equal Across Sex

Panel A. � Parameters: Probability of Yes

Sad Disliked Failure

Couldn’t Disliked Life Life not
Shake Felt Felt Felt People by was Worth
Blues Depressed Lonely Sad Unfriendly People Failure Living

Class 1 .04 .06 .13 .18 .15 .01 .02 .01
Class 2 .62 .87 .59 .80 .11 .10 .16 .08
Class 3 .09 .21 .30 .39 .66 .78 .14 .04
Class 4 .61 .84 .82 .93 .78 .67 .16 .04
Class 5 .89 .98 .94 .97 .67 .85 .87 .73

Panel B. Class Prevalence

Male Female
Class Label Prevalence Prevalence

1 No depression .46 .41
2 Sad .12 .24
3 Disliked .22 .10
4 Sad + disliked .12 .14
5 Depression .08 .10

females (.46 and .41, respectively). The expected proportion in
the highest level of depression is also similar for males and
females (.08 and .10, respectively). However, gender differ-
ences appear in the middle levels of depression. Female ado-
lescents are twice as likely to be in the sad latent class (.24 vs.
.12), whereas male adolescents are twice as likely to be in the
disliked latent class (.22 vs. .10). Figure 26.4 shows the gender
differences in the prevalence of depression latent classes. A
formal test of gender differences in specific � parameters
requires estimates of each parameter’s standard error.

Although standard errors are not a byproduct of the EM
algorithm, several methods for obtaining estimates of the
standard errors have been proposed. One method involves a

Bayesian approach for obtaining standard errors. In the sec-
tion on recent developments in LCA appearing later in this
chapter, this approach is used to compare the latent class
prevalence of depression types in males and females. But first
we turn our attention to latent class models for repeated
measures.

EXTENSIONS OF LCA TO REPEATED MEASURES

Often in psychology we are interested in developmental
processes—that is, how constructs change over time. Devel-
opment is often characterized by increases or decreases in a

Figure 26.4 Sex differences in the prevalence of depression latent classes.
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particular continuous variable over time. However, qualita-
tive development can also be examined by modeling how in-
dividuals pass through qualitatively different stages over
time. Examples of stage sequences are abundant in psychol-
ogy. These include Piaget’s (1973) stage model of cognitive
development, Freud’s (1961) stages of psychosocial develop-
ment, Kohlberg’s (1966) stage sequence of moral develop-
ment, and Erikson’s (1950) stages of ego identity. Following
from our examination of adolescent depression, we might be
interested in stability and change in depression throughout
adolescence. In the following discussion we extend this pre-
vious latent class analysis by modeling transitions between
different latent classes of depression over time.

Latent Markov Models

Latent Markov modeling is a framework for examining sta-
bility and change in a categorical latent variable measured
by categorical variables repeatedly over time in the same
sample of individuals (Langeheine, 1994; van de Pol &
Langeheine, 1990). Latent Markov models assume that time
is a discrete process, rather than a continuous one, and sum-
marize change over time by estimating transitions from one
time point to the next. Traditional Markov models involve a
single indicator of class membership measured at multiple
times, in which the conditional response probabilities are
constrained to be equal over time in order to achieve identi-
fication. A multiple indicator Markov model measures class
membership at each time using a set of two or more items. In
this model the conditional response probabilities do not need
to be constrained to be equal over time in order to achieve
identification, although this constraint helps interpretability.
The multiple indicator latent Markov model (Langeheine,
1994; Langeheine & van de Pol, 1994; Macready & Dayton,
1994) is identical to the latent transition analysis framework
(Collins & Wugalter, 1992); this longitudinal approach is
presented in the following discussion.

Latent Transition Analysis

Latent class theory has been extended to a longitudinal
framework allowing modeling of change in a discrete latent
variable. This framework, called latent transition analysis
(LTA; Collins et al., 1997; Collins & Wugalter, 1992; Hyatt &
Collins, 2000), provides a way of estimating and testing mod-
els of stage-sequential development in longitudinal data. In
LTA, change is measured using multiple manifest indicators.
This approach allows researchers to estimate the prevalence
of stages (i.e., latent classes) and the incidence of transitions
to different stages over time for multiple groups. In the

following discussion, some applications of LTA in the behav-
ioral sciences are briefly described. The LTA mathematical
model and related issues are then presented by extending the
empirical example on adolescent depression.

Previously we discussed the modeling of substance use
onset and smoking cessation within the latent class frame-
work. Because individuals’ class membership in each of
these sequences can change over time, it may be interesting
to collect data at more than one wave and examine patterns of
change between consecutive times. The transtheoretical
model of behavior change presented earlier (see Figure 26.2)
is, in this case, a sequence of four stages: precontemplation,
contemplation, action, and maintenance. LTA has been used
to test competing models of smoking behavior as individuals
move from one stage to another (Martin et al., 1996; Velicer
et al., 1996). The stage-sequential model of substance use
onset has been modeled extensively using LTA. Collins et al.
(1997) examined the relationship between heavy caffeine use
and adolescent substance use. Other covariates of substance
use onset have been explored using LTA, including pubertal
timing (Hyatt & Collins, 1999), parental permissiveness
(Hyatt & Collins, 2000), and exposure to adult substance use
(Tracy, Collins, & Graham, 1997).

A similar application of LTA incorporated a DSM-IV diag-
nosis of alcohol abuse and dependence (AAD) at age 21 as the
grouping variable, and modeled group differences in the stage
sequence of alcohol use during elementary, middle, and high
school. The stage sequence of drinking behaviors included the
following four latent classes: nonuse, initiated only, initiated
and currently using, and initiated and currently using with
heavy episodic drinking. Different drinking patterns that
emerged in middle and high school were related to indi-
viduals’ subsequent AAD diagnosis (Guo, Collins, Hill, &
Hawkins, 2000). Current alcohol use in middle school was re-
lated to an AAD diagnosis at age 21, whereas heavy episodic
drinking in high school was related to AAD. This evidence
suggests the need for differential intervention programs at
various developmental periods throughout adolescence.

Children’s drawing development from ages four through
eight has been modeled as a stage-sequential developmental
process with the following stages: scribbling or prestage, pre-
schematic stage, schematic stage proper, and late schematic
stage (Humphreys & Janson, 2000). These four stages were
based on 12 items measuring features of the children’s draw-
ings at each of the five times, including head, eyes and hair.
Development was hypothesized to be cumulative: That is,
after skills are learned they are not lost. Cumulative models
of development can be specified and tested in LTA by re-
stricting the probability of movement between certain stages
over time. 
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LTA has also been used to model change from year to year
in the safety of sexual behaviors among injection drug users
(Posner, Collins, Longshore, & Anglin, 1996). Four sub-
scales were used to estimate the stage-sequence over two
times: knowledge, denial of personal risk, self-protective be-
haviors, and sexual risk behavior. A six-class solution that al-
lowed individuals to move to any stage over time was found
to fit the data well. The six stages were labeled: high risk;
knowledge only; safe sex only; sex risk; low risk, but denial;
and low risk. It was found that individuals moved to a differ-
ent stage over time quite often, indicating that sexual behav-
ior prevention efforts should be ongoing and provided to all
injection drug users regardless of the safety of their current
sexual behaviors.

LTA can be used to aid both the design and evaluation of
intervention programs. Competing models can be fit in order
to describe development in processes upon which it might be
possible to intervene. In addition, by incorporating a group-
ing variable, subgroups of the population that are at higher
risk can be identified, providing useful information to re-
searchers as they are designing interventions for prevention
or treatment. For example, Collins et al. (1994) explored
differences in substance use onset for Anglo, Latino, and
Asian-American adolescents and discussed possible implica-
tions for designing an intervention. LTA also allows re-
searchers to assess the effectiveness of interventions by
incorporating treatment as a grouping variable. Because the
outcome process is broken down into a stage sequence, we
can identify differential effects of the intervention. The Ado-
lescent Alcohol Prevention Trial (Hansen & Graham, 1991)
was a school-based substance use intervention program. LTA
was used to evaluate the effectiveness of a normative educa-
tion curriculum. An overall program effect was detected,
such that individuals who received the education were less
likely to advance in substance use between seventh and
eighth grade. More specifically, adolescents who received the
education were more likely to stay in the no use stage in
Grade 8 if they were in that stage in Grade 7, and less likely
to begin advanced use during that time (Graham, Collins,
Wugalter, Chung, & Hansen, 1991).

We present LTA by modeling change in depression from
Grade 11 to Grade 12. Building on the previously described
latent class example, we use the same eight items from the
Add Health depression index, in this case measured at two
times. The sample used in this longitudinal analysis includes
all adolescents who were in 11th grade at Wave I and 12th
grade at Wave II. The goal is to explore gender differences in
the stability of depression over time. First an overall model is
fit to the two waves of data for all adolescents, followed by a
model incorporating the grouping variable sex.

The mathematical model is presented in terms of two times
of measurement, with depression as our dynamic (changing)
latent variable measured by eight items and sex as a grouping
variable. There are eight discrete manifest indicators of
depression with response categories i, j, k, l, m, n, o, and p
respectively, which are measured at two times. The latent
classes corresponding to the dynamic part of the model are
called latent statuses. There are a = 1, . . . , S latent statuses at
Time 1 and b = 1, . . . , S latent statuses at Time 2. Suppose
also that there are c = 1, . . . , C latent classes measured by a
manifest indicator with response categories x = 1, . . . , X. In
general, y refers to a response pattern (i.e., a cell of the contin-
gency table made by cross-tabulating all items in the model).
Let y = {x, i, j, k, l, m, n, o, p, i ′, j ′, k ′, l ′, m′, n′, o′, p′) rep-
resent a response pattern, a vector of possible responses to the
latent class indicator and the eight latent status indicators at
Time 1 and the same eight indicators at Time 2. In this exam-
ple, the response pattern is a vector made up of the sex indica-
tor, the eight depression indicators at Time 1, and the same
eight indicators measured at Time 2. Let Y represent the com-
plete array of response patterns. The estimated proportion of a
particular response pattern, P(Y = y), is expressed as

P(Y = y)

=
C∑

c=1

S∑
p=1

S∑
q=1

�c�x |c�a|c�i |a,c · · · �p|a,c�b|a,c�i ′|b,c · · · �p′|b,c

(26.4)

where

• �c represents the probability of being in latent class c (e.g.,
the expected proportion of females).

• �x |c represents the probability of response x to the latent
class indicator, conditional on membership in latent class
c (e.g., the probability of responding female to the indica-
tor of sex, given membership in the female group).

• �a|c represents the probability of being in latent status a at
Time 1 conditional on membership in latent class c (e.g.,
the probability of being in the depression latent status,
given membership in the female group).

• �i |a,c represents the probability of response i to Item 1 at
Time 1, conditional on membership in latent status a at
Time 1 and membership in latent class c (e.g., the proba-
bility of responding yes to could not shake the blues, given
membership in the female group and membership in the
depression latent status); similarly, �i ′|b,c represents the
same quantity for Time 2.

• � j |a,c represents the probability of response j to Item 2 at
Time 1, conditional on membership in latent status a at
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Time 1 and membership in latent class c (e.g., the proba-
bility of responding yes to felt depressed, given member-
ship in the female group and membership in the depression
latent status); similarly, � j ′|b,c represents the same quantity
for Time 2, and so on.

• �p|a,c represents the probability of response p to Item 8 at
Time 1, conditional on membership in latent status a at
Time 1 and membership in latent class c (e.g., the proba-
bility of responding yes to life not worth living, given
membership in the female group and membership in the
depression latent status); similarly, �p′|b,c represents the
same quantity for Time 2.

• �b|a,c represents the probability of membership in latent
status b at Time 2, conditional on membership in latent
status a at Time 1 and membership in latent class c (e.g.,
the probability of membership in the depression latent sta-
tus in Grade 12, given membership in the female group
and membership in the no depression latent status in
Grade 11). The � parameters are usually arranged in the
form of a transition probability matrix.

Refer to Appendix B for a summary of the LTA mathematical
model and its associated parameters. It is worth noting that
the grouping variable can be treated as a discrete latent vari-
able measured by several indicators. Here our grouping vari-
able is sex, which is measured with a single indicator. With a
single indicator there is no basis on which to estimate mea-
surement error, so the relevant � parameters are fixed to 0 and
1. In general, there can be any number of manifest items and
response categories, and the number of response categories
can vary across items. As in LCA, LTA employs the EM al-
gorithm. Issues of model selection and fit are identical to
those in the latent class framework.

The use of parameter restrictions serves the same purpose
as in a latent class framework. However, there are several rea-
sons that these restrictions often play a larger role in LTA
models. First, because complex models are often estimated in
LTA, the number of parameters involved can be quite large.
Imposing restrictions on the parameters can greatly aid in
model identification. Second, as in all longitudinal models, it
is important to consider the issue of measurement invariance
over time. Measurement invariance over time can be explored
by imposing constraints across the sets of � parameters, or
conditional response probabilities, estimated at each time.
Constraining these parameters to be equal across time ensures
that the meaning of the latent statuses remains consistent
across time. If the measurement is structurally identical at
both times, then changes in the class membership over
time can be attributed solely to development rather than
development mixed with changes in the relations between the

indicators and the latent variable. Third, parameter restric-
tions often play an important theoretical role in the � matrix;
restrictions can be imposed to test the nature of development
over time. For example, models estimating the full � matrix
(implying that individuals can move around the stage se-
quence freely over time) can be compared to models that do
not allow backsliding to stages earlier in a stage sequence.

Table 26.5 presents results from the first longitudinal
analysis, where there is no grouping variable. This model was
estimated twice, once with all � parameters estimated freely
and once with � parameters constrained to be equal across
time, representing measurement invariance over time. The G2

difference test for these nested models is 47 with 40 df (G2 =
4,872 with 65,431 df vs. G2 = 4,919 with 65,471 df ). This is
nonsignificant, providing evidence that measurement invari-
ance over time holds. Therefore, all subsequent findings re-
ported are based on the constrained model. The matrix of
transition probabilities provides information about stability
in depression between Grades 11 and 12. Elements on the
diagonal are bolded; these numbers represent the probability
of membership in a particular depression latent status in
Grade 12, conditional on membership in the same depression
latent status in Grade 11. An interesting finding is that it is
estimated that 77% of adolescents in the no depression latent
status at Grade 11 were in that same latent status a year later.
The probability of being in the same depression latent status
at both grades is substantially lower for the other four groups.
Table 26.5 also reports the depression latent status prevalence
at each grade. The pattern appears to be similar in Grades 11
and 12, with a slightly higher proportion in the no depression
latent status at Grade 12.

TABLE 26.5 Latent Transition Model (Conditional Parameters
Constrained Equal Across Time)

Panel A. Transition Probabilities From Grade 11 to Grade 12

Grade 12

No Sad +
Grade 11 Depression Sad Disliked Disliked Depression

No depression .77 .12 .09 .02 .01
Sad .33 .49 .07 .07 .05
Disliked .24 .08 .46 .16 .06
Sad + disliked .01 .22 .28 .40 .10
Depression .07 .22 .00 .13 .58

Panel B. Class Prevalence

Prevalence Prevalence
Class Label at Grade 11 at Grade 12

1 No depression .34 .40
2 Sad .23 .22
3 Disliked .20 .18
4 Sad + disliked .13 .12
5 Depression .09 .09
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TABLE 26.6 Latent Transition Model by Sex (Conditional
Parameters Constrained Equal Across Time and Sex)

Panel A. Transition Probabilities from Grade 11 to Grade 12 for Males and
Females

Grade 12

No Sad +
Grade 11 Depression Sad Disliked Disliked Depression

No depression .71 .10 .16 .02 .01
.82 .14 .02 .02 .00

Sad .36 .39 .14 .07 .05
.30 .53 .05 .07 .05

Disliked .23 .04 .54 .15 .05
.26 .11 .38 .18 .06

Sad + disliked .02 .22 .41 .31 .04
.00 .21 .22 .43 .14

Depression .05 .13 .02 .09 .72
.08 .30 .00 .17 .46

Note. Females are in bold.

Panel B. Class Prevalence for Males and Females

Prevalence Prevalence
Class Label at Grade 11 at Grade 12

1 No depression .39 .40
.28 .37

2 Sad .17 .15
.29 .27

3 Disliked .25 .26
.18 .12

4 Sad + disliked .10 .09
.16 .14

5 Depression .09 .09
.10 .09

Note. Females are in bold.

The second longitudinal analysis incorporates sex as a
grouping variable in order to examine gender differences in
the prevalence of depression and the incidence of transitions
over time in levels of depression. The � parameters were con-
strained to be equal across time and sex so that the latent sta-
tuses of depression are defined in the same way in Grades 11
and 12 for males and females. Table 26.6 shows the transition
probabilities and latent status prevalences for males and fe-
males. The pattern of transition probabilities appears to be
quite similar for males and females. For example, 71% of
males in the no depression latent status Grade 11 are in this
same latent status in Grade 12. Similarly, 82% of females ex-
periencing no depression at Grade 11 are expected to have no
depression at Grade 12. There does, however, appear to be an
interesting but subtle gender difference in some of the transi-
tion probabilities. Notice that regardless of an individual’s
level of depression in Grade 11, males are more likely to tran-
sition to the disliked latent status in Grade 12 and females are
more likely to transition to the sad latent status in Grade 12.
For example, of individuals in the no depression latent status

in Grade 11, males are eight times more likely to be in the
disliked latent status 1 year later (16% vs. 2%), and females
are more likely to be in the sad latent status 1 year later (14%
vs. 10%). Without estimates of the parameters’ standard er-
rors, we cannot assess the statistical significance of these dif-
ferences. The Bayesian approach discussed in the next
section can be applied to both latent class and latent transition
models to obtain standard errors.

ADVANCED TOPICS IN LATENT CLASS MODELS

The final section of this chapter presents several advanced
topics in latent class models. The purpose of this section is to
give the reader an idea of how the latent class model can be
extended to answer a wider range of research questions. Most
of these extensions are relatively recent, and software is not
currently available for everything discussed here. Existing
software is pointed out as appropriate.

Bayesian Approach for Obtaining Standard Errors

Data augmentation is a Bayesian method that can be used to
obtain estimates of standard errors of LCA and LTA parame-
ters. With this approach, an individual’s class membership is
treated as missing data and imputed multiple times. By im-
puting multiple times, the uncertainty associated with latent
class membership is taken into account. An estimate of the
standard error is obtained for each parameter by combining
the average variance within each imputation and variance be-
tween imputations (Rubin, 1987). Standard errors provide in-
formation about the variability of point estimates and enable
the user to conduct hypothesis tests.

Data augmentation lends tremendous flexibility to hypoth-
esis testing. This procedure yields standard errors for each
parameter, allowing standard hypothesis tests of group differ-
ences. We know based on our G2 difference test of sex differ-
ences in the � parameters that the prevalence of the five
depressive types is different for males and females. Standard
errors from the parameter estimates can be used to compare
formally the probability of membership in each type of de-
pression for males and females. For example, based on Fig-
ure 26.4 it appears that females are more likely to be in the sad
latent class, whereas males are more likely to be members of
the disliked latent class. WinLTA (Collins & Wugalter, 1992;
Hyatt & Collins, 2000) was used to conduct data augmenta-
tion. Based on these results, differences of proportions and
relative risk ratios were calculated, along with their associated
95% confidence intervals (see Table 26.7), for each probabil-
ity of class membership. As anticipated, two differences were
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TABLE 26.7 Hypothesis Tests for Sex Differences in Levels of
Depression at Grade 12

Male Female Difference of Relative
Prevalence Prevalence Proportions Risk

Based on DA Based on DA (95% CI) (95% CI)

No depression .47 .42 −0.05 0.9
(−0.10, 0.00) (0.8, 1.0)

Sad .13 .25 0.13∗ 2.0∗
(0.09, 0.17) (1.6, 2.6)

Disliked .22 .10 −0.12∗ 0.5∗
(−0.16, −0.08) (0.3, 0.6)

Sad + disliked .11 .13 0.02 1.2
(−0.02, 0.07) (0.8, 1.7)

Depression .08 .09 0.01 1.2
(−0.02, 0.04) (0.8, 1.6)

Note. ∗Difference is statistically significant at the .05 level.

found to be statistically significant: females are twice as likely
to be in the sad latent class and half as likely to be in the dis-
liked latent class. No other effects of gender were found.

In addition to conducting hypothesis tests, more complex
tests involving multiple parameter estimates can be explored.
For example, data augmentation can be applied to LTA to de-
fine a stability parameter that is the sum of all diagonal
elements in the matrix of transition probabilities. Group dif-
ferences in stability can then be examined. An example of
this, as well as an explanation of how to calculate the differ-
ence of proportions, relative risks, and associated standard
errors for combinations of LTA parameters, appears in Hyatt,
Collins, and Schafer (1999). In this study WinLTA (Collins &
Wugalter, 1992; Hyatt & Collins, 2000) was used to examine
differences in the onset of substance use for females with
early pubertal timing and females who do not experience
early timing. It was found that early-developing females were
less likely to be in the no substance use stage and more likely
to be in the alcohol and cigarettes and alcohol, cigarettes,
drunkenness, and marijuana stage in both seventh and eighth
grades. Also, early-developing females were more likely to
begin using substances between seventh and eighth grade.
Although a group difference in the overall stability in sub-
stance use over time was found in the anticipated direction,
this difference did not reach statistical significance.

Concomitant Variables

Often there are exogenous or concomitant variables that could
be used to predict latent class membership. The terms exoge-
nous and concomitant predictors have been used interchange-
ably in the literature. Both refer to the addition of unmodeled
predictors to the latent class model. These concomitant vari-
ables have been used to predict all aspects of the latent class
model: the latent class proportions (Dayton & Macready,

1988; Melton, Liang & Pulver, 1994; van der Heijden,
Dessens, & Bockenholt, 1996), the transition probabilities
in latent transition problems (Humphreys & Janson, 2000;
Pfefferman, Skinner & Humphreys, 1998; Reboussin,
Reboussin, Liang, & Anthony, 1998) and the conditional
response probabilities (Pfefferman et al., 1998).

Concomitant predictors are added to latent class and latent
transition models via logistic or multinomial logistic regres-
sion. Because these concomitant predictors are unmodeled,
they can be discrete, continuous, or higher order terms, like
powers or interactions. For example, consider our latent class
model of depression. Perhaps it would be interesting to see
whether alcohol use predicts membership in particular depres-
sion latent classes. With this model, it is possible to investigate
questions like the following: For a unit increase in alcohol
consumption, how does the probability of membership in the
depression latent class change? The ability to include interac-
tions makes the model quite attractive. For example, it might
be reasonable to hypothesize that the effects of alcohol con-
sumption on predicting level of depression could be different
for males and females. Perhaps female alcohol-consuming
adolescents are most likely to be members of one latent class,
but male alcohol-consuming adolescents are most likely to be
members of another latent class. The interaction becomes im-
portant if non–alcohol-consuming male and female adoles-
cents are not likely to be in the same depression latent classes
as their alcohol-consuming counterparts.

Concomitant predictors can also be brought into the mea-
surement side of the latent class model—in other words, used
to predict the conditional response probabilities in a latent
class model. In a study of employment, Pfefferman et al.
(1998) included variables thought to be related to the report-
ing of employment status, such as receiving unemployment
compensation. Suppose the variable measuring whether un-
employment compensation is received is dichotomous. Then
using it as a concomitant predictor amounts to estimating the
conditional response probabilities separately for people who
do not receive unemployment compensation and for those
who do receive unemployment compensation. It is important
to note that this model would not be used to investigate
whether those receiving unemployment compensation are
more likely to be employed or not; rather, the model specifies
that the probability of a particular response to the employment
question, conditional on latent class membership, may differ
between people receiving unemployment compensation and
people not receiving unemployment compensation. One can
think of this as a differential error rate for those receiving and
those not receiving unemployment compensation.

In LTA models, concomitant predictors have been used to
predict transitions among latent statuses. Reboussin et al.
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(1998) used a latent transition model with concomitant pre-
dictors to model weapons-carrying behavior in a sample of
children ranging in age from 8 to 11. These authors included
many concomitant predictors, but for this discussion, we
choose one, feeling safe alone in one’s neighborhood. The
model presented in Reboussin et al. (1998) examined transi-
tions in weapons-carrying behavior—that is to say, given the
former time point’s weapons-carrying latent status, what
weapons-carrying latent status is someone likely to be in
now? The latent statuses in their analysis were no weapons
carrying, stick for defense, and weapons carrying. The inclu-
sion of a concomitant variable in predicting transitions in this
model amounts to addressing the question Given previous
weapons carrying latent status membership and how safe one
feels alone in one’s neighborhood, what weapons carrying
latent status are people likely to be in at the current occa-
sion? The authors found that boys were much less likely to
move into the stick-carrying latent status from the no
weapons latent status if they felt safe in their neighborhoods.
If that concomitant predictor had not been included, the tran-
sition probability from the no weapons carrying latent status
to the stick carrying latent status would have been an average
over the different levels of feeling safe in one’s neighbor-
hood. This provides a much more nuanced view of the be-
havior under study. The program �em (Vermunt, 1993) fits
models with covariates.

Additional Types of Indicators in the Latent 
Class Model

Various researchers have been working on the addition of or-
dinal and continuous indicators to the latent class model. An
advantage of expanding the types of indicators that may be
used is that more information may be brought into the analy-
sis. Until recently, it has been necessary to categorize ordinal
or quantitative variables in order to include them in the latent
class model. For the purpose of estimation, the categorized
indicator is treated as nominal level, regardless of the level of
measurement of the original variable. This can result in a loss
of information in the analysis, which in turn limits the con-
clusions that may be drawn.

Ordinal Indicators

Kim and Böckenholt (2000) presented the stage-sequential
ordinal (SSO) model. The SSO model estimates stage-
sequential development measured by one or more ordinal in-
dicators. Measurement error in the ordinal data is estimated
according to a graded-response model (Samejima, 1969),
which assumes that there is an underlying continuous charac-
teristic that is discretized to form an ordinal scale. The SSO

model can incorporate continuous covariates in the analysis
using a multinomial logit model. Like LTA, this model as-
sumes that change over time follows a first-order Markovian
process, in which stage membership at one time is predicted
by stage membership at the immediately prior time.

Kim and Böckenholt (2000) illustrate the SSO model with
an analysis of attitudes toward alcohol use among a national
sample of adolescents measured annually for 5 years. They
find that a four-stage model, in which the stages represent
levels of increasing acceptance of alcohol use, in combina-
tion with a restrictive transition probability matrix, fits the
data well. The restrictions Kim and Böckenholt place on the
� matrix is that a single � matrix describes the transitions
over the entire 5-year period. The � matrix is further re-
stricted in that individuals only change by one latent status
between assessments. That is, respondents become no more
than one step more or less accepting of alcohol use between
assessments. Also, by including covariates in the model, they
showed gender differences in initial level of acceptance of al-
cohol use (males more accepting), and cohort differences.
Cohort differences indicated that older respondents were
more accepting of alcohol use and less likely to change their
attitudes over the 5-year span. The authors demonstrated that
a similar model also fits marijuana attitudes of the same re-
spondents. Kim and Böckenholt (2000) describe how to use
the program �em (Vermunt, 1993) to do these analyses.

Continuous Indicators

Interval- and ratio-level indicators have been added by mod-
eling them as normally distributed conditional on latent class
membership (Moustaki, 1996). In this extended model, cate-
gorical indicators are treated the same as they are in the basic
latent class model, and continuous indicators are accommo-
dated by regressing them on the latent class variable. As with
the categorical indicators in the latent class model, the con-
tinuous indicators are assumed to be conditionally indepen-
dent, given latent class membership. Just as the conditional
response probabilities (� parameters) characterize the rela-
tion between the latent variable and the categorical indica-
tors, means and residual variances of the continuous
indicators characterize the relation between the continuous
indicators and the latent class variable. If the mean levels of a
continuous indicator are different across the latent classes
and the within-class residual variance is small, then that item
does a good job of discriminating among the classes.

Consider an example in which we have categorical depres-
sion items and a standard depression scale. By incorporating
continuous indicators along with the categorical indicators,
the depression scale would not require categorization. This
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has the benefit of retaining all available information in the
scale. The results of this analysis for the categorical items
might look similar to the latent class analysis presented ear-
lier, but there would also be mean scale scores for each latent
class. This could be useful for validation of the categorical
measures against an established scale. Another purpose of
such an analysis could be the investigation of types of depres-
sion and the examination of response patterns including scale
means. The software program LatentGold (Vermunt &
Magidson, in press) fits latent class models involving cate-
gorical indicators, continuous indicators, or both.

Random Effects Models

Random effects (or mixed) models are currently very popular
in social science research. They provide a powerful way to ac-
commodate clustered responses, which violate the standard
data analysis assumption that observations are independently
sampled. Much of the work in this domain has been in the area
of regression modeling. In particular, Bryk and Raudenbush
(1992) have described multilevel methods for modeling quan-
titative responses and Hedeker has addressed nonmetric re-
sponses (Hedeker & Gibbons, 1994; Hedeker & Mermelstein,
1998). There has also been some development of the incorpo-
ration of random effects in latent class and latent transition
models (Humphreys, 1998; Qu, Tan, & Kutner, 1996).

By adding random effects to the latent class model, one is
able to expand the assumption of conditional independence to
include the situation in which item responses are condition-
ally independent given latent class membership and unmea-
sured, subject-specific random effects. These random effects
account for any unmeasured factors that induce relations
among item responses beyond those due to latent class mem-
bership. Two common situations that often employ random
effects are repeated measures on the same person and a design
with people nested within organizations (e.g., schools).

Consider the case of students nested within schools. The
incorporation of random effects allows one to account for the
fact that students in the same class tend to report more simi-
larly than do students in different classrooms. Rather than
measuring and modeling all the different factors that could be
causing this observed similarity, random effects models ac-
count for this similarity automatically. Note that random ef-
fects do not normally constitute factors that are of substantive
interest. If there were additional substantively interesting
variables that accounted for within-class similarity, then
these other factors should be measured and modeled explic-
itly. Random effects models are meant to provide a conve-
nient way of handling violations of the standard assumption
of the independence of respondents in a sample.

General Growth Mixture Models

Muthén (2001; Muthén & Shedden, 1999) has recently intro-
duced a new, very general framework that incorporates both
latent class models and latent growth curve models. Using
this framework, called general growth mixture modeling
(GGMM), it is possible to fit ordinary LCA and latent growth
curve models. However, the most exciting part of this ap-
proach is the combination of the two models, which allows the
user to explore interindividual differences in intra-individual
development. This is done by identifying two or more latent
classes, each of which is characterized by a different pattern
of growth. For example, Muthén (2001) identified three qual-
itatively different trajectories of growth in heavy drinking
over time in a sample of young adults from the National
Longitudinal Study of Youth: a normative trajectory of mod-
erate heavy drinking across ages 18 to 25, a second group with
an increasing trend over time, and a third group involving a
steep decline over time. Using this new framework, both pre-
dictors and consequences of latent class membership can be
explored. The Mplus software (Muthén & Muthén, 2001) can
be used to fit general growth mixture models.

Goodness-of-Fit Issues

As stated previously, standard missing data procedures are
available for LCA and LTA that successfully adjust parameter
estimates for MAR missingness. However, the G2 statistic
used to assess the fit of the resulting models is potentially mis-
leading. This is because the G2 reflects two components: devi-
ations between the expected response pattern frequencies and
the observed frequencies, and deviations from MCAR miss-
ingness. To the extent that missing data are not MCAR, the G2

can be inflated, making model fit appear poorer than it really
is. This happens even when MAR missingness has been suc-
cessfully adjusted for in the parameter estimates. By separat-
ing the two contributions to the traditional G2 statistic, lack of
fit and departures from MCAR, we can clearly assess the fit of
latent class models for incomplete data. The contribution due
to departures from MCAR can be identified by fitting the sat-
urated model to the variables in the model. By subtracting this
value from the traditional G2 value we can determine the fit of
the latent class model after taking missing data into account
(Little & Rubin, 1987). Note that when the effect of missing
data on model fit is ignored because the G2 value is inflated, in
general researchers are more likely to reject models that actu-
ally provide adequate fit to the data. Both WinLTA (Collins &
Wugalter, 1992; Hyatt & Collins, 2000) and Mplus (Muthén
& Muthén, 2001) incorporate this adjustment to model fit for
latent class models with incomplete data.
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Even without missing data, there are some serious limita-
tions associated with goodness-of-fit assessment in some
LCA and almost all LTA models. The limitations fall in two
areas. First, goodness-of-fit testing relies upon the idea that
the distribution of the G2 is approximated reasonably well by
the chi-square distribution. However, when the ratio N/k be-
comes small, where N is the sample size and k is the number
of cells in the contingency table, the distribution of the G2

deviates more and more substantially from the chi-square.
Unfortunately, under these circumstances the true distribu-
tion of the G2 is not known, rendering it of limited utility for
model selection. This applies to all contingency table models,
and is particularly a problem in latent class models with large
numbers of indicators. Second, the standard hypothesis test-
ing approach using the G2 difference test can be used to com-
pare only nested models. However, many important research
questions addressed using latent class methods call for com-
paring models that are not strictly nested. An alternative to
the standard approach to goodness-of-fit testing is badly
needed in order to overcome these two limitations.

Bayesian methods may provide the needed alternative.
Rubin (1984; Rubin & Stern, 1994) describes a general proce-
dure for model monitoring based on the posterior predictive
check distribution of any test statistic. This is an empirical,
simulation-based procedure in which the observed value of
the test statistic is compared with its posterior predictive
check distribution under the null model to determine whether
the data are consistent with the null model. The p value indi-
cates the probability of a result more extreme than the data
under the posterior predictive check distribution of the test
statistic. This is an appropriate method for comparing two
models when no single parameter, but instead a set of parame-
ters distinguishes them. For example, the posterior predictive
check distribution can be used to test the validity of a five-
class model versus a six-class model. The first step is to draw
a set of parameter values from their joint posterior distribution
using a Markov chain sampling approach, in particular a data
augmentation algorithm. The second step is to create a data set
the same size as the original using random draws from appro-
priate distributions with the chosen parameter values. The fit
of the model to this imputed data set is assessed, and this
process is repeated many times to obtain a distribution of the
fit statistic. This is a very promising but complex approach,
and widely available software for this procedure is not yet
available. Hoijtink (1998; Hoijtink & Molenaar, 1997) pre-
sents several examples in which the fits of constrained latent
class models are assessed by applying the posterior predictive
check distribution to several goodness-of-fit statistics.

A closely related area in which more work is needed is sta-
tistical power for testing the fit of complex latent class and

latent transition models. In order to assess the statistical
power of any test involving the G2, the distribution of the G2

under the alternative hypothesis, called the noncentral distri-
bution, is needed. As the central distribution of G2 is unknown
when the contingency table is sparse, it follows that the non-
central distribution is unknown as well. Of course, the usual
factors that affect statistical power operate in this context—
namely, sample size, choice of alpha, and effect size—which
in model selection is the overall difference between the true
model and the model under consideration. It is possible that
the Bayesian posterior predictive check distribution approach
to hypothesis testing discussed above will provide an avenue
for assessing statistical power for latent class models.

Sample Size and Related Considerations

In addition to statistical power considerations, other sample
size considerations come up in LCA and LTA. Sparseness can
take a toll on parameter estimation. Several simulation stud-
ies (Collins et al., 1993; Collins & Tracy, 1997; Collins &
Wugalter, 1992) have demonstrated that parameter estima-
tion in LTA remains unbiased even in very sparse data tables.
However, the standard errors of certain parameters can be-
come unacceptably large. This is particularly true for the
� parameters, as these transition probabilities are conditioned
on the latent class membership and latent status membership
at Time 1, and thus often based on considerably smaller Ns
than the other parameters. In addition, identification prob-
lems become more frequent as sparseness increases. This
means that researchers who are faced with small samples cur-
rently are unlikely to be able to make use of LCA and LTA in
their current forms. The problems with small samples are due
to a lack of information. Naturally, small samples contain less
information than do large samples. More work needs to be
done in the area of latent class and latent transition models
applied to small samples.

A Two-Sequence Latent Class Model

Previously in this chapter we discussed models using discrete
or continuous exogenous variables to predict latent class
membership. Flaherty and Collins (1999) have developed
LTA models in which one stage sequence (e.g., substance use)
can be used to predict another (e.g., depression). This two-
sequence model can address a number of interesting research
questions. Suppose we wish to examine initial level and
changes in depression (e.g., as modeled in our example dis-
cussed previously) conditional on initial level and changes in
substance use behavior. Some questions may pertain to a
single time of measurement. For example, how are people in
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various depression latent statuses at one time of measurement
distributed among substance use latent statuses (e.g., no use;
tobacco only; alcohol only; tobacco and alcohol; and tobacco,
alcohol, and marijuana)? Are tobacco users more likely to be
in one depression latent status than another? Also, are tobacco
users more likely to be in a particular depression latent status
than alcohol or marijuana users? Other questions may pertain
to change over time. With the two-sequence model, interest-
ing and complex patterns of contingent change can be exam-
ined. For example, are people who change from no use to
tobacco and alcohol, compared to those who remain in the no
use latent status, more likely to transition from no depression
to a particular depression latent status? Are people who re-
main in the alcohol only latent status more or less likely to
remain in the no depression latent status, compared with
those who advance from the alcohol only latent status to a
more advanced level of substance use? Two-sequence models
are currently an area of active inquiry, with software for
general users expected in the future.

CONCLUSIONS

The usefulness of latent class models in psychological re-
search will continue to grow as the model is extended.
Already important steps have been taken to improve the util-
ity of this method, including extensions to longitudinal data,
improvements in the assessment of model fit, and the incor-
poration of continuous predictors of latent class membership.
Additional work in areas such as estimation with small sam-
ple sizes, Bayesian methods, concomitant variables, and two-
sequence models will further increase the power of latent
class and related methods. LCA and LTA play an important
role in understanding categorical latent constructs in psychol-
ogy and their related processes of change over time.

APPENDIX A: THE LATENT CLASS MODEL
AND ASSOCIATED PARAMETERS

P(Y = y) =
C∑

c=1

�c�i |c� j |c�k|c

• �c represents the probability of being in latent class c.

• �i |c represents the probability of response i to Item 1,
conditional on membership in latent class c.

• � j |c represents the probability of response j to Item 2,
conditional on membership in latent class c.

• �k|c represents the probability of response k to Item 3,
conditional on membership in latent class c.

APPENDIX B: THE LATENT TRANSITION MODEL
AND ASSOCIATED PARAMETERS

P(Y = y)

=
C∑

c=1

S∑
p=1

S∑
q=1

�c�x |c�a|c�i |a,c · · · �p|a,c�b|a,c�i ′|b,c · · · �p′|b,c

• �c represents the probability of being in latent class c (e.g.
the expected proportion of females).

• �x |c represents the probability of response x to the latent
class indicator, conditional on membership in latent
class c.

• �a|c represents the probability of being in latent status a at
Time 1, conditional on membership in latent class c.

• �i |a,c represents the probability of response i to Item 1 at
Time 1, conditional on membership in latent status a at
Time 1 and membership in latent class c; similarly, �i ′|b,c

represents the same quantity for Time 2.

• � j |a,c represents the probability of response j to Item 2 at
Time 1, conditional on membership in latent status a at
Time 1 and membership in latent class c; similarly, � j ′|b,c

represents the same quantity for Time 2, and so on.

• �p|a,c represents the probability of response p to Item 8 at
Time 1, conditional on membership in latent status a at
Time 1 and membership in latent class c; similarly, �p′|b,c

represents the same quantity for Time 2.

• �b|a,c represents the probability of membership in latent
status b at Time 2, conditional on membership in latent
status a at Time 1 and membership in latent class c.
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